线性回归分析PPT课件
合集下载
线性回归分析教程ppt
04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。
《线性回归分析》PPT课件
2019/5/8
金融与统计学院
2
古典线性回归分析三个基本特征
分析框架
“古典框架”,认为经济变量之间存在 确定的函数关系,计量经济分析就是发 现或推断这种关系。
需要确定的参数
线性模型中的线性参数,即线性函数的 系数。
2019/5/8
金融与统计学院
3
分析方法
主要是对因果关系的回归分析
相关分析用相关系数度量变量之间线 性联系的程度,回归分析用固定的解 释变量估计和预测被解释变量的平均 值。
相关分析中的变量对称,回归分析中 的变量不对称
相关分析中的变量随机,回归分析中 的解释变量固定(非随机)
2019/5/8
两个无聊但有钱的美国人W.N.Thurman和 M.E.Fisher (1988)针对1930~1983年美国 年鸡蛋产量和年鸡产量数据,分别用滞后1~4 期的检验式对“先有鸡还是先有蛋”做格兰杰 因果关系检验,结论是先有蛋。
2019/5/8
金融与统计学院
4
先讨论一元线性回归分析的原因
两个变量之间的线性因果关系在现实经济中普遍存 在;
2019/5/8
金融与统计学院
12
使用相关系数须注意
变量X、Y随机、对称
rXY rYX
相关系数反映变量之间的线性相关程度 样本相关系数是总体相关系数的估计值 相关系数不能确定变量之间的因果关系
2019/5/8
金融与统计学院
13
回归分析
回归:由英国著名生物学家兼统计学家 高尔顿(Francis Galton,1822— 1911 )在研究人类遗传问题时提出。
对于这个一般结论的解释是:大自然具有一种约束力, 使人类身高的分布相对稳定而不产生两极分化,这就是 所谓的回归效应。
回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
应用线性回归分析课件
Part
03
线性回归模型建立与求解
一元线性回归模型建立步骤
绘制散点图
以自变量为横坐标,因变量为纵 坐标,绘制散点图,观察变量之 间的关系。
建立一元线性回归模型
如果散点图呈现出线性趋势,则 可以建立一元线性回归模型,即 y=β0+β1x+ε,其中β0和β1为待 估参数,ε为随机误差项。
参数估计
采用最小二乘法对模型参数进行 估计,得到β0和β1的估计值。
03
04
2. 构造检验统计量;
3. 根据显著性水平确定临界值;
05
06
4. 计算检验统计量的值并与临界值比较, 得出结论。
残差分析在模型诊断中应用
残差图
通过绘制残差与预测值或 解释变量的散点图,观察 是否存在非线性关系、异 方差性等问题。
残差自相关检验
通过检验残差是否存在自 相关性,判断模型是否违 反独立性假设。
数据转换
对连续型特征进行离散化(如分 箱处理),对类别型特征进行编 码(如独热编码)。
特征选择与提取技巧
单变量选择
基于模型的选择
计算每个特征与输出变量之间的统计量( 如相关系数、卡方值等),选择统计量较 高的特征。
使用逐步回归、LASSO回归等方法,在模 型训练过程中自动选择重要特征。
特征变换
特征交互
利用线性回归模型建立房价与影响因素之间的关 系,并通过统计指标(如R方值、均方误差等) 评估模型的拟合优度。
参数估计
采用最小二乘法对模型参数进行估计,得到β0, β1, ..., βk的 估计值。
模型检验
对模型进行统计检验,包括拟合优度检验、回归系数显著 性检验、多重共线性检验等,以判断模型是否有效。
回归分析应用PPT课件
回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析
线性回归PPT优秀课件
1.正方形面积S与边长x之间的关系: 确定关系 正方形边长x 面积S x 2 2.一块农田的水稻产量与施肥量之间的关系: 气候情况 施肥量 不确定关系 水稻产量
浇水
除虫
与函数关系不同,相关关系是一种非确定
性关系.对具有相关关系的两个变量进行统
计分析的方法叫做回归分析. 在现实生活中存在着大量的相关关系.人 的身高与年龄、产品的成本与生产数量、商品
的销售额与广告费、家庭的支出与收入等都是
相关关系.
问题1:正方形的面积y与正方形的边长x之间
的函数关系是 y = x2 确定性关系 问题2:某水田水稻产量y与施肥量x之间是 否有一个确定性的关系? (不确定关系) 例如:在7块并排、形状大小相同的试验田上进行 施肥量对水稻产量影响的试验,得到如下所示的一 组数据:
为了书写方便,我们先引进一个符号 “ ”.这个符号表示若干个数相加.
n
例如,可将x1+x2+……+xn记作 x i
i1
,即
表示从x1加到xn的和.这样,n个数的平均
1 n 数的公式可以写作 x x i .上面的③ n i 1 n 2 式可以写作Q= ( yi bxi a) .
因此所求的回归直线方程是 yˆ =4.75x+257. 根据这个回归直线方程,可以求出相应于x 的估计值.例如当x=28(kg)时,y的估计
值是
yˆ
= 4.75×28+257=390(kg).
例1.一个工厂在某年里每月产品的总成本y
(万元)与该月产量x(万件)之间有如下一组
数据:
(l)画出散点图; (2)求月总成本y与月产量x之间的回归直线方
i 1
这个式子展开后,是一个关于a,b的二 次多项式.利用配方法,可以导出使Q取得 最小值的a,b的求值公式(详细推导过程 请见本小节后的阅读材料.P43页).
线性回归计算方法及公式PPT课件
公式
(y = ax + b)
解释
其中(y)是因变量,(a)是斜率,(x)是自变量,(b)是截距。
实例二:多元线性回归分析
总结词
多个自变量的线性关系
详细描述
多元线性回归分析研究因变量与多个自变量之间的线性关 系。通过引入多个自变量,可以更全面地描述因变量的变 化规律。
公式
(y = a_1x_1 + a_2x_2 + ... + a_nx_n + b)
加权最小二乘法的公式
加权最小二乘法的公式是:(ŷ=β₀+β₁x₁+β₂x₂+...+βₙxₙ)其中,(w_i)是加权因 子,用于对不同观测值赋予不同的权重。
加权最小二乘法适用于数据存在异方差性的情况,通过给不同观测值赋予不同的 权重,能够更好地拟合数据。
主成分回归的公式
主成分回归的公式是:(ŷ=β₀+β₁z₁+β₂z₂+...+βₙzₙ)其中, (z_i)是主成分得分,通过对原始自变量进行线性变换得到。
误差项独立同分布
误差项被假设是相互独立的,并且具有相 同的分布(通常是正态分布)。
误差项无系统偏差
自变量无多重共线性
误差项被假设没有系统偏差,即它们不随 着自变量或因变量的值而变化。
自变量之间被假设没有多重共线性,即它 们是独立的或相关性很低。
02
线性回归模型
模型建立
确定因变量和自变量
首先需要确定研究的因变量和自变量, 以便建立线性回归模型。
以提供更稳定和准确的估 计。
(y = (X^T X + lambda I)^{1}X^T y)
其中(y)是因变量,(X)是自变量 矩阵,(lambda)是正则化参数
(y = ax + b)
解释
其中(y)是因变量,(a)是斜率,(x)是自变量,(b)是截距。
实例二:多元线性回归分析
总结词
多个自变量的线性关系
详细描述
多元线性回归分析研究因变量与多个自变量之间的线性关 系。通过引入多个自变量,可以更全面地描述因变量的变 化规律。
公式
(y = a_1x_1 + a_2x_2 + ... + a_nx_n + b)
加权最小二乘法的公式
加权最小二乘法的公式是:(ŷ=β₀+β₁x₁+β₂x₂+...+βₙxₙ)其中,(w_i)是加权因 子,用于对不同观测值赋予不同的权重。
加权最小二乘法适用于数据存在异方差性的情况,通过给不同观测值赋予不同的 权重,能够更好地拟合数据。
主成分回归的公式
主成分回归的公式是:(ŷ=β₀+β₁z₁+β₂z₂+...+βₙzₙ)其中, (z_i)是主成分得分,通过对原始自变量进行线性变换得到。
误差项独立同分布
误差项被假设是相互独立的,并且具有相 同的分布(通常是正态分布)。
误差项无系统偏差
自变量无多重共线性
误差项被假设没有系统偏差,即它们不随 着自变量或因变量的值而变化。
自变量之间被假设没有多重共线性,即它 们是独立的或相关性很低。
02
线性回归模型
模型建立
确定因变量和自变量
首先需要确定研究的因变量和自变量, 以便建立线性回归模型。
以提供更稳定和准确的估 计。
(y = (X^T X + lambda I)^{1}X^T y)
其中(y)是因变量,(X)是自变量 矩阵,(lambda)是正则化参数
应用统计学:回归分析PPT课件
03
使用方法
通过菜单和对话框选择分析方法,导入数据,设置参数,运行分析并查
看结果。
Stata软件介绍
适用范围
Stata(Statistical Data Analysis) 是一款适用于各种统计分析和数 据管理的软件,尤其适用于回归 分析。
特点
功能强大、命令语言简洁,支持多 种数据管理操作,提供多种统计分 析方法,结果输出详细且可视化效 果好。
使用方法
通过命令行输入分析命令,导入数 据,设置参数,运行分析并查看结 果。
R软件介绍
适用范围
R(Software for Statistical Computing)是一款开源的统 计软件,适用于各种统计分析,
包括回归分析。
特点
功能强大、社区活跃、可扩展性 强,支持多种编程语言和数据可 视化工具,提供丰富的统计函数
分层回归分析的基本思想是将多个自变量分为若干个层次,每个层次内 部的自变量之间存在较强的相关性,而不同层次的自变量之间相关性较
弱。
分层回归分析在生态学、社会学、医学等领域有广泛应用,例如研究不 同层次的人口特征对健康状况的影响、研究不同层次的社会经济因素对 犯罪率的影响等。
主成分回归分析
主成分回归分析的基本思想是将多个自变量进行主成 分分析,得到少数几个主成分,这些主成分能够反映 原始数据的大部分变异,然后利用这些主成分进行回 归分析。
线性回归模型
线性回归模型是回归分析中最常用的一种模型,其形式为 (Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)。
其中 (Y) 是因变量,(X_1, X_2, ldots, X_p) 是自变量,(beta_0, beta_1, ldots, beta_p) 是回归系数,(epsilon) 是误差项。
线性回归分析教程PPT课件
实例二:销售预测
总结词
线性回归分析在销售预测中,可以通过分析历史销售数据,建立销售量与影响因子之间的线性关系, 预测未来一段时间内的销售量。
详细描述
在销售预测中,线性回归分析可以用于分析历史销售数据,通过建立销售量与影响因子(如市场需求 、季节性、促销活动等)之间的线性关系,预测未来一段时间内的销售量。这种分析方法可以帮助企 业制定生产和销售计划。
自相关检验
自相关是指残差之间存在 相关性。应通过图形或统 计检验方法检验残差的自 相关性。
05
线性回归模型的预测与 优化
利用线性回归模型进行预测
确定自变量和因变量
01
在预测模型中,自变量是预测因变量的变量,因变量是需要预
测的目标变量。
建立模型
02
通过收集数据并选择合适的线性回归模型,利用数学公式表示
一元线性回归模型
一元线性回归模型是用来研究一个因变量和一个 自变量之间的线性关系的模型。
它通常用于预测一个因变量的值,基于一个自变 量的值。
一元线性回归模型的公式为:y = b0 + b1 * x
多元线性回归模型
01 多元线性回归模型是用来研究多个自变量和一个 因变量之间的线性关系的模型。
02 它通常用于预测一个因变量的值,基于多个自变 量的值。
线性回归模型与其他模型的比较
01
与逻辑回归的比较
逻辑回归主要用于分类问题,而 线性回归主要用于连续变量的预 测。
02
与决策树的比较
决策树易于理解和解释,但线性 回归在预测精度和稳定性方面可 能更优。
03
与支持向量机的比 较
支持向量机适用于小样本数据, 而线性 Nhomakorabea归在大样本数据上表现 更佳。
第二章回归分析ppt课件
U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:
回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
线性回归分析-PPT课件
总离差平方和:
S S S T R E
R
回归均方差(组间方差): M
2 ( Y y ) j jME
(Y
j 1
m
j
yj )
2
m n 1
计算F值,
M F M
R E
由F值查表,得到P。讨论显著度水平: <=α 自变量作用显著 P >α 自变量作用不显著
将未进入方程的某自变量Xi与Y做方差分析,各水平均值差异显著,满足: F > 3.84 或P<= 0.05 则该Xi可以进入回归方程。而已进入回归方程的Xi与回归后的Y如果出现: F < 2.71 , P> 0.1 则该Xi 必须从回归方程中剔除。 3. 回归系数的显著性检验 对已进入方程的变量的回归系数做 T检验,该检验的原假设是 Bi=0,即第 i 个偏回归系数与0无差异。它意味着,当偏回归系数Bi为0时,无论xi取值如何变 化都不会引起y 的线性百脑汇,xi无法解释y 的线性变化,它们之间不存在线性 关系。 T值的计算为: B
四、线性回归分析的具体操作步骤 ⒈回归分析命令菜单
执行:[Analyze] [Regression] [Linear] 选择因变量到:“Dependent”因变量框内 选择若干个自变量移动到:“Independent(s)” 自变量 框内。
⒉回归方法
“Method”下拉菜单提供了五种筛选策略供选择: 强行介入法Enter(默认,通常在一元线性回归中) 向前筛选Forward 向后筛选Backward 逐步筛选Stepwise 强行剔除Remove
T
i
SE
通过查表可以得到P(即:Sig T)。 若P> 0.1的Xi须可以考虑首先从回归方程中剔除。 其中: Bi为偏回归系数 SEBi为偏回归系数的标准误
《广义线性回归分析》课件
广义线性回归分析的优缺点
对异常值敏感
由于广义线性回归分析基于最小二乘法,因此对异常值比较敏感, 异常值可能会对回归结果产生较大影响。
不适用于非线性关系
如果自变量和因变量之间存在非线性关系,广义线性回归分析可能 无法得出正确的预测结果。
对自变量间的多重共线性敏感
如果自变量之间存在多重共线性,广义线性回归分析的参数估计可 能会出现偏差。
检验残差是否服从正态分布, 以判断模型的线性性和方差齐 性假设是否成立。
异方差性检验
检验不同观测值的方差是否相 同,以判断模型的方差齐性假 设是否成立。
独立性检验
检验观测值之间是否存在自相 关,以判断模型的独立性假设
是否成立。
05
CATALOGUE
实例分析
数据集介绍
数据集来源
介绍数据集的来源,如公开数据集、自己收集的 数据集等。
《广义线性回归分 析》ppt课件
目录
• 引言 • 模型设定与假设 • 模型拟合与优化 • 模型选择与验证 • 实例分析 • 结论与展望
01
CATALOGUE
引言
广义线性回归分析的定义
广义线性回归分析是一种统计方法, 用于研究因变量和自变量之间的关系 ,通过建立回归模型来预测因变量的 值。
它假设因变量和自变量之间的关系可 以用线性函数表示,同时考虑到随机 误差的影响。
04
CATALOGUE
模型选择与验证
模型选择标准
简洁性
优先考虑简单模型 ,避免过拟合。
鲁棒性
模型应能抵抗异常 值和噪声的影响。
解释性
模型应能提供对数 据生成过程的深入 理解。
预测准确性
模型应能准确预测 未知数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 决定系数
当变量之间的关系可以用一个数学模型来模拟时,我们用决定系数( R2)判定数学模型拟合效果的好坏。
在数学上,决定系数
R2
( y ( y
y)2 y)2
(y是实际值,y′是模拟值)。
决定系数R2越接近于1,说明数学模型的模拟效果越好。
8
01-03 回归分析的应用
• 利用Excel回归分析工具进行回归分析
5
01-02 回归分析的概念
• 分类
(1)回归分析按照涉及的变量多少,分为 一元回归分析 多元回归分析
(2)按照自变量和因变量之间的关系类型,可分为 线性回归分析 非线性回归分析
6
01-02 回归分析的概念
• 步骤
1.测定相关关系的密 切程度
2.建立回归方程
3.利用回归模型进行 预测
7ห้องสมุดไป่ตู้
01-02 回归分析的概念
15
01-03 回归分析的应用
案例分析:李明应该怎么做?(下)
例2:用多元回归分析法分析上一案 例中超市的销量与超市的面积大小 、促销费用、所在地理位置的关系 ,并根据回归方程预测一家在二类 地段、面积为1000平方米、月促销 费5万元的超市月销售额将会是多少 。
16
01-03 回归分析的应用
• 多元线性回归分析步骤:
(1)插入散点图 (2)添加趋势线
19
01-03 回归分析的应用
制作散点图和趋势线进行回归分析:
20
01-03 回归分析的应用
利用Excel散点图和趋势线进行回归分析:
21
01-03 回归分析的应用
利用Excel散点图和趋势线进行回归分析:
22
01-03 回归分析的应用
利用Excel散点图和趋势线进行回归分析: 在现实生活中,很多社会经济现象是非线性发展的,此时数据点分布在 一条曲线附近,例如指数曲线、抛物线等。 将例中的直线模型改成指数模型,操作如下。
例1:李明想开一家社区超市, 前期去了很多小区做实地调查 。经调研得到小区超市的年销 售额(百万元)与小区常住人 口数(万人)的数据资料如表 所示,请对超市的年销售额与 小区常住人口数进行回归分析 ,帮助李明进行选址决策。
10
01-03 回归分析的应用
案例分析:
表:小区超市的年销售额(百万元)与小区常住人口数(万人)统计表
• 一元线性回归 如果在回归分析中只包括一个因变量和一个自变量,且二者的关系可
用函数y=kx+b来模拟,这种回归分析称为一元线性回归分析。 y=kx+b y 因变量 x 自变量
k 回归系数,回归直线的斜率 b 常数项,回归直线在纵坐标轴上的截距
9
01-03 回归分析的应用
案例分析:李明应该怎么做?(上)
知识点:回归分析
Contents 内 容
01 回归分析的起源 02 回归分析的概念 03 回归分析的应用
.
2
01-01 回归分析的起源
• “回归”一词的由来
英国著名生物学家、统计学家 高尔顿(Francis Galton,1822~1911)
3
01-01
“回归”是由英国的高尔顿(生物学家达尔文的 表弟)在研究人类遗传问题时提出来的。为了研究 父代与子代身高的关系,高尔顿搜集了1078对父 亲及其儿子的身高数据。高尔顿对试验数据进行 了深入的分析,发现了一个很有趣的现象—回归 效应:当父亲高于平均身高时,他们的儿子身高比 他更高的概率要小于比他更矮的概率;父亲矮于 平均身高时,他们的儿子身高比他更矮的概率要 小于比他更高的概率。它反映了一个规律,即这 两种身高父亲的儿子的身高,有向他们父辈的平 均身高回归的趋势。对于这个一般结论的解释是: 大自然具有一种约束力,使人类身高的分布相对 稳定而不产生两极分化,这就是所谓的回归效应 。
25
Thank you!
.
26
17
01-03 回归分析的应用
• 多元线性回归分析步骤:
18
01-03 回归分析的应用
利用Excel散点图和趋势线进行回归分析
“先插入散点图,再添加趋势线”的方法求趋势线方程、相关系数和决 定系数,最后根据决定系数的大小判定模拟效果的好坏,并根据趋势线方 程做数据预测。
例5:利用散点图求上一案例中“超市年销售额”和“小区人数”的回 归方程,“超市年销售额”为因变量y,“小区人数”为自变量x。
11
01-03 回归分析的应用
分析步骤:(一)
12
01-03 回归分析的应用
分析步骤:(二)
反映模型的拟合度
13
01-03 回归分析的应用
分析步骤:(三) • 一元线性回归 y=kx+b
第三组数据的第1个数据(301.665)是回归直线的截距b,第2个数据( 44.797)也叫回归系数,其实就是回归直线的斜率k。
23
01-03 回归分析的应用
想一想 做一做:
已 知 2009 — 2015 年 淘 宝 “ 双 11 ” 当天销量统计如图所示,请利用散 点图进行回归分析,模拟淘宝“双 11 ” 的 销 量 变 化 规 律 , 并 预 测 2016年的销量。
24
01-03 回归分析的应用
两种回归分析工具使用总结: • 利用回归分析工具进行线性回归的优缺点如下: ① 优点:可以进行一元线性回归,也可以进行多元线性回归。 ② 缺点:只能进行线性回归,不能直接进行非线性回归。 • 利用散点图和趋势线进行回归分析的优缺点如下: ① 优点:不仅能进行线性回归,还能进行非线性回归。 ② 缺点:只能进行一元回归,不能进行多元回归。
14
01-03 回归分析的应用
• 多元线性回归 如果在回归分析中包括一个因变量和多个自变量,且因变量和自变量
的关系可用函数y=k1x1+k2x2+…+knxn+b来模拟,这种回归分析称为多元线 性回归分析。
事实上,一种现象常常与多个因素相关,所以,由多个自变量的最优 组合来估计和预测因变量,比只用一个自变量进行估计和预测更有效、更 有实际意义。
4
01-02 回归分析的概念
• 概念
回归分析法:指将具有相关关系的两个变量之间的数量关系进行测定, 通过建立一个数学表达式进行统计估计和预测的统计研究方法。 自变量:一般把作为估测依据的变量叫做自变量 因变量: 待估测的变量 回归方程:反映自变量和因变量之间联系的数学表达式 回归模型:某一类回归方程的总称