函数的应用_PPT课件

合集下载

函数的应用课件ppt课件ppt

函数的应用课件ppt课件ppt

然后根据复合函数的解析式确定图像的变换方式。
03
复合函数的性质
复合函数具有一些特殊的性质,如周期性、奇偶性、单调性等。这些性
质可以通过分析复合函数的解析式和基本初等函数的性质来得出。
03
函数在实际问题中应用
经济学中函数应用
需求分析
通过构建需求函数,描述 商品价格与需求量之间的 关系,帮助企业预测市场 变化。
不等式在解决实际问题中的应用
通过建立不等量关系式,即不等式,来求解实际问题中的范围或最优解。例如,求解经 济中的最优化问题、工程中的约束条件问题等。
方程和不等式在解决实际问题中的综合应用
有些问题既需要建立等量关系又需要建立不等量关系,这时就需要综合运用方程和不等 式来求解。例如,求解金融中的投资组合问题、物流中的运输优化问题等。
分析和设计。
04
微分学在函数研究中应用
微分学基本概念与性质
微分定义
微分是函数局部变化率的线性近似,描述了函数 在某一点附近的变化趋势。
微分性质
微分具有线性性、可加性、乘法法则等基本性质 ,这些性质在解决复杂问题时非常有用。
高阶微分
高阶微分描述函数更高层次的变化率,如加速度 、加加速度等。
微分法在函数研究中应用
函数与方程关系探讨
函数与方程的联系
方程是函数值为零的特殊情况,函数图像与x轴的交点即为方程的 解。
函数与方程的区别
函数表示一种对应关系,而方程则表示一种等量关系。
函数思想在解方程中的应用
通过构造函数,利用函数的性质(如单调性、连续性等)来求解方 程。
函数与不等式关系探讨
函数与不等式的联系
不等式可以看作是函数值大于或小于零的情况,函数图像在x轴上 方的部分对应不等式大于零的解集,下方的部分对应小于零的解

函数的简单应用课件

函数的简单应用课件

函数的表示方法
函数的表示方法有多种,包括解析法、表格法、图象法等 。解析法是用数学表达式来表示函数关系,表格法和图象 法则通过数据或图形直观地展示函数关系。
解析法表示函数关系最为精确,但有时较为复杂;表格法 和图象法则较为直观,但有时不够精确。在实际应用中, 根据需要选择合适的表示方法。
函数的性质
三角函数的基本性质
三角函数具有对称性、单调性、有界性等基本性质。
三角函数的图像
01
02
03
正弦函数图像
正弦函数的图像是一个周 期为2π的波浪线。
余弦函数图像
余弦函数的图像与正弦函 数图像关于y轴对称。
正切函数图像
正切函数的图像在每一个 区间(π/2 + kπ, (3π/2) + kπ),k∈Z上都是直线。
量之间的关系。
分式函数在日常生活中的应用
03
分式函数在日常生活中也有很多应用,例如时间、距离和速度
之间的关系可以用分式函数表示。
05
三角函数的应用
三角函数的定义
三角函数定义
三角函数是数学中研究三角形边角关系的函数,包括正弦、余弦 、正切等。
三角函数周期性
三角函数具有周期性,即它们的图像会重复出现。
函数的性质包括奇偶性、单调性、周期性等。奇偶性描述函数图像关于原点的对 称性;单调性描述函数在某一区间内的增减性;周期性描述函数图像的重复性。
了解函数的性质有助于更好地理解函数的本质和特点,为进一步应用函数打下基 础。
02
一次函数的应用
一次函数的定义
一次函数:一般形式为 y = kx + b(k ≠ 0),其中 k 为斜率
收入与工作量的关系
如果一个人的收入 I 与他完成 的工作量 W 成正比,那么 I = kW。

三角函数的应用ppt课件

三角函数的应用ppt课件
D 系,在转动一周的过程中,H 关于 t 的函数解析式为( )
A.
H
55
sin
π 15
t
π 2
,
x 0, 30
C.
H
55
sin
π 15
t
π 2
55 ,
x 0, 30
B.H
55
sin
π 15
t
π 2
,
x 0, 30
D.H
55
sin
π 15
t
π 2
65,
x 0, 30
解析:因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min ,所 以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要15min , 又因为摩天轮最高点距离地面高度为120m ,所以t 15 时, H 120 ,
i
Asin
t
来刻画,其中

表示频率,A
表示振幅,
表示初相.
解:
(1)由图可知,电流最大值 5A,因此 A=5;电流变化的周期为 1 s,频率为 50Hz, 50
即 50 ,解 得 100π ;再 由初始状 态( t=0)的 电流约为 4.33A,可 得

sin
0.866
,因此
约为
π 3
.所以电流 i
解析:设角速度
k
sin (k
0)
,故旋转一周所用的时间t
k
2
sin
.当
90
2
时,
t
24
,故
k
12
,所以
t
24
sin
.故当“傅科摆”处于北纬
40
时,

函数的应用-课件ppt

函数的应用-课件ppt
[答案] (1)①3,-1 ②1100 (2)-6
[解析] (1)①f(x)=(x-3)(x+1)的零点为 3 和-1, ②由 lgx+2=0 得,lgx=-2,∴x=1100. 故 g(x)的零点为1100. (2)由条件知ff4-=10=0 ,∴a16-ab+-44b= -04=0 , ∴ab= =1-3 ,∴f(1)=a+b-4=-6.
[正解] 由题意,得x2-5x+6=0, ∴x=2,x=3, ∴函数的零点是2,3 ∴函数在[1,4]上的零点的个数是2.
函数 f(x)=2- 4-x2(x∈[-1,1])的零点个数为________.
[错解] 因为 f(-1)=2- 3>0,f(1)=2- 3>0,所以函 数没有零点,故填 0.
规律总结: 1.正确理解函数的零点: (1)函数的零点是一个实数,当自变量取该值时,其函数值 等于零. (2)根据函数零点定义可知,函数f(x)的零点就是f(x)=0的 根,因此判断一个函数是否有零点,有几个零点,就是判断方 程f(x)=0是否有实根,有几个实根.即函数y=f(x)的零点⇔方 程f(x)=0的实根⇔函数y=f(x)的图象与x轴交点的横坐标.
3.函数 f(x)=x-x 1的零点是(
)
A.(1,0)
B.0
C.1
D.0 和 1
[答案] C
[解析] 令x-x 1=0,解得 x=1,则函数 f(x)的零点是 1.
4.函数f(x)=x2+x-b2的零点个数是( )
A.0
B.1
C.2
D.无数
[答案] C
[解析] ∵一元二次方程x2+x-b2=0的根的判别式Δ=1
2.函数零点的求法: (1)代数法:求方程f(x)=0的实数根. (2)几何法:与函数y=f(x)的图象联系起来,图象与x轴的 交点的横坐标即为函数的零点.

excel函数的应用课件ppt课件ppt

excel函数的应用课件ppt课件ppt

展望Excel函数在云端和移动 设备上的发展趋势和前景。
THANKS
感谢观看
在需要批量处理数据时,利用数组 公式提高计算速度。
合理选择函数
根据实际需求选择合适的函数,避 免使用过于复杂或低效的公式。
06
总结与展望
Excel函数的重要性和应用前景
01
02
03
04
总结Excel函数在数据处 理、分析和可视化方面 的重要作用。
分析Excel函数在不同行 业和领域中的应用案例 。
SUM函数:求和
1 2 3
总结词
快速计算数据总和
详细描述
SUM函数用于计算指定单元格范围内的数值总 和,通过在单元格中输入“=SUM(范围)”即可 。
示例
=SUM(A1:A10)将计算单元格A1到A10之间的数 值总和。
AVERAGE函数:求平均值
总结词
准确计算数据平均值
详细描述
AVERAGE函数用于计算指定单元格范围内的数值平均值 ,通过在单元格中输入“=AVERAGE(范围)”即可。
详细描述
自定义函数是用户根据实际需求编写的函数,可以替代或扩展Excel内置函数的功能。通过学习编写自 定义函数,用户可以根据自己的需求定制特定的计算逻辑,提高工作效率。
函数的查找与引用
总结词
掌握如何查找和引用函数是提高Excel函 数应用效率的重要步骤。
VS
详细描述
在Excel中,可以通过函数向导或函数列 表查找所需的函数,并了解其参数和使用 方法。同时,掌握函数的引用方法,如绝 对引用和相对引用,可以在公式复制时确 保引用的正确性,避免出错。
详细描述
Excel函数是Excel软件中内置的公式,它们被设计用来执行 各种计算、数据处理和分析任务。这些函数通常由一个特定 的字母和参数组成,用户可以直接在单元格中输入函数来使 用它们。

《函数的应用》课件

《函数的应用》课件

函数的参数传递
按值传递
参数的值被复制一份给函数,不影响原始值。
按引用传递
参数的地址被传递给函数,可以修改原始值。
函数的递归调用
1
递归函数
调用自身的函数,可以解决一些复杂的问题。
2
基线条件
确定递归函数何时停止调用自身。
3
递归与迭代
递归更易于理解,但可能效率较低;迭代通常更高效,但可能较难理解。
函数的返回类型
函数的重要性
函数可以提高代码的复用性 和可维护性,使程序结构更 清晰。
函数的调用和返回
函数的调用
通过函数名和参数调用函数,可以在程序中任何地 方调用。
函数的返回值
函数可以返回一个值,也可以不返回值。
局部变量和全局变量
1 局部变量
只在函数内部可见,函数执行完后消失。
2 全局变量
在整个程序中可见,多个函数都可以访问。
《函数的应用》PPT课件
本课件将介绍函数的基本概念和定义,函数的输入和输出,函数的调用和返 回,以及函数在不同领域的应用,如数学、物理、工程和计算机科学等。
函数的基本概念和定义
什么是函数?
函数是一段可以重复使用的 代码块,接受输入并返回输 出。
函数的定义
函数由函数名、参数和函数 体组成,可以根据需要设置 返回值。
返回值
函数可以返回各种类型的值,如整数、浮点数、字符串等。
返回对象
函数可以返回自定义的对象,提供更复杂的功能。
返回指针
函数可以返回指向数据或对象ห้องสมุดไป่ตู้指针。
内联函数与宏定义
内联函数
用关键词inline定义的函数,将在编译时展开。
宏定义
用#define指令定义的宏,将在预处理阶段进行简单 替换。

函数的应用课件(共20张PPT)

函数的应用课件(共20张PPT)
解 设提高x个2元,则将有10x辆电瓶车空出,且租金 总收人为
y=(20+2x)(300-10x) =-20x2+600x-200x+6000 =-20(x2-20x+100-100)十6000 =-20(x-10)2+8000.(x∈N且x≤30)
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2=a(0-6)2+5,
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
解 如果x∈[0,180],则 f(x)=5x;如果x∈(180,260],
按照题意有
f(x)=5×180+7(x-180)=7x-360.
因此
f
x
7
x
5x , x 0 360 , x
2. 北京市自2014年5月1日起,居民用水实行阶梯水 价制度、其中年用水量不超过180m3的部分,综合用水 单价为5元/m3;超过180m3但不超过 260m3的部分,综合用水单价为7元/m3. 如果北京市一居民年用水量为xm3,其要 缴纳的水费为f(x)元。假设0≤x≤260, 试写出f(x)的解析式,并作出f(x)的图象.
由此得到,当x=10时,ymax=8000,即每辆电瓶车 的租金为
20+10×2=40 元时,毎天租金的总收人最高,为8000元.
ห้องสมุดไป่ตู้
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?

中职函数的应用ppt课件ppt课件

中职函数的应用ppt课件ppt课件

函数在日常生活中的应用
总结词
描述函数在日常生活中常见的一些应用场景,如天气 预报、股票价格、健康管理等。
详细描述
函数在日常生活中有着广泛的应用。例如,天气预报 中的气温、湿度和气压等数据可以用函数来表示,通 过分析这些函数的走势,可以预测未来的天气情况。 此外,股票价格的变化也可以通过函数来描述,投资 者可以通过分析这些函数的走势来做出投资决策。在 健康管理中,各种生理指标如心率、血压等也可以通 过函数来监测和分析,帮助人们更好地了解自己的身 体状况。
常数,$a neq 0$。
一次函数在中职数学中主要应 用于解决实际问题,如路程、
速度、时间等问题。
一次函数还可以用于预测和建 模,例如预测商品的销售量或
人口增长等。
一次函数还可以与其他函数进 行比较和转换,进一步研究函
数的性质和图像。
反比例函数
反比例函数是形如$y = frac{k}{x}$的 函数,其中$k$是常数且$k neq 0$ 。
函数的奇偶性
如果对于函数f(x)的定义域内的任意一个数x,都有f(-x)=f(x),则称f(x)为偶函数;如果对 于函数f(x)的定义域内的任意一个数x,都有f(-x)=-f(x),则称f(x)为奇函数。
02
常见函数类型及其应用
一次函数
01
02
03
04
一次函数是形如$y = ax + b$的函数,其中$a$和$b$是
强化问题解决策略
教授学生如何分析问题、 选择合适的函数模型、求 解并验证结果。
培养创新思维
鼓励学生尝试不同的方法 来解决实际问题,培养其 创新思维和解决问题的能 力。
拓展知识面
介绍一些扩展的函数知识 ,如分段函数、隐函数等 ,让学生了解更多函数在 实际问题中的应用。Leabharlann THANKS感谢观看

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

高中函数的应用ppt课件ppt课件ppt

高中函数的应用ppt课件ppt课件ppt

在生物学中,二次函数可以用于描述 种群增长、生物繁殖和生态平衡等现 象。
物理学
在物理学中,二次函数可以用于描述 物体的运动轨迹、振动和波动等现象 。
二次函数与其他数学知识的结合
与导数结合
通过求导数,可以研究二次函数的单调性、极值 和拐点等性质。
与三角函数结合
通过与三角函数的结合,可以研究一些周期性和 对称性问题。
的交叉也将越来越深入。例如,在物理学、工程学、经济学等领域中,
函数都有广泛的应用。
02
数学建模的普及
随着数学建模的普及,函数作为数学建模的重要工具之一,其应用也将
越来越广泛。通过数学建模,学生能够更好地理解现实世界中的问题,
并运用数学方法来解决这些问题。
03
新函数类型的出现
随着数学的发展,新的函数类型也将不断出现。例如,分形函数、混沌
分式函数在交通工程中的应用
在交通工程中,分式函数可以用来描述车辆行驶的速度和时 间之间的关系,以及道路通行能力与车辆数量之间的关系。 通过分式函数的分析,可以优化交通流量的分配和管理。
分式函数与其他数学知识的结合
分式函数与导数的结合
分式函数的导数可以用来研究函数的单调性、极值和拐点等问题。通过导数的计 算和分析,可以更好地理解分式函数的性质和变化规律。
度、长度、面积和体积等。
三角函数在解析几何中的应用
02

通过三角函数,可以将几何问题转化为代数问题,从而利用代
数方法求解。
三角函数在复数中的应用
03
复数中的三角函数可以用于解决与周期性、波动性和旋转相关
的问题。
三角函数在实际生活中的应用
航海和航空中的应用
通过三角函数,可以计算航行路线、飞行轨迹和高度等。

第五章5.7三角函数的应用PPT课件(人教版)

第五章5.7三角函数的应用PPT课件(人教版)

(2)振子在1 s内通过的路程为4A,故在5 s内通过的路程s=5×4A=20A= 20×10=200(cm). 5 s末物体处在B点,所以它的位移为0 cm.
题型二 已知三角函数解析式解决应用问题 【例 2】 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开
平衡位置的位移 s(单位:厘米)与时间 t(单位:秒)的函数关系是:s=6sin(2πt+π6). (1)画出它一个周期的图象; (2)回答以下问题: ①小球开始摆动(即 t=0),离开平衡位置是多少厘米? ②小球摆动时,离开平衡位置的最大距离是多少厘米? ③小球来回摆动一次需要多少时间?
解 (1)周期 T=22ππ=1(秒). 列表:
t
0
1 6
5 12
2 3
11 12
1
2πt+π6
π 6
π 2
π
3π 2
2π 2π+π6
6sin(2πt+π6) 3
6
0 -6 0
3
描点画图:
(2)①小球开始摆动(t=0),离开平衡位置为3 厘米. ②小球摆动时离开平衡位置的最大距离是6 厘米. ③小球来回摆动一次需要1 秒(即周期).
规律方法 根据收集的数据,先画出相应的“散点图”,视察散点图,然后进行函数 拟合获得具体的函数模型,然后利用这个模型解决实际问题.
【训练4】 一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组对应值如下 表所示,则可近似地描述该物体的位置y和时间t之间的关系的一个三角函数式为 ________.
∴ω≥300π>942,又ω∈N*,
故所求最小正整数ω=943.
规律方法 已知三角函数图象解决应用问题,第一由图象确定三角函数的 解析式,其关键是确定参数A,ω,φ,同时在解题中注意各个参数的取值 范围.

中职数学基础模块上册《函数的实际应用举例》ppt课件

中职数学基础模块上册《函数的实际应用举例》ppt课件
3.3
第三章 函数
函数的实际应用举例
创设情景 兴趣导入
加强节水意识
某城市制定每户月用水收费(含用水费和污水处理费)标准:
用水量
不超过10 m3 部分
超过10 m3 部分
收费/(元/m3)
1.30
2.00
污水处理费/(元/ m3)
0.30
0.80
那么,每户每月用水量x(m3)与应交水费y (元)
之间的关系是否可以用函数解析式表示出来?
0x 10, x10.
分段函数
在自变量的不同取值范围内,有不同的对应法则, 需要用不同的解析式来表示的函数叫做分段表示的函数, 简称分段函数. 动脑思考 探索新知
分段函数在整个定义域上仍然是一个函数,而不是 几个函数,只不过这个函数在定义域的不同范围内 有不同的对应法则,需要用相应的解析式来表示.
巩固知识 典型例题
例2
作出函数
y
f
x
x x
1, 1,
x 0, 的图像. x 0.
应用知识 强化练习
1.设函数
f
x
2x 1
1, x2,
教材练习3作.3出函数的图像.
2 x 0, 0 x 3.
巩固知识 典型例题
例3 某城市出租汽车收费标准为:当行程不超过3km时,收费7元; 行程超过3km,但不超过10km时,在收费7元的基础上,超过3km 的部分每公里收费1.0元;超过10km时,超过部分除每公里收费1.0 元外,再加收50﹪的回程空驶费.试求车费y(元)与x(公里)之 间的函数解析式,并作出函数图像.
归纳小结 强化思想
定义域 函数值
图像 分段函数 综合应用
归纳小结 强化思想
学习方法

excel函数应用 ppt课件ppt课件

excel函数应用 ppt课件ppt课件

计算库存量
使用SUM函数计算各产品 的库存量。
计算库存价值
使用VLOOKUP和SUM函 数计算各产品的库存价值 。
预警库存不足
使用IF和AND函数判断是 否需要预警库存不足。
计算库存周转率
使用SUMIF和IF函数计算 各产品的库存周转率。
Excel函数使用技巧和注意事
04

函数的嵌套使用
总结词
理解嵌套函数的逻辑关系
=VLOOKUP(E2, A:C, 3, FALSE) 在 A:C 范围内查 找 E2 的值,并返回对 应行的第3列的值。
Excel函数在实际工作中的应
03

工资计算
计算基本工资
使用SUM函数计算员工的基本工资总额 。
计算税费
使用VLOOKUP和IF函数查找税率并计算 税费。
计算加班费
使用IF和SUM函数计算员工的加班费。
计算总工资
使用SUM和SUMIF函数计算员工的总工 资。
销售数据分析
01 计算销售额
使用SUM函数计算各产品 的销售额。
03 计算销售量
使用SUM函数计算各产品
的销售量。
02 计算平均售价
使用AVERAGE函数计算
各产品的平均售价。
04 筛选异常数据
使用IF和ISNUMBER函数
筛选出异常数据。
库存管理
官方帮助
充分利用微软官方的帮助 文档和教程资源。
学习方法分享
刻意练习
针对难点和重点,进 行有针对性的练习, 强化记忆和理解。
制作笔记
将学习过程中的重要 知识点和操作技巧整 理成笔记,方便复习 。
小组学习
与同学或朋友组建学 习小组,共同探讨问 题,提高学习效率。

函数的应用课件

函数的应用课件

高维函数
有多个输入值的函 数。
连续函数
函数的值在定义域 内是连续变化的。
02
常见函数的应用
一次函数的应用
一次函数在日常生活和科学研究中有着广泛的应用,如表示物体的运动 速度、路程、时间等关系,以及在经济学中表示成本、收益等随数量变 化的情况。
一次函数可以用于解决线性方程组问题,通过代入法、消元法等技巧求 解未知数。
04
函数与其他数学知识的综 合应用
函数与导数的综合应用
01
函数单调性的判断
利用导数研究函数的单调性,通 过导数的正负来判断函数在某区
间内的单调性。
03
切线方程
利用导数求切线方程,在某点处 的导数值即为该点处的切线斜率

02
极值与最值
导数可以用来研究函数的极值和 最值,通过求导找到函数的拐点 ,进而确定极值点和最值点。
在图像上,一次函数的图像是一条直线,其斜率表示函数的增减性,截 距表示函数与y轴的交点。
二次函数的应用
二次函数在解决实际问题中应用广泛,如计算物体的运动轨迹、抛物线的形状等。
二次函数可以用于求解最优化问题,如最大值、最小值等,通过求导数和令导数等 于零的方法找到极值点。
二次函数的图像是一个抛物线,其开口方向由二次项系数决定,顶点坐标可以通过 配方法或公式法求得。
函数在经济学中的应用
总结词
描述函数在经济学领域中的应用,如供需关系、成本收益分析等。
详细描述
在经济学中,函数被广泛应用于描述各种经济现象和关系,如供需关系、成本 收益分析、经济增长模型等。通过建立函数关系,可以更好地理解经济规律, 预测市场变化趋势,为企业和政府决策提供依据。
函数在计算机科学中的应用

函数的奇偶性及其应用PPT课件(人教版)

函数的奇偶性及其应用PPT课件(人教版)
f (x),若存在 x,使f (-x)=-f (x),则函数y=×f (x)一定是奇函数.( )③
不存在既是奇函数,又是偶函数的函数.( )④若f(x)是定义在R上的奇
函数,则f×(0)=0.( ) ×

题型一 ——函数奇偶性的判断
一看
二算
三判
1.判断下列函数的奇偶性
(1)f (x) x 1 (2)
图象关于y轴对称 ②f (x) = f (-x) =f (|x|)
定义域关于原点对称
(2)奇函数
①对于∀x∈I,都有-x∈I
图象关于原点对称 ②-f (x) = f (-x)
定义域关于原点对称
对于奇函数y=f(x),若0∈I,则必有f(0)=0;
巩固概念
判断正误.①函数 f (x)=x2,x∈[0,+∞)是偶函数.( )②对于函数y=
(3)f
(x)
x 1,x 0 x 1,x 0
题型二 ——函数奇偶性的应用
1.若 f (x)=ax2-bx+1是定义域为[a,a+1]的偶函数,则a=____,b=____
题型二 ——函数奇偶性的应用
2. 已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示。 (1)画出在区间[-5,0]上的图象; (2)写出使f (x)<0的x的取值集合.
题型二 ——函数奇偶性的应用
4. 若定义在R上的偶函数f(x)和奇函数g(x),满足f(x)+g(x)=x2+3x+1,则 f(x)解析式为________________
4 小结
1.函数的奇偶性的定义及图象: 2.判断函数的奇偶性的方法: 3.函数的奇偶性的应用:
函数奇偶性及其应用
1 知识点复习
1.从“形”上认识函数的奇偶性 y y=x2

函数的应用课件ppt课件ppt课件

函数的应用课件ppt课件ppt课件

THANKS
THANK YOU FOR YOUR WATCHING
偶性、单调性、周期性和对称性等。
函数的运算和变换
重点回顾了函数的基本运算,如函数的加法、减法、乘法和除法 等。此外,还总结了函数的复合、反函数和复合函数等概念及其
性质。
函数的实际应用
通过具体实例,展示了函数在实际问题中的应用,如线性函数 、二次函数、指数函数和对数函数等在实际问题中的应用。
下章预告
05
函数的应用案例分析
案例一:斐波那契数列
斐波那契数列是一个经典的数学函数,它描述了一个数列,其中每个数字是前两个 数字的和。
在生物学、物理学和计算机科学等领域,斐波那契数列有广泛的应用,例如在研究 植物生长、地震周期和股票市场等方面。
通过使用斐波那契数列,我们可以模拟自然界的许多现象,并更好地理解它们的内 在规律。
用于求解微积分问题,如求导数、积 分等。
三角函数
用于研究三角形、圆和其他几何形状 的性质。
函数在物理中的应用
运动学函数
描述物体的位置、速度和加速度 随时间的变化。
波动函数
描述波的传播、振动和波动现象。
电学函数
描述电流、电压和电阻等电学量的 变化。
函数在日常生活中的应用
01
02
03
经济函数
描述商品价格、需求和供 给等经济现象的变化。
函数的导数和微积分
介绍函数的导数概念、求导法则和微积分的基本概念。通过学习导数和微积分, 可以更好地理解函数的性质和变化规律,为解决实际问题提供更有效的工具。
多元函数和向量函数
介绍多元函数的概念、性质和运算,以及向量函数的概念、表示和运算。通过学 习多元函数和向量函数,可以更好地处理多变量问题,为解决实际问题提供更全 面的视角和方法。

excel常用函数运用培训ppt课件(2024)

excel常用函数运用培训ppt课件(2024)
使用场景
自定义函数适用于处理复杂的数据计算、数据转换和数据处理任务。例如,当内 置函数无法满足特定需求时,可以使用自定义函数来处理特定的数据格式、执行 复杂的计算逻辑或实现特定的业务规则。
27
复杂问题解决方案探讨
2024/1/29
处理大量数据
当处理大量数据时,可以使用数组公式和自定义函数来提高计算效率。通过合理的数据组 织和公式设计,可以减少计算时间并简化数据处理过程。
多条件筛选与汇总
针对多条件筛选和汇总问题,可以使用数组公式结合内置函数(如SUMIFS、COUNTIFS 等)来实现。通过构建适当的条件数组和计算逻辑,可以方便地对数据进行筛选和汇总操 作。
复杂数据转换与处理
对于复杂的数据转换和处理任务,可以使用自定义函数结合VBA编程来实现。通过编写自 定义函数,可以实现特定的数据转换规则、处理逻辑和数据验证等功能,以满足复杂数据 处理的需求。
文本连接
使用`&`或`CONCATENATE`函数将多个文本字符串连接成 一个字符串。
示例
=A1 & " " & B1或 =CONCATENATE(A1, " ", B1)
文本拆分
使用`LEFT`、`RIGHT`、`MID`等函数提取文本字符串中的特 定部分。
8
字符串查找与替换
查找字符串
使用`FIND`或`SEARCH`函数在 文本字符串中查找子字符串的位
置。
示例
查找单元格A1中"abc"的位置: `=FIND("abc", A1)`
2024/1/29
替换字符串
使用`SUBSTITUTE`或 `REPLACE`函数替换文本字符串
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
估计数据和实际数据差别较大.说明数学 模型是否符合实际情况,还要经过时间验 证,如果与实际误差较大,就要修正得到 的数学模型.
练习2、有一块边长为 a 的正方形铁皮,将 其四个角各截去一个 边长为 x 的小正方形 ,然后折成一个无盖 的盒子,写出体积 V 以 x 为自变量的函数 式,并讨论这个函数 的定义域。
(1)画出图形,猜想它们之间的函数关系,近似地写出一个 函数关系式;
(2)利用得出的关系式求生产总值,与表中生产总值比较;
(3)利用关系式估计2003年我国的国内生产总值.
解:(1)画出图形,图中点近似 点近似落在一条直线上,可选择 线性函数建立数学模型.
如图,设所求函数为
y kx b 则把直线通过的两点(0,8.2067), (3,10.2398)代入可得 k 0.6777,b 8.2067 因此,所求的函数解析式为 y=f(x)=0.6777x+8.2067
x
y
5 (300-10×5)×(20+2×5)=7500
6 (300-10×6)×(20+2×6)=7680
7 (300-10×7)×(20+2×7)=7820
8 (300-10×8)×(20+2×8)=7920
9 (300-10×9)×(20+2×9)=7980
10 (300-10×10)×(20+2×10)=8000
例1某列火车从北京西站开往石家庄,全程227km.火车出发
10min开出13km后,以120km/h匀速行驶.试写出火车行驶的
总路程s与匀速行驶的时间t之间的关系,并求离开北京2h后
火车行驶的路程
解:因为火车匀速运动的时间为(227 13)120 11(h) 5
所以 0t 11 5
火车行驶总里程s与匀速行驶时间t之间的关系是
11 (300-10×11)×(20+2×11)=7980
12 (300-10×12)×(20+2×12)=7920
13 (300-10×13)×(20+2×13)=7820

……
由上表可得,当x=10,即每天租金为40元时,能出租 客房200间,此时每天总租金最高,为8000元.
方法二:设客房租金每间提高x个2元, 客房总租金为y 则 y=(20+2x)( 300-10x)
(2)由得到的关系式计算2000年和2001年的国内生产总值 分别为 f(1)=0.6777 1+8.2067 8.8844 f(2)=0.6777 2+8.2067=95. 621 与实际的生产总值相比,误差不超过0.1万亿元.
(3) Qf(4)=0.6777 4+8.2067=10.9175 所以,利用关系式估计2003年的国内生产总值约为 10.9175万亿元.
解函数应用题的方法和步骤: 1。审题: (1):设出未知 (2):找出量与量的关系 2。建摸:建立函数关系式 3。求解:用数学方法解出未 知
4。回归实际:检验所求结果 是否符合实际并作答
分析:由题设可知,每天客房走哦你干的租金是增加2元的倍 数的函数,设提高为x个2元,总租金为y
解:方法一:列表如下
x
y
0
300×20=6000
1 (300-10×1)×(20+2×1)=6380
2 (300-10×2)×(20+2×2)=6720
3 (300-10×3)×(20+2×3)=7002
4 (300-10×4)×(20+2×4)=7280
=-20(x-10)2 +8000 所以,当x=10时,ymax =8000
故每间租金为40元时,客房总租金收入 最高,每天为8000元
例3 某单位计划用围墙围出一块矩形场地,现有材料可筑墙的总长度 为L,如果要使围墙围出的面积最高,问矩形的长宽各等于多少?
解:设矩形的长为x(0<x< l ),则宽为 1(l 2x),矩形的面积为
2
2
S=x l 2x 2
=-x2 + l x (x l )2 l2
2
4 16
由此可得,该函数在x
l 4
时取得最大值,且Smax
l2 16
,
这时矩形的宽为 1(l 2x) l ,
2
4
即这个矩形是边长等于 l 的正方形时,所围出的面积最大 4
练习1:一商场批发某种商品的进价为每个80元, 零售价为每个100元,为了促进销售,拟采用买一 个这种商品赠送一个小礼品的办法,试验表明, 礼品价格为1元时,销售量可增加10%,且在一定 范围内礼品价格每增加1元销售量就可增加 10%.设未赠送礼品时的销售量为 a 件.
x a-2x
x
练习2、绿缘商店每月按出厂价每瓶3元购进一 种
饮料。根据以前的统计数据,若零售价 定为每瓶4元,每月销售400瓶,若每瓶售 价每降低0.05元,则可多销售40瓶。在每 月 的进货量当月销售完的前提下,请你给 该 商店设计一个方案:销售价格定为多少 元和从工厂购进多少瓶时,才可获得最大 利 润?
n (1)写出礼品价值为n 元时,所获利润y (元)关于
的函数关系式;
(2)请你设计礼品价值,以使商场获得最大2年国内生产总值(单位:万亿元)如下表所示:
年份
1999
X
0
生产总值 8.2067
2000 1 8.9442
2001 2 9.5933
2003 3 10.2398
s=13+120t
0t
11 5
离开北京2h时火车行驶的路程s=13+120 11 23(3 km) 6
例2 某农家旅游公司有客房300间,每间日房租为20元,每天都 客满.公司欲提高档次,并提高租金.如果每间房间日房租每增加2 元,客房出租数就减少10间.若不考虑其他因素,旅游公司将房 间租金提高到多少时,每天客房的租金总收入最高?
相关文档
最新文档