人教初中数学七下 《垂线(第1课时)》教案 (公开课获奖)

合集下载

初中七年级数学教案 垂线-全国公开课一等奖

初中七年级数学教案 垂线-全国公开课一等奖

垂线【教学目标】1.使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握过一点有且只有一条直线与已知直线垂直的结论。

2.会用三角板或量角器过一点画一条直线的垂线。

【教学重难点】使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质。

用垂线定义判断两条直线是否垂直及垂线的画法。

【教学过程】活动1:观察两条直线相交形成4个角,若固定木条a,旋转木条b,当b的位置发生变化时,a、b所成的角也会随之变化,其中有一个特殊的位置:=90°教师演示课件“垂直”学生观察课件中的动画,感受两条相交直线所成的角的大小变化。

在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出垂线的能力;(2)学生认识到垂直是两条相交直线的特殊位置;(3)学生学习数学的兴趣。

学生归纳:若两条直线相交成90°角,则称这两条直线互相垂直,当两条直线互相垂直时,其中一条直线就是另一条直线的垂线。

借助已有的几何知识从生活中发现数学问题,能由实物的形状想象出垂线的几何图形,使新知识建立在对周围环境的直接感知的基础上。

让学生增强对生活中的垂线的认识。

建立直观的数学模型。

根两条直线垂直的定义可知,如果两条直线相交所成的四个角中的任意一个角等于90,那么⊥,这个这两条直线垂直。

如下图,如果直线AB,CD相交于点O,∠AOC=90°,那么AB CD推理过程可以写成下面的形式:因为∠AOC=90°⊥(垂直的定义)所以AB CD日常生活中,两条直线互相垂直的情形很常见,请举例。

活动2:问题(1)现有一条已知直线AB,分别过直线外一点C和直线上一点D,作AB的垂线,你能有几种方法(2)通过上述方法画出的垂线有几条从中你能发现什么结论学生独立思考,动手操作,自主探索。

经过思考、操作,发现对于问题(1)可以有下列几种方法来画垂线:①用度量法,用量角器;②用三角板,如图:教师在学生动手操作后演示课件“用三角板作垂线”,让学生进一步感受画垂线的过程。

人教版数学七年级下册5.1.2《垂线》教学设计1

人教版数学七年级下册5.1.2《垂线》教学设计1

人教版数学七年级下册5.1.2《垂线》教学设计1一. 教材分析人教版数学七年级下册5.1.2《垂线》是几何初步知识中的重要内容,主要让学生掌握垂线的定义、性质和应用。

本节课的内容是在学生已经学习了直线、射线、线段的基础上进行的,为后续学习平行线、相交线等知识打下基础。

教材通过丰富的图片和生活实例,引导学生认识垂线,探究垂线的性质,培养学生的空间想象能力和几何思维。

二. 学情分析七年级的学生已经具备了一定的几何基础知识,对直线、射线、线段有了初步的认识。

但是,对于垂线的概念和性质,学生可能还比较陌生。

因此,在教学过程中,教师需要通过生动的实例和直观的演示,帮助学生建立垂线的概念,理解垂线的性质。

此外,学生对于实际问题的解决能力有待提高,教师在教学中应注重引导学生将几何知识运用到实际问题中。

三. 教学目标1.知识与技能:让学生掌握垂线的定义、性质,能运用垂线解决简单的实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结合作、积极探究的精神。

四. 教学重难点1.重难点:垂线的定义、性质和应用。

2.突破方法:通过直观演示、实例分析、小组讨论等方式,帮助学生理解和掌握垂线的相关知识。

五. 教学方法1.情境教学法:通过生活实例和图片,引导学生认识垂线,感受垂线在生活中的应用。

2.动手操作法:让学生亲自动手画垂线、观察垂线,加深对垂线性质的理解。

3.小组讨论法:引导学生分组讨论,培养学生的合作意识和解决问题的能力。

4.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣。

六. 教学准备1.教具准备:直尺、三角板、多媒体课件等。

2.学具准备:每人一份几何工具,如直尺、三角板等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的垂线实例,如房间的墙壁、衣物的拉链等,引导学生观察和思考:这些实例中有什么共同特点?让学生初步感受垂线的概念。

人教版七年级数学下册 教学设计5.1.2 第1课时《垂线》

人教版七年级数学下册 教学设计5.1.2 第1课时《垂线》

人教版七年级数学下册教学设计5.1.2 第1课时《垂线》一. 教材分析《垂线》这一节的内容,主要让学生了解垂线的定义,掌握垂线的性质,并能运用垂线的知识解决实际问题。

教材通过生活中的实例,引导学生认识垂线,并通过观察、操作、猜想、验证等过程,让学生理解垂线的性质。

本节课的内容,既是对前面所学知识的巩固,也是后面学习的基础。

二. 学情分析七年级的学生,已经具备了一定的空间想象能力和逻辑思维能力。

他们对直线、射线等概念有一定的了解,但对于垂线的定义和性质,可能还比较陌生。

因此,在教学过程中,需要通过生活中的实例,引导学生认识垂线,并通过观察、操作、猜想、验证等过程,让学生理解垂线的性质。

三. 教学目标1.知识与技能:理解垂线的定义,掌握垂线的性质,能运用垂线的知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:垂线的定义,垂线的性质。

2.难点:垂线性质的证明和运用。

五. 教学方法采用“情境导入——猜想验证——巩固拓展——总结提高”的教学方法,通过生活中的实例,引导学生认识垂线,并通过观察、操作、猜想、验证等过程,让学生理解垂线的性质。

六. 教学准备1.教具:直尺、三角板、多媒体设备。

2.学具:每人一把直尺,一张白纸。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的垂线现象,如房檐的垂线、电梯的垂线等,引导学生观察并说出这些垂线的特点。

通过观察,让学生初步认识垂线。

2.呈现(5分钟)教师提出问题:什么是垂线?并让学生试着用自己的语言来描述垂线。

教师根据学生的回答,总结垂线的定义。

3.操练(10分钟)教师给出一些垂线的例子,让学生判断是否是垂线。

同时,教师也给出一些不是垂线的例子,让学生进行辨别。

通过这个环节,让学生进一步理解垂线的定义。

4.巩固(10分钟)教师引导学生观察教材中的垂线性质图示,并提出问题:垂线有哪些性质?学生通过观察和思考,总结出垂线的性质。

人教版七年级数学下册 5-1-2 垂线(第一课时) 教案

人教版七年级数学下册 5-1-2  垂线(第一课时) 教案

5.1 相交线5.1.2 垂线(第一课时)教学反思教学目标1.理解垂线的概念.2.理解垂线的性质——在同一平面内,过一点有且只有一条直线垂直于已知直线.3.会用三角尺或量角器过一点画一条直线的垂线.教学重难点重点:两条直线互相垂直的概念、性质和画法.难点:过一点作已知直线的垂线.课前准备相交线模型、多媒体课件教学过程导入新课导入一:教师:在前面我们学习了两条直线相交形成了四个角,这四个角会产生4对邻补角和2对对顶角.你们还记得它们的定义吗?学生回答,老师纠正.教师:如果两条直线相交,形成的四个角中有一个角是直角时,这两条直线有怎样的特殊关系?日常生活中有没有这方面的实例呢?今天我们就来研究这个问题.(板书课题:5.1.2垂线(第一课时))导入二:教师:同学们观察教室里的课桌面相邻的两边,黑板面相邻的两边,方格纸的横线和竖线……这些给大家什么印象?学生回答,教师指出:“垂直”这两个字对大家并不陌生,在小学,我们已经学习过“垂直”,对于“垂直”的知识我们已经了解了一些.今天,我们就在原有知识的基础上,继续探究“垂直”.(板书课题:5.1.2垂线(第一课时))设计意图通过生活中我们经常见到的现象引出垂直,通过新问题来激发学生的学习兴趣.探究新知探究点一:认识垂线和垂直教师:拿出相交线模型,如图1,演示模型,提问学生:固定木条a,转动木条b,当b的位置发生变化时,什么量随之发生变化?学生:当b 的位置变化时,a,b 所形成的四个夹角的度数随之发生变化. 教师:在b 转动的过程中,当a ,b 所形成的夹角∠α=90°时(如图2所示),木条a 与b 所形成的其他三个角的度数是多少?为什么?图2学生:另外三个角也是90°.教师:这种特殊的位置关系,即∠α=90°时,我们就说a 与b 互相垂直.我们身边存在大量的形如两条直线相互垂直的实例,请同学们举一些例子.学生发言,教师肯定.教师追问:根据前面的活动,你们能说出什么样的两条直线互相垂直吗? 师生活动鼓励学生大胆发表自己的见解,学生可能会说两条直线相交所构成的四个角都是直角时,两条直线互相垂直,这时可以引导学生认识到:两直线相交所构成的四个角中,只要有一个角是直角,就可以得出其他三个角也是直角.教师总结并板书垂直的概念:两条直线相交所构成的角中有一个角是直角时,我们就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.教师强调:“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果两条直线“互相垂直”,那么其中一条直线必定是另一条直线的“垂线”;如果一条直线是另一条直线的“垂线”,那么它们必定“互相垂直”.设计意图垂直是两条直线相交的特殊情形,两条直线垂直所形成的四个角之间的关系,需要由“邻补角和为180°”“对顶角相等”得出.相交线模型的演示与有关问题的引导,使学生对垂直的认识由感性上升到理性,从而加深学生对垂直的理解.教师:许多几何图形都可以用符号来表示,例如,角用“∠”表示,三角形用“△”表示等等,垂直也有它自己的符号.教师:垂直用符号“⊥”表示,如图3所示,直线AB 垂直于直线CD ,垂足为O ,就可记为“AB ⊥CD ,垂足为O ”.(教师板书)图3教师:根据垂直的定义,结合图3,当AB⊥CD时,∠AOD是多少度?学生:∠AOD=90°.教师:我们如何用几何推理语言来描述这个结论.学生大胆发言,教师引导并板书:因为AB⊥CD,所以∠AOC=90°(垂直的定义).教师:把这个推理倒过来,当∠AOC=90°,直线AB,CD具备什么特殊的位置关系?学生:垂直.教师:如何用几何推理语言描述这个结论.学生发言,教师板书:因为∠AOC =90°,所以AB⊥CD(垂直的定义).设计意图教学中在明确给出垂直的定义后,借助图形用符号语言来表示,让学生从文字语言、图形语言、符号语言等不同角度来认识垂直,实现了三种语言之间的转化,在此过程中,培养了学生用几何语言表达问题的能力,增强了学生的符号感.探究点二:垂线的画法及性质教师:根据垂直的定义,我们知道要想画垂线,必须有直角,我们的学习用具中有存在直角的吗?学生:三角尺、量角器中存在直角.教师:现在我们就开始研究用三角尺和直尺或者量角器画垂线的方法,出示课本探究.如图4所示.(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?(1) (2)图4学生独立尝试,小组合作交流,完成下面填空和思考:1.垂线的画法:第一步:靠,即三角尺的一条直角边紧靠;第二步:过,即三角尺的另一条直角边过;第三步:画,即画出垂线.2.(1)与直线l垂直的直线能画条.(2)经过直线上一点能画条直线与已知直线垂直.(3)经过直线外一点能画条直线与已知直线垂直.教师在学生合作交流的基础上组织两名学生用三角尺演示第(2)(3)问,并展示上述填空.教师:如果把(2)(3)两条结论合并在一起,你们认为应该怎样表达.学生发言,教师引导得出垂线的性质并板书.垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.设计意图在本环节的教学中有两个重要的任务,除了让学生掌握垂线的性质外,还应让学生在探究性质的过程中,掌握过一点作已知直线的垂线的方法,它是几何作图中的一种常用的基本作图,需要学生熟练掌握.虽然学生在小学已经接触过垂线的作法,但要在各种情境中熟练作图,对学生来说也是一个难点,尤其是过已知点作线段的垂线.因此在这一环节的教学中应给予学生充分的机会来感受、体会、总结、训练垂线的作法,教师也可以在此基础上演示总结用三角尺过一点画已知直线的垂线的方法:一靠,即三角尺的一条直角边紧靠已知直线也就是与已知直线重合;二过,即三角尺的另一条直角边过已知点;三画,即画出垂线.使学生能够顺利突破难点.新知应用例1 判断下列语句是否正确?(1)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( )(2)若两条直线相交构成的四个角相等,则这两条直线互相垂直.( )(3)一条直线的垂线只能画一条.( )(4)过一点可以任意画已知直线的垂线.( )答案:(1)正确(2)正确(3)错误(4)错误师生活动教师读题,学生抢答.设计意图考查学生由角的关系来判断两直线的位置关系,强化对垂直概念的理解..或线段AB的垂线.图5师生活动找三位同学在黑板上板演,其他同学自己动手画图,画完之后请同学们点评.(1) (2) (3)图6教师引导学生归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.设计意图训练学生在各种情境中熟练作图,通过此练习,给学生充分的机会来感受、体会、总结、训练在各种条件下垂线的作法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.D4.B5.C6.D7. 垂直 AB ⊥CD DOB BOC COA 8.30° 9.解:OD ⊥OE.理由:∵ OD 平分∠BOC ,∴ ∠COD =12∠BOC.∵ OE 平分∠AOC ,∴ ∠COE =12∠AOC. ∴ ∠EOD =∠COD+∠COE=12(∠BOC+∠AOC)=12×180°=90°,即OD ⊥OE.10.解:(1)∠AOD =120°.(2)∠AOD =110°.(3)猜想∠AOD 与∠BOC 互补.理由如下:如题图①,∵ ∠AOD =∠AOC+∠COD =∠AOC+90°,∠BOC =∠AOB-∠AOC =90°-∠AOC ,所以∠AOD+∠BOC =180°,即∠AOD 与∠BOC 互补.(见导学案“课后提升”)参考答案1.解:∵ OE 平分∠BOD ,∴ ∠DOE =∠BOE. ∵ ∠AOD ∶∠DOE =4∶1,∴ ∠AOD ∶∠DOE ∶∠BOE =4∶1∶1.又∵ ∠AOB =180°,∴ ∠DOE =∠BOE =180°×16=30°,∴ ∠COB =∠COD-∠DOE-∠BOE =180°-30°-30°=120°. 又∵ OF 平分∠COB ,∴ ∠COF =∠BOF =12∠COB =60°,∴ ∠AOF =∠AOB-∠BOF =180°-60°=120°. (此题解法多种,只提供一种)2.解:有可能有三个或两个或一个.如图7所示.课堂小结1.本节课主要学习了两条直线互相垂直、垂线以及垂足的概念和垂线的一条性质.2.会用三角尺或量角器过一点画已知直线、射线、线段的垂线.3.要关注三种语言,即文字语言、图形语言、符号语言之间的转化.布置作业教材第8页习题5.1第3,4,5题板书设计。

人教版七年级数学下册5.1.2垂线一等奖优秀教学设计

人教版七年级数学下册5.1.2垂线一等奖优秀教学设计
关注学生的个体 差异.
教学内容与教师活动
学生活动
设计意图
板书设计:
5.1.2垂线
垂线的定义:交角为90°的两直线互相垂直
b
如图直线a⊥b,则∠a=90°,反之当∠a=90°, b
a
则直线a⊥b
垂线性质1:过一点有且只有一条直线与已知直线垂直
教学反思:
目标: (1)、理解垂线的概念,知道过一点有且只有一条直线与已知直线垂直,会用三角尺或 量角器过一点画一条直线的垂线。 (2)、通过自学、探究、交流等实践活动,初步体验数形结合思想,建立符号感,培养 语言归纳和表达的能力。 (3)、让学生在探索两线垂直的过程中,体会从数学的角度理解问题,形成解决问题的 策略和方法。 目标解析:
看书说明垂 线的表示方 法
思考感悟回 答问题
为学生提供参与 数学活动的时间 和空间,培养学 生的动手操作能 力.
经历观察-操作说理等活动,感 受几何的研究方 法,培养学生观 察猜想的能力.
及时进行学法指 导,注重方法规 律的提炼总结.
(1)已知直线 L(教师在黑板上画一条直线 L),画出直 线 L 的垂线.待学生上黑板画出 L 的垂线后,教师追 问学生:还能画出 L 的垂线吗?能画几条?通过师生交 流, 使学生明确直线 L 的垂线有无数多条,即存在, 但有不确定性.教师再问:怎样才能确定直线 L 的垂 线位置?在学生道出:在直线 L 上取一点 A,过点 A 画 L 的垂线,并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一 条直线与已知直线垂直.
(1)过点 P 画射线 MN 的垂线,Q 为垂足; (2)过点 P 画射线 BN 的垂线,交射线 BN 反向延 长线于 Q 点; (3)过点 P 画线段 AB 的垂线,交线 AB 延长线于 Q 点. 学生画完图后,教师归结:画一条射线或线段的垂 线, 就是画它们所在直线的垂线

人教版七年级下册数学教案设计:5.1.2垂线

人教版七年级下册数学教案设计:5.1.2垂线

情感态度与价值观: 培养学生的动手操作能力。
重点 “垂线段最短”的性质的简单应用.
教具 三角板
难点
对点到直线的距离的概念的理解
学具 三角尺
教师活动
学生活动


教师抽查学生的前置性作业的完
学生展示前置性作业,小组长批
成情况,并听取各小组组长的汇报。 改,并向老师汇报作业中存在的问

题。


小 探究:1、用三角尺或量角器画已知直
讨论各小组提出的疑难问题,记录要 点。

巩 练习:P5 练习 1,2

独立完成练习。
拓 小结:
小组内纠正。

本节课你有何收获?
课后作业:P8 5,6
作 前置性作业设计:
业 如图,已知ABC中,BAC为钝角。 布
(1)画出点C到AB的垂线段; 置 (2)过A点画BC的垂线;
(3)点B到AC的距离是多少?
课时教案
课题
5.1.2 垂线(第一课时)
第 1 课时
总第 2 课时
教学 目标
知识与技能:经历观察、操作、想像、归纳概括、交流等活动,进一步发展空 间观念,用几何语言准确表达能力.
过程与方法:了解垂直概念,能说出垂线的性质“,会用三角尺或量角器过一 点画一条直线的垂线.
情感态度与价值观:培养学生的识图能力.
小组内个人展示先学成果,相互交
线 l 的垂线,这样的垂线能画出几 流,明确答案。 组 条?
对疑难问题,小组内共同讨论完 合 2、经过直线 l 上一点 A 画 l 的垂线, 成。
作 这样的垂线能画出几条?
提出质疑,组长解答。
学 3、经过直线 l 外一点 B 画 l 的垂线,

人教初中数学七下《垂线》教案 (公开课获奖)

人教初中数学七下《垂线》教案 (公开课获奖)

课题:垂线教材分析垂线是平面几何所要研究的基本内容之一,是第五章“相交线、平行线”第一大节的主要内容,是在学完相交线、对顶角的基础上,进一步学习两条直线相交的特殊情况——垂直,垂线的概念的本大节的重点,也是本章的重点之一,垂线的概念、画法和性质是重要的基础知识,是进一步学习空间里的垂直关系,三角形的高,切线的性质和判定以及平面直角坐标系等知识的基础,与其他数学知识一样,它在工农业生产的实际生活中有着广泛的应用。

教学目标(1)使学生理解垂线的概念,表示,垂线的性质和点到直线的距离概念。

(2)在理解概念的基础上,使学生会用三角尺或量角器画垂线,掌握一点到一直线的距离的测量方法。

(3)逐步训练学生正确使用几何符号,几何语言,逐步熟悉一步推理的格式。

教学重难点重点是:垂线的概念、画法和垂线的两个性质。

难点是:垂线的画法。

教学过程教学内容师生互动一、预习导学(甲)(乙)这是两幅草坪的图案。

在绿色的草坪上,画着两条交叉的道路。

你觉得甲图、乙图那幅更漂亮、更匀称。

这是什么原因?演示自制教具,这两条相交线有没有特殊位置?什么情况下它们的位置特殊?图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广,你有没有见过?例如:书本相邻的两条边、窗户框相邻的两边、红十字等,因此今天我们就来研究这种特殊情况二、新课探究(一)垂线的定义直线a不动,当直线b转到什么位置时,两条直线互相垂直?转动木条b时,它和不动的木条a互相垂直的位置有几个?当a、b相交有一个角是直角时,其他三个角呢?垂线的定义:当两条直线相交所成的四个角,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫垂足。

建筑工人在砌墙时,常用铅垂线来检查所砌的墙面是否和地面(水平面)垂直。

(二)符号表示“⊥”读作“垂直于”如AB⊥CD垂足为O,含义:直线AB与直线CD垂直,垂足是O你能说出由什么条件能知道AB与CD互相垂直吗?∵∠BOC=90º(已知)∴AB⊥CD (垂直的定义)其它三个角中的一个角等于90º,能不能得到AB⊥CD 呢?反过来,如果AB⊥CD,那么可得到什么结论?(填空)∵AB⊥CD于O (已知)∴________________(垂直的定义)(三)垂线的画法(1)已知直线l,有多少条直线与已知直线l垂直?(2)点与直线的位置关系有几种?如图2中,过点A画直线BD的垂线B ·A DAD 图1 B在学生画出垂线的基础上,教师总结出用三角板画垂线的基本方法强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画线并引导学生思考:这样画出的为何是已知直线的垂线?(四)发现垂线的性质在学生熟练地画出各条垂线之后,1、过A点作BD的垂线有没有?2、过A点作BD的垂线有几条?在此基础上,又引导学生概括出:垂线的第一个性质公理:过一点有且只有一条直线与已知直线垂直注:①“有且只有”中,“有”指“存在”,“只有”指“唯一”②“过一点”的点在直线外,或在直线上都可以(五)垂线的第二个性质1、量跳远的成绩时有人想多量点,都采取了什么手段?为什麽?2、用刻度尺量一量下列垂线段OP与线段PA、PB、PC的大小PA B O C(1)什么是垂线段?直线外一点与直线上各点连结的所有的线段中,垂线段最短六、点到直线的距离要把水渠的水引到水池C,为了节省人力物力财力,请你设计一个方案,在渠岸AB的什么地方开沟埋水管,才能使沟最短,所用水管最少,并要知道买多少水管?A·C B三、例题结合四、课堂训练五、作业布置六、课堂小结1、垂直定义2、垂直性质13、垂直性质4、点到直线的距离七、教学反思本节课采用不同的反馈手段和反馈练习。

七年级下册数学垂线第一课时教案

七年级下册数学垂线第一课时教案

七年级下册数学垂线第一课时教案七年级下册数学垂线第一课时教案篇1列代数式教学目标1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;2. 初步培养学生观察、分析和抽象思维的能力.教学重点和难点重点:列代数式.难点:弄清楚语句中各数量的意义及相互关系.课堂教学过程设计一、从学生原有的认知结构提出问题1用代数式表示乙数:(投影)(1)乙数比x大5;(x+5)(2)乙数比x的2倍小3;(2x-3)(3)乙数比x的倒数小7;( -7)(4)乙数比x大16%((1+16%)x)(应用引导的方法启发学生解答本题)2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题。

二、讲授新课例1 用代数式表示乙数:(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数。

解:设甲数为x,则乙数的代数式为(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x例2 用代数式表示:(1)甲乙两数和的2倍;(2)甲数的与乙数的的差;(3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式解:设甲数为a,乙数为b,则(1)2(a+b); (2) a- b; (3)a2+b2;(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)(本题应由学生口答,教师板书完成)此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序例3 用代数式表示:(1)被3整除得n的数;(2)被5除商m余2的数分析本题时,可提出以下问题:(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?解:(1)3n; (2)5m+2(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)例4 设字母a表示一个数,用代数式表示:(1)这个数与5的和的3倍;(2)这个数与1的差的 ;(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)例5 设教室里座位的行数是m,用代数式表示:(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?分析本题时,可提出如下问题:(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)解:(1)m(m+6)个; (2)( m)m个三、课堂练习1设甲数为x,乙数为y,用代数式表示:(投影)(1)甲数的2倍,与乙数的的和; (2)甲数的与乙数的3倍的差;(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商2用代数式表示:(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数3用代数式表示:(1)与a-1的和是25的数; (2)与2b+1的积是9的数;(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕四、师生共同小结首先,请学生回答:1怎样列代数式?2列代数式的关键是什么?其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握五、作业1用代数式表示:(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?2已知一个长方形的周长是24厘米,一边是a厘米,求:(1)这个长方形另一边的长;(2)这个长方形的面积.学法探究已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.当圆环为三个的时候,如图:此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:解:=99a+b(cm)七年级下册数学垂线第一课时教案篇2绝对值教学目标1,掌握绝对值的概念,有理数大小比较法则.2,学会绝对值的计算,会比较两个或多个有理数的大小.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.教学难点两个负数大小的比较知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生思考后,教师作如下说明:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.学生回答后,教师说明如下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.合作交流探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?-3,5,0,+58,0.6要求小组讨论,合作学习.教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).巩固练习:教科书第15页练习.其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?学生交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

七年级数学下册《垂线》教案、教学设计

七年级数学下册《垂线》教案、教学设计
五、作业布置
1.基础巩固:完成课本习题第3题,第4题,第5题。通过这些题目,巩固垂线的定义、性质和画法等基础知识,加强对垂线概念的理解。
要求:学生在完成作业时,注意规范书写,保持解答过程的简洁,同时注重细节,避免因疏忽导致错误。
2.能力提升:完成课本习题第6题,第7题。这两题涉及垂线在实际问题中的应用,旨在提高学生运用垂线知识解决实际问题的能力。
4.小组合作:以小组为单位,共同完成一道探究性问题,要求运用垂线知识解决实际问题。
要求:小组内部分工合作,共同探讨解题思路,充分发挥每位成员的优势。完成后,小组之间进行交流分享,相互学习,共同进步。
5.课后反思:学生结合本节课所学内容,撰写一篇课后反思,内容包括:对垂线知识点的理解,解题过程中遇到的困难和解决方法,以及对今后学习的期望和计划。
2.提出问题:三角板与纸张的交线有什么特点?它们之间的关系是怎样的?
3.学生思考:让学生尝试用自己的语言描述三角板与纸张交线的关系。
4.引入新课:教师总结学生的回答,引出垂线的定义,并板书“垂线”二字。
(二)讲授新知
1.垂线的定义:教师通过直观的图形演示,讲解垂线的定义,即两条直线相交成直角时,其中一条直线叫作另一条直线的垂线。
2.垂线的性质:教师引导学生观察垂线的特点,总结出垂线的性质,如垂线与被垂线相交成直角,垂线段是点到直线的最短距离等。
3.垂线的画法:教师示范如何用直尺和圆规画出垂线,并强调画垂线的方法和注意事项。
4.垂线的应用:教师通过实例讲解垂线在实际问题中的应用,如计算点到直线的距离、Байду номын сангаас断两条直线是否垂直等。
1.通过实际操作、观察和思考,培养学生探究、发现垂线性质的能力。
2.引导学生运用数学语言描述垂线的性质,提高学生数学表达和逻辑思维能力。

5.1.2垂线(第一课时)教案 【新人教版七年级下册数学】

5.1.2垂线(第一课时)教案  【新人教版七年级下册数学】

5.1.2 垂线(第一课时)垂线(一)教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 教学重点两条直线互相垂直的概念、性质和画法. 教学过程一、创设问题情境,研究垂直等有关概念1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线……,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生, 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?bb a教师在组织学生交流中,应学生明白:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是直角是特殊情况.其特殊之处还在于:当∠a 是直角时,它的邻补角,对顶角都是直角,即a 、b 所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。

如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”, 如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB 垂直于直线CD , 垂足为O”,则记为AB ⊥CD,垂足为O ,并在图中任意一个角处作上直角记号,如图.O DCBA5.简单应用(1)学生观察课本P6图5.1-6中的一些互相垂直的线条, 并再举出生活中其他实例.(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.PM A NPBPBA学生画完图后,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线.三、小结本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?四、作业1.课本P7练习,P9.3,4,5,9.2.选用课时作业设计.一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.( )二、填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.(1)ODC B A (2)O DCBAE(3)O D CBA2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 三、解答题.1.已知钝角∠AOB,点D 在射线OB 上. (1)画直线DE ⊥OB;(2)画直线DF ⊥OA,垂足为F.2.已知:如图,直线AB,垂线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.E ODC BA3.你能用折纸方法过一点作已知直线的垂线吗?评价与反思数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,因此在新课的开始首先复习了研究垂直所需要的邻补角、对顶角的有关知识,为下面的活动的开展做好了准备,在教的过程中通过多种形式的活动给学生提供充分参与数学活动的机会,激发学生的学习的积极性,通过动手操作、合作交流、练习、反馈等各个环节,使学生掌握知识的同时,培养学生的动手能力、表达能力以及合作的意识。

七年级垂线市公开课获奖教案省名师优质课赛课一等奖教案

七年级垂线市公开课获奖教案省名师优质课赛课一等奖教案

七年级垂线教案一、教材分析《七年级垂线教案》是专为七年级学生编写的一份教学指导书。

本教案旨在帮助学生掌握垂线的概念、性质及相关计算方法,培养学生的几何思维和解决问题的能力。

通过课堂教学和合适的练习,帮助学生理解和运用垂线的知识,提升他们的几何学习成果。

二、教学目标1. 知识目标:学生能够准确理解垂线的定义,掌握垂线在几何图形中的性质和应用;2. 能力目标:培养学生的几何思维和解决问题的能力,提高分析问题和推理证明的能力;3. 情感目标:通过实际应用案例的引导,培养学生对几何学的兴趣,增强学生的数学学习主动性和创新意识。

三、教学内容和方法1. 教学内容:(1)垂线的定义和性质:介绍垂线的定义、垂足的概念,讲解垂线在几何图形中的性质和相关定理;(2)垂线的应用:通过实际例子引导学生理解垂线的应用,培养学生的问题解决能力。

2. 教学方法:(1)讲授法:通过讲解垂线的定义和性质,引导学生理解并记忆相关知识点;(2)示例法:通过展示实际应用案例,引导学生思考问题并解决问题;(3)探究法:在教学过程中,适当设置探究环节,让学生通过实际操作和推理来发现和证明垂线的性质。

四、教学步骤1. 导入:通过引入一个有关垂线应用的实际问题,激发学生的思考和解决问题的兴趣。

2. 探究:引导学生观察和探究两条直线之间是否存在垂线,如何判断一条线是否垂直于另一条线。

3. 理论总结:在学生探究的基础上,总结垂线的性质和相关定理。

4. 引入应用:通过示例讲解垂线在实际问题中的应用,帮助学生理解垂线的实际意义。

5. 练习:提供一些练习题,帮助学生巩固垂线的概念,掌握应用技巧。

6. 解答与讨论:对学生的练习题进行解答,引导学生分析解题方法和思路。

7. 小结:对本节课的重点内容进行总结,并布置作业。

五、教学评价1. 学生课堂表现评价:根据学生的参与度、注意力、问题解决能力等方面的表现评价学生在课堂上的学习情况;2. 作业评价:评价学生完成的作业质量和准确度,检查学生对垂线概念和应用的理解和掌握程度;3. 课后作业辅导:根据学生作业情况,对掌握不足的内容进行个别辅导和解答。

人教版初一数学下册《垂线教学设计》

人教版初一数学下册《垂线教学设计》

5.1.2 垂线教学设计(第一课时)一、设计理念在平面几何的教学中教师应该根据认知规律,设计符合学生认知水平的教学活动,通过学生的感知、思考、归纳和抽象,形成对几何图形的认识。

由于本节课的内容在理解上较为容易,因此在本教案的内容安排上,尝试利用“发现法”教学,引导学生自己观察,分析特征猜想结论,通过和同学们一起讨论探究得出垂线和垂线段的有关性质。

二、教材分析《垂线》是人教版七年级数学第五章《相交线与平行线》中的内容,包括垂直概念、垂线概念、用数学符号表示垂直、垂线的两个性质和点到直线距离等知识。

它是在学生对基本图形点、线、角有了初步认识的基础上学习的一种特殊位置关系,初步向学生参透由一般到特殊的思想。

其学习方式和研究方法,对今后认识图形、形成空间观念起到奠基的作用,特别是对今后要学习的三角形、平行四边形和圆都有举足轻重的作用,在物理的领域也不缺少垂线性质的应用。

也是培养学生观察、动手、分析、归纳能力的重要内容,对学生的探究精神、学习兴趣的培养都具有重要意义。

三、学情分析学生在小学四年级学习过垂线,对垂线图形有了最基本的认识,也了解了垂直的一些简单性质,但对垂线并没有深入的研究,没对垂线给出严格的几何定义,也没对垂线的性质作深入的探讨。

学生在七年级第三章学习了基本的图形点、线、角,这使学生学习垂线有了基础。

但是由于学生的年龄较小,学习几何的时间太短,理论性的证明往往使他们觉得枯燥无味,因此根据教材的特点,创设问题情境,让他们自己去发现事物的特性,尝试数学家发现问题的思维过程,会使学生充满极大的乐趣去参与教学活动,课堂的效果将会很好。

四、重点和难点重点:垂线的定义,用三角尺或量角器过一点画已知直线垂线。

难点:过一点画已知直线的垂线。

五、教学目标知识与技能:知道垂直是相交的特殊情况,理解垂线的概念,会用三角尺或量角器过一点画已知直线的垂线。

过程与方法:通过操作、探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识。

垂线(1)-数学-人教版新教材-下册-初中-一年级-第五章-第一节 公开课一等奖课件

垂线(1)-数学-人教版新教材-下册-初中-一年级-第五章-第一节  公开课一等奖课件

解: ∵ AB⊥OE (已知)
∴ ∠EOB=90°(垂直的定义)
C 1 (
E
A ∵ ∠BOD= ∠1=55° (对顶角相等)
∴ ∠ EOD= ∠ EOB+ ∠ BOD =90 °+55 °=145 °
O
D
B
例2 如图,直线AB、CD相交于点O,OE⊥AB于 O,OB平分∠ DOF,∠DOE=50°,求∠AOC、 ∠ EOF、 ∠ COF的度数. E
3、垂线的性质(1)
过一点有且只有一条直线与已知直线垂直
祝同学们学习进步
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
观察与思考
在相交线的模型中,固定木条a,转动木条b, b b b 当b的位置变化时,a、b所 b b 成的角α也会发生变化. α 当α =90°时,a与b垂直. α ) a 当α ≠90°时,a与b不垂 直,叫斜交. 斜交 两条直线相交 垂直 垂直是相交的特殊情况
一、垂直的定义 1.垂直定义:当两条直线相交所成的四个角 中,有一个角是直角时,这两条直线互相垂 直,其中一条直线叫另一条直线的垂线,它 们的交点叫垂足。 a 例如、如图,a、b互相垂直,O b 叫垂足.a叫b的垂线,b也叫a的 O 垂线。 从垂直的定义可知, 判断两条直线互相垂直的关键: 只要找到两条直线相交时四个交角中 一个角是直角。

人教版初中数学七年级下册5.1.2《垂线》教案(1)

人教版初中数学七年级下册5.1.2《垂线》教案(1)

5.1.2 垂线教学设计(第一课时)一、设计理念在平面几何的教学中教师应该根据认知规律,设计符合学生认知水平的教学活动,通过学生的感知、思考、归纳和抽象,形成对几何图形的认识。

由于本节课的内容在理解上较为容易,因此在本教案的内容安排上,尝试利用“发现法”教学,引导学生自己观察,分析特征猜想结论,通过和同学们一起讨论探究得出垂线和垂线段的有关性质。

二、教材分析《垂线》是人教版七年级数学第五章《相交线与平行线》中的内容,包括垂直概念、垂线概念、用数学符号表示垂直、垂线的两个性质和点到直线距离等知识。

它是在学生对基本图形点、线、角有了初步认识的基础上学习的一种特殊位置关系,初步向学生参透由一般到特殊的思想。

其学习方式和研究方法,对今后认识图形、形成空间观念起到奠基的作用,特别是对今后要学习的三角形、平行四边形和圆都有举足轻重的作用,在物理的领域也不缺少垂线性质的应用。

也是培养学生观察、动手、分析、归纳能力的重要内容,对学生的探究精神、学习兴趣的培养都具有重要意义。

三、学情分析学生在小学四年级学习过垂线,对垂线图形有了最基本的认识,也了解了垂直的一些简单性质,但对垂线并没有深入的研究,没对垂线给出严格的几何定义,也没对垂线的性质作深入的探讨。

学生在七年级第三章学习了基本的图形点、线、角,这使学生学习垂线有了基础。

但是由于学生的年龄较小,学习几何的时间太短,理论性的证明往往使他们觉得枯燥无味,因此根据教材的特点,创设问题情境,让他们自己去发现事物的特性,尝试数学家发现问题的思维过程,会使学生充满极大的乐趣去参与教学活动,课堂的效果将会很好。

四、重点和难点重点:垂线的定义,用三角尺或量角器过一点画已知直线垂线。

难点:过一点画已知直线的垂线。

五、教学目标知识与技能:知道垂直是相交的特殊情况,理解垂线的概念,会用三角尺或量角器过一点画已知直线的垂线。

过程与方法︰通过操作﹑探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识。

垂线教案设计(全国优质课一等奖)

垂线教案设计(全国优质课一等奖)

人教版初中数学七年级《5.1.2 垂线》教案[教学目标]1、知识与技能(1)了解垂线的概念和垂线段最短的性质,体会点到直线距离的意义。

(2)知道过一点有且仅有一条直线垂直于已知直线,并会用三角尺或量角器过一点画一条直线的垂线。

2、过程与方法经历操作、探索、归纳、总结的过程,初步形成几何概念的认识方式和几何结论的归纳方法。

3、情感态度价值观体会探究的乐趣,体会数学与现实生活的联系,能对感性认识到理性认识有初步的体验。

[教学重点与教学难点]1、教学重点:(1)通过动手操作了解垂线的概念。

(2)通过动手操作进行垂线的两个性质的归纳。

2、教学难点:垂线的两个性质归纳的语言表述。

[教具准备]相交线模型、绳子、多媒体课件。

[教学课时]1课时[教学过程]一、创设情景揭示课题1、提问:某人在下雨时想要跑进屋檐下躲雨。

此人会以怎样的路线跑到屋檐下?2、板书课题:5.1.2 垂线二、动手操作得出新知学生操作:学生拿出相交线模型旋转,引导学生从角的变化过程中体会垂直与角大小的关系。

教师指出:四个角有一个是直角时,两直线就垂直了,此时四个角都是直角。

垂直:两条直线相交,有一个角是直角,这两条直线互相垂直。

垂线:两条直线互相垂直,其中一条叫作另一条的的垂线。

三、提问升华举例感知1、问题1:垂直的两条直线其夹角的大小有什么关系?2、问题2.怎样判定两条直线是否垂直?3、请列举生活中具有垂直形象的事物。

学生回答好以上三个问题后,教师指出:垂直定义即可以作为垂直的性质又可以作为垂直的判定。

四、探究思考讨论归纳(一)性质1师:生活中我们常用垂线知识解决问题,画已知直线的垂线是必不可少的基本技能1、问题1:与一条已知直线垂直的直线一共有几条?请同学们动手画一画。

2、问题2:如图(1),过P点可以作几条直线与直线L垂直?请同学们动手画一画。

3、问题3:如图(2),过P点可以作几条直线与直线L垂直?请同学们动手画一画。

这3个问题要求学生独立画图再小组内交流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂线教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.重点:两条直线互相垂直的概念、性质和画法.教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.1.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?(教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b 所成的四个角都是直角,都相等.)2.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。

如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

3.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.4.简单应用(1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例. ((2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.)二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?(通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.)教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.三、课堂小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?(四、课堂练习变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.)五、布置作业:课本P7练习,P9.3,4,5,9.附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见:h ttp://w /wxt/list.aspx?ClassID=306015.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab - (3)3 五、1.(1)22y x xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

相关文档
最新文档