热传导方程的数学模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热传导方程的模型

一块热的物体,如果体内每一点的温度不全一样,则在温度较高的点处的热能就要向温度较低的点处流动,称为热传导。由于热能的传导过程总是表现为温度随时间和点的位置的变化,故问题归结为求物体内温度的分布。

在三维直角坐标系下,假设在时刻t 点),,(z y x M 的温度为),,,(t z y x u ,考虑一个区域的温度,为此,在物体中任取一闭曲面S ,它

所包围的区域记作V (如图),

n 为曲面S ∆的法向(从V 内指向V 外)。

由热传学中的Fourier 实验定律可知:物体在无穷小时间段dt 内流过一个无穷小面积dS 的热量dQ 与时间段dt 、曲面面积dS ,以及物体温度u 沿法线方向的方向导数n u ∂∂三者成正比,即

其中),,(z y x k k =称为物体的热传导系数

(0≥k ),当物体均匀且各向同性时,k 为常

数。式中负号出现是由于热量的流向与温度梯度的正向相反。

从时刻1t 到时刻2t ,通过曲面S 流入区域V 的全部热量为

流入的热量使V 内温度发生了变化,在时间间隔],[21t t 内区域V 内各点温度),,,(1t z y x u 变化到),,,(2t z y x u ,则在时间间隔

],[21t t 内V 内温度升高所需的热量为:

其中c 为物体的比热,ρ为物体的密度,对均匀且各向同性的物体来说,它们都是常数。

由于热量守恒,故21Q Q =,即021=-Q Q 。 交换积分次序,得

由于时间间隔],[21t t 及区域Ω是任意取的,并且被积函数是连续的,得到

如果物体是均匀的,即k c ,,ρ为常数,得到方程: 其中ρc k a =2。该方程称为三维的热传导方程。

相关文档
最新文档