2-3层交换技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC 地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

具体的工作流程如下:
(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;
(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;
(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;
(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:
(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,
如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;
(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;
(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Applicati
on specific Integrated Circuit)芯片,因此转发速度可以做到非常快。

由于各个厂家
采用ASIC不同,直接影响产品性能。

以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。

(二)路由技术
路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工
作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。

工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。

路由技术实质上来说不过两种功能:决定最优路由和转发数据包。

路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。

接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达
目的路由器。

而路由表的维护,也有两种不同的方式。

一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。

由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。

当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。

(三)三层交换技术
近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。

组网比较简单
使用IP的设备A------------------------三层交换机------------------------使用IP的设备B
比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。

1、如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。

2、如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。

通过一定的识别触发机制,确立主机A与B的MAC 地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。

这就通常所说的一次路由多次转发。

以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点:
由硬件结合实现数据的高速转发。

这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背
板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbit/s。

算上背板带宽,这些是三层交换机性能的两个重要参数。

简洁的路由软件使路由过程简化。

大部分的数据转发,除了必要的路由选择交由路由软件处理,都是由二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。

结论
二层交换机用于小型的局域网络。

这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。

路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。

三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。

每个VLAN对应一个IP网段。

在二层上,VLAN之间是隔离的,这点跟二层交换机中交换引擎的功能是一模一样的。

不同IP网段之间的访问要跨越VLAN,要使用三层转发引擎提供的VLAN间路由功能。

在使用二层交换机和路由器的组网中,每个需要与其他IP网段通信的IP 网段都需要使用一个路由器接口作为网关。

而第三层转发引擎就相当于传统组网中的路由器,当需要与其他VLAN通信时也要在三层交换引擎上分配一个路由接口,用来做VLAN的网关。

三层交换机上的这个路由接口是在三层转发引擎和二层转发引擎上的,是通过配置转发芯片来实现的,与路由器的接口不同,它是不可见的。

下面举个例子来说明通信过程。

假设两个使用IP协议的站点A、B通过第三层交换机进行通信,发送站A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网内,若目的站B与发送站A在同一子网内,于是在自己的ARP缓存中查找是否有主机B的MAC地址,如果能找到就直接做数据链路层封装并通过网卡将封装好的以太数据帧发送到物理线路上去;如果ARP 缓存表中没有主机B的MAC地址,主机A将启动ARP协议通过在本地网络上的ARP广播来查询主机B的MAC地址,获得主机B的MAC地址后写入ARP缓存表则进行二层的转发;
若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A要向三层交换机
的三层交换模块发出ARP(地址解析)封包。

当发送站A对三层交换模块的IP地址广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址,
否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,
同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。

从这以后,A向B发送的数
据包便全部交给二层交换处理,信息得以高速交换。

可见由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,三层交换机的速度很快,接近二层交换机的速度。

相关文档
最新文档