车载动态称重系统的研究
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主题词:车辆 动态称重 钢板弹簧 BP 神经网络 中图分类号:U492.8 文献标识码:A 文章编号:1000- 3703(2008)06- 0008- 04
Resear ch of Tr uck- Mounted Dynamic Weighing System
Chen Daojiong,Gao Shangzhong,Gao Zhifeng,Wei Qun (Shanghai University of Science and Technology)
Key wor ds:Vehicle,Dynamic weighing,Leaf spr ing,BP neur al networ k
1 前言
随着市场经济的不断发展,公路交通量迅速增 加,各种载货汽车、大平板汽车、挂车和集装箱运输 汽车数量和载货量逐年递增,同时车辆超载超限的 现象也较为普遍,使公路、桥梁及其附属设施遭到严 重破坏,由此而引发的交通事故日益增多[1]。为了抑 制车辆超载,降低对道路设施的损害,国外从 20 世 纪 50 年代后期就开始对车辆超载检测技术进行研 究,到 20 世纪 90 年代基本上形成了成熟产品,产品 也由静态的整车测量发展到了动态的轴重检测,这 就是人们熟知的动态称重技术[2]。动态称重采用的 是地磅式传力感应机电式称重系统,采用该技术检 测质量时需要汽车以低速通过检测站,以保证测得 数据的准确性,这样会降低公路交通的通过性能。也 有提出利用车胎胎压与车载质量之间的映射关系实 现车载式称重的,但轮胎气压随温度与气体泄露而 变化将影响车载动态称重系统的精度[3~5]。
j 到神经元 i 的连接权值 t+1 次调整算式:
wij(t+1)=wij(t)- η##wJi(j(tt)) =wij(t)- η∑ ##wEipj((tt))=wij(t)+Δwij(t)
(7)
式中,η为步长,在此称学习算子;Δwij 为权系数调
整值。
以 CA6350 汽车钢板弹簧悬架系统为研究对 象,通过应用 AG- IS 100 kN 电子式万能试验机对其 进行加载、卸载试验获得了挠度- 载荷样本,然后利
(1)
式中,Ijp 为在第 p 组样本输入时节点 i 的第 j 个输 入。
输入层至隐层的 f(x)取可微分的 S 型作用函
数:
f(x)=
1 1+e-
2x
(2)百度文库
隐层至输出层的 f(x)则取线性函数:
f(x)=x
(3)
设 Ep 为在第 p 样本输入时网络的目标函数,取
L2 范数,则:
Ep(t)=
1 2
||dp- yp(t)||2
输入单输出,隐层数为 1,隐层神经元为 2,第 1 层传
递函数为 S 型作用函数,第 2 层传递函数为线性作
用函数的 BP 网络模型。然后以挠度样本 u 为输入,
载荷样本 d 为输出,经过 BP 神经网络学习获得特
定的权值(IW、LW)和阈值 b,从而建立钢板弹簧的
载荷- 挠度曲线模型。
IW{1,1}
以 1 /4 简化汽车悬架模型为研究对象,建立两自 由度的振动系统,悬架模型如图 6 所示[7]。图中,m1 为 悬架质量;m2 为非悬架质量;k1 为悬架刚度;k2 为轮 胎刚度;c 为阻尼器阻尼系数;z1、z2 分别为车身与车 轮垂直位移;q 为路面输入。参考文献[7]建立的钢 板弹簧振动的非线性动力学方程如式 (9)。利用 Matlab 建立的 1 /4 悬架仿真模型如图 7 所示。
【Abstr act】Based on the analysis of suspension system for truck leaf spring, this paper proposes a solution for truck- mounted weighing,which adopts the relationship between load and deflection of leaf spring and BP neural networks.A truck - mounted dynamic weighing system and transceiver is established by using single - chip system,the software for weighting and wireless transceiver is written,the static loading test and dynamic simulation with different road input are also performed.The results show that this system that we have studied can be effectively used for dynamic load identification and road administration for vehicles with steel leaf spring suspension.
利用 Matlab 建立的产生路面随机激励时域信
号模拟模型如图 5 所示。
K
+
带限白噪声 增益 1 -
1 s 积分器
out data.mat matlab 文件
K 增益 2
示波器模块
图 5 产生路面随机激励时域信号模拟模型
其中带限白噪声模块用以产生白噪声信号 w(t);
— 10 —
增益 1 的增益 K 为 2π!G0 v ;增益 2 的增益 K 为 2πf0;最终输出的路面随机激励 q 保存为 out data. mat 文件。 4.2 1 /4 悬架动力学系统建模
前左悬架 钢板弹簧
位移传感器 1
前右悬架 钢板弹簧
后左悬架 钢板弹簧
后右悬架 钢板弹簧
位移传感器 2 位移传感器 3 位移传感器 4
ADC0809 51 单片机 液晶显示载重
模数转换
系统
及车辆信息
232 无线数 传发送模块
无线发送
收费,限载 监测及控制
计算机 串口接收
232 无线数 传接收模块
无线接收
网络的总目标函数:
J(t)=!Ep(t) p
可作为网络学习状况的评价。若
(5)
J(t)≤ε
(6)
则算法结束;否则,调整权值后再通过 BP 神经
网络识别。式中,ε为预先确定的误差指标,用来判
断是否满足精度要求,ε>0。 由输出层依据 J 函数,按“梯度下降法”反向计
算,逐层调整权值。现取步长为常值,可得到神经元
! ! =
1 2
k
[dkp-
ykp(t)]2=
1 2
2
ekp (t)
k
(4)
式中,dkp 为在第 p 组样本输入时网络的目标输出; ykp(t)为在第 p 组样本输入时经 t 次权值调整后网络 的输出;k 为输出层第 k 个节点;ekp(t)为在第 p 组样 本输入时网络的目标输出与实际输出的误差。
+ 积分器 4
1
1
s
s
点积 积分器 3
z1
z1
输出 1 1
函数 4
z1.mat
mat1ab1
图 7 1 /4 悬架的仿真模型
m1
z1
k1
c
m2
z2
k2 q
图 6 两自由度悬架模型
’)z¨1=-
1 m1
$c "z7 1- z7 2 #+k1(z1- z2)+ε′k1(z1- z2)3 %
(
*)z¨2=-
1 m2
$c &z7 2- z7 1 #+k1(z2- z1)+ε′k1(z2- z1)3+k2(z2- q)%
(9)
式中,ε′为弹簧的非线性程度参数。
目前,国内载货汽车的前、后悬架仍在广泛采用 钢板弹簧悬架系统,因此根据钢板弹簧悬架系统的 变形量来获得其所承受载荷量的车载动态称重,并
利用自适应神经网络辨识具有随机非线性信号特点 的弹簧悬架的挠度- 载荷关系,获得在地面与各种 干扰下准确的车辆载重量信息,将是一个很好的方 案。本文提出了基于单片机控制的车载动态称重系 统,即在车辆以常速(约为 80 km /h)行驶而不影响 路面交通的情况时,在测载点能够实现无线接收车 载测重数据和车辆身份信息,用以收费、超载监测、 车辆区域控制。
汽车技术
载荷 /×9.8kN
·设计·计算·研究·
6
5
4 加载曲线
3
2
1
卸载曲线 满载时 空载时
0 0 40 80 120 140 160
挠度 /mm (b)挠度- 载荷特性 图 1 某货车钢板弹簧前悬架及其挠度- 载荷特性
由图 1b 可以看出,当货车载有一定的货物后, 通过测得钢板弹簧的挠度可得出加载或卸载时悬架 钢板弹簧的载荷量,因此,选取加载曲线与卸载曲线 的均值线作为悬架钢板弹簧的挠度- 载荷模型,以 反映悬架钢板弹簧的挠度- 载荷特性。
—9—
·设计·计算·研究·
用 Matlab 软件建立钢板弹簧的非线性模型。所用钢 板弹簧试验系统如图 3 所示。
钢板弹簧
加载头
电子式万 能试验机
位移传感器
钢板弹簧支撑台架
图 3 钢板弹簧试验系统
基于 Matlab 的钢板弹簧挠度- 载荷 BP 模型辨
识网络如图 4 所示。由图 4 可知,所构建的网络为单
1 q- q z2 +
- +
- z1 +
2 m1
积分器 2
117000·u ++ +-
- u /33
1 s
1 s
函数
函数 2 积分器 1
4.9·u·3+49·u
z2
z2
2
输出 2
函数 1
-+ - 4.9·u·3- 49·u
函数 3 m1 u·(- 1)
增益 1000
z2.mat
-
mal ab 文件 2
本文采用前馈神经网络的自学习算法 (BP 算
2008 年 第 6 期
法,Back Propagation)建立汽车钢板弹簧的挠度- 载 荷曲线模型。
设 p 组样本的输入、输出分别为 up、dp,初始权 系数 Wij 为- 1~1 之间的随机非零值,节点 i 在第 p 组样本输入时的输出为:
! yip(t)=f [xip(t)]=f [ wij(t)Ijp] j
图 2 基于自适应神经网络的车载动态称重方案
考虑到用自适应的 BP 神经网络来辨识前后左 右 4 组悬架钢板弹簧的挠度- 载荷模型是一个相同 的过程,现以其中 1 组悬架钢板弹簧的挠度- 载荷 模型辨识为例,即以货车 1 /4 悬架钢板弹簧为研究 对象,来详细阐述本文的车载动态称重方案。
3 悬架钢板弹簧挠度- 载荷非线性模型建立
·设计·计算·研究·
车载动态称重系统的研究 2
陈道炯 高上忠 高志峰 魏 群
(上海理工大学)
【摘要】通过对载货汽车钢板弹簧悬架系统的分析,提出了利用 BP 神经网络根据钢板弹簧悬架系统的变形量 来获得其所承受的载荷量的车载称重方案。利用单片机系统构建了一套车载动态称重系统及无线收发系统,编写了 相应的测载和无线收发数据的软件,并进行了静态加载试验与各路面输入情况下的动态仿真分析。试验及仿真结果 表明,所构建的系统能有效地应用于钢板弹簧悬架结构车辆载重的在线动态识别与道路管理。
LW{2,1}
b{1}
b{2}
1
2
1
IW{1,1}为第 1 层权值
LW{2,1}为第 2 层权值
b{1}为第 1 层阈值
b{2}为第 2 层阈值
图 4 钢板弹簧挠度- 载荷的 BP 模型辨识网络
4 车载动态称重系统的建模与分析
4.1 路面输入建模
本文基于滤波白噪声方法建立了路面随机激励
的时域模型,单个车轮受到的路面随机激励时域模
2 车载动态称重系统方案分析
由于载货汽车钢板弹簧承载形式的不同,钢板弹 簧加载和卸载时的挠度- 载荷特性也有所差异,现以 某货车的悬架系统[6](图 1a)为例来说明本文的解决 方案。图 1b 是该钢板弹簧的挠度- 载荷特性曲线。
(a)钢板弹簧前悬架
2 上海市重点学科建设项目(J50503))。
—8—
型可用式(8)表示[7]。
g
Z g (t)=2π!G0 v w(t)- 2πf0 Zg w(t)
(8)
式中,Zg 为路面不平度位移;w 为随机白噪声输入;v 为车速;G0 为路面谱密度不平度系数;通常,下截止 频率 f0 的范围可在 0.062 8 Hz 附近[7],以保证所得 的时域路面位移输入与实际路面谱尽量一致。
为解决钢板弹簧挠度- 载荷特性曲线自动识别 问题,提出了一种基于自适应神经网络的车载动态 称重的方案(图 2)。通过 4 组钢板弹簧悬架的挠度- 载荷辨识获得其车载质量,再根据左、右悬架特性相 同与前、后悬架的轴荷分配系数,对各载荷进行加权 计算即可得到整车的实际车载质量。
这一系统主要由位移传感器、51 单片机系统 (AD 转换、软件滤波、液晶显示、无线数传)和远程 计算机组成。
Resear ch of Tr uck- Mounted Dynamic Weighing System
Chen Daojiong,Gao Shangzhong,Gao Zhifeng,Wei Qun (Shanghai University of Science and Technology)
Key wor ds:Vehicle,Dynamic weighing,Leaf spr ing,BP neur al networ k
1 前言
随着市场经济的不断发展,公路交通量迅速增 加,各种载货汽车、大平板汽车、挂车和集装箱运输 汽车数量和载货量逐年递增,同时车辆超载超限的 现象也较为普遍,使公路、桥梁及其附属设施遭到严 重破坏,由此而引发的交通事故日益增多[1]。为了抑 制车辆超载,降低对道路设施的损害,国外从 20 世 纪 50 年代后期就开始对车辆超载检测技术进行研 究,到 20 世纪 90 年代基本上形成了成熟产品,产品 也由静态的整车测量发展到了动态的轴重检测,这 就是人们熟知的动态称重技术[2]。动态称重采用的 是地磅式传力感应机电式称重系统,采用该技术检 测质量时需要汽车以低速通过检测站,以保证测得 数据的准确性,这样会降低公路交通的通过性能。也 有提出利用车胎胎压与车载质量之间的映射关系实 现车载式称重的,但轮胎气压随温度与气体泄露而 变化将影响车载动态称重系统的精度[3~5]。
j 到神经元 i 的连接权值 t+1 次调整算式:
wij(t+1)=wij(t)- η##wJi(j(tt)) =wij(t)- η∑ ##wEipj((tt))=wij(t)+Δwij(t)
(7)
式中,η为步长,在此称学习算子;Δwij 为权系数调
整值。
以 CA6350 汽车钢板弹簧悬架系统为研究对 象,通过应用 AG- IS 100 kN 电子式万能试验机对其 进行加载、卸载试验获得了挠度- 载荷样本,然后利
(1)
式中,Ijp 为在第 p 组样本输入时节点 i 的第 j 个输 入。
输入层至隐层的 f(x)取可微分的 S 型作用函
数:
f(x)=
1 1+e-
2x
(2)百度文库
隐层至输出层的 f(x)则取线性函数:
f(x)=x
(3)
设 Ep 为在第 p 样本输入时网络的目标函数,取
L2 范数,则:
Ep(t)=
1 2
||dp- yp(t)||2
输入单输出,隐层数为 1,隐层神经元为 2,第 1 层传
递函数为 S 型作用函数,第 2 层传递函数为线性作
用函数的 BP 网络模型。然后以挠度样本 u 为输入,
载荷样本 d 为输出,经过 BP 神经网络学习获得特
定的权值(IW、LW)和阈值 b,从而建立钢板弹簧的
载荷- 挠度曲线模型。
IW{1,1}
以 1 /4 简化汽车悬架模型为研究对象,建立两自 由度的振动系统,悬架模型如图 6 所示[7]。图中,m1 为 悬架质量;m2 为非悬架质量;k1 为悬架刚度;k2 为轮 胎刚度;c 为阻尼器阻尼系数;z1、z2 分别为车身与车 轮垂直位移;q 为路面输入。参考文献[7]建立的钢 板弹簧振动的非线性动力学方程如式 (9)。利用 Matlab 建立的 1 /4 悬架仿真模型如图 7 所示。
【Abstr act】Based on the analysis of suspension system for truck leaf spring, this paper proposes a solution for truck- mounted weighing,which adopts the relationship between load and deflection of leaf spring and BP neural networks.A truck - mounted dynamic weighing system and transceiver is established by using single - chip system,the software for weighting and wireless transceiver is written,the static loading test and dynamic simulation with different road input are also performed.The results show that this system that we have studied can be effectively used for dynamic load identification and road administration for vehicles with steel leaf spring suspension.
利用 Matlab 建立的产生路面随机激励时域信
号模拟模型如图 5 所示。
K
+
带限白噪声 增益 1 -
1 s 积分器
out data.mat matlab 文件
K 增益 2
示波器模块
图 5 产生路面随机激励时域信号模拟模型
其中带限白噪声模块用以产生白噪声信号 w(t);
— 10 —
增益 1 的增益 K 为 2π!G0 v ;增益 2 的增益 K 为 2πf0;最终输出的路面随机激励 q 保存为 out data. mat 文件。 4.2 1 /4 悬架动力学系统建模
前左悬架 钢板弹簧
位移传感器 1
前右悬架 钢板弹簧
后左悬架 钢板弹簧
后右悬架 钢板弹簧
位移传感器 2 位移传感器 3 位移传感器 4
ADC0809 51 单片机 液晶显示载重
模数转换
系统
及车辆信息
232 无线数 传发送模块
无线发送
收费,限载 监测及控制
计算机 串口接收
232 无线数 传接收模块
无线接收
网络的总目标函数:
J(t)=!Ep(t) p
可作为网络学习状况的评价。若
(5)
J(t)≤ε
(6)
则算法结束;否则,调整权值后再通过 BP 神经
网络识别。式中,ε为预先确定的误差指标,用来判
断是否满足精度要求,ε>0。 由输出层依据 J 函数,按“梯度下降法”反向计
算,逐层调整权值。现取步长为常值,可得到神经元
! ! =
1 2
k
[dkp-
ykp(t)]2=
1 2
2
ekp (t)
k
(4)
式中,dkp 为在第 p 组样本输入时网络的目标输出; ykp(t)为在第 p 组样本输入时经 t 次权值调整后网络 的输出;k 为输出层第 k 个节点;ekp(t)为在第 p 组样 本输入时网络的目标输出与实际输出的误差。
+ 积分器 4
1
1
s
s
点积 积分器 3
z1
z1
输出 1 1
函数 4
z1.mat
mat1ab1
图 7 1 /4 悬架的仿真模型
m1
z1
k1
c
m2
z2
k2 q
图 6 两自由度悬架模型
’)z¨1=-
1 m1
$c "z7 1- z7 2 #+k1(z1- z2)+ε′k1(z1- z2)3 %
(
*)z¨2=-
1 m2
$c &z7 2- z7 1 #+k1(z2- z1)+ε′k1(z2- z1)3+k2(z2- q)%
(9)
式中,ε′为弹簧的非线性程度参数。
目前,国内载货汽车的前、后悬架仍在广泛采用 钢板弹簧悬架系统,因此根据钢板弹簧悬架系统的 变形量来获得其所承受载荷量的车载动态称重,并
利用自适应神经网络辨识具有随机非线性信号特点 的弹簧悬架的挠度- 载荷关系,获得在地面与各种 干扰下准确的车辆载重量信息,将是一个很好的方 案。本文提出了基于单片机控制的车载动态称重系 统,即在车辆以常速(约为 80 km /h)行驶而不影响 路面交通的情况时,在测载点能够实现无线接收车 载测重数据和车辆身份信息,用以收费、超载监测、 车辆区域控制。
汽车技术
载荷 /×9.8kN
·设计·计算·研究·
6
5
4 加载曲线
3
2
1
卸载曲线 满载时 空载时
0 0 40 80 120 140 160
挠度 /mm (b)挠度- 载荷特性 图 1 某货车钢板弹簧前悬架及其挠度- 载荷特性
由图 1b 可以看出,当货车载有一定的货物后, 通过测得钢板弹簧的挠度可得出加载或卸载时悬架 钢板弹簧的载荷量,因此,选取加载曲线与卸载曲线 的均值线作为悬架钢板弹簧的挠度- 载荷模型,以 反映悬架钢板弹簧的挠度- 载荷特性。
—9—
·设计·计算·研究·
用 Matlab 软件建立钢板弹簧的非线性模型。所用钢 板弹簧试验系统如图 3 所示。
钢板弹簧
加载头
电子式万 能试验机
位移传感器
钢板弹簧支撑台架
图 3 钢板弹簧试验系统
基于 Matlab 的钢板弹簧挠度- 载荷 BP 模型辨
识网络如图 4 所示。由图 4 可知,所构建的网络为单
1 q- q z2 +
- +
- z1 +
2 m1
积分器 2
117000·u ++ +-
- u /33
1 s
1 s
函数
函数 2 积分器 1
4.9·u·3+49·u
z2
z2
2
输出 2
函数 1
-+ - 4.9·u·3- 49·u
函数 3 m1 u·(- 1)
增益 1000
z2.mat
-
mal ab 文件 2
本文采用前馈神经网络的自学习算法 (BP 算
2008 年 第 6 期
法,Back Propagation)建立汽车钢板弹簧的挠度- 载 荷曲线模型。
设 p 组样本的输入、输出分别为 up、dp,初始权 系数 Wij 为- 1~1 之间的随机非零值,节点 i 在第 p 组样本输入时的输出为:
! yip(t)=f [xip(t)]=f [ wij(t)Ijp] j
图 2 基于自适应神经网络的车载动态称重方案
考虑到用自适应的 BP 神经网络来辨识前后左 右 4 组悬架钢板弹簧的挠度- 载荷模型是一个相同 的过程,现以其中 1 组悬架钢板弹簧的挠度- 载荷 模型辨识为例,即以货车 1 /4 悬架钢板弹簧为研究 对象,来详细阐述本文的车载动态称重方案。
3 悬架钢板弹簧挠度- 载荷非线性模型建立
·设计·计算·研究·
车载动态称重系统的研究 2
陈道炯 高上忠 高志峰 魏 群
(上海理工大学)
【摘要】通过对载货汽车钢板弹簧悬架系统的分析,提出了利用 BP 神经网络根据钢板弹簧悬架系统的变形量 来获得其所承受的载荷量的车载称重方案。利用单片机系统构建了一套车载动态称重系统及无线收发系统,编写了 相应的测载和无线收发数据的软件,并进行了静态加载试验与各路面输入情况下的动态仿真分析。试验及仿真结果 表明,所构建的系统能有效地应用于钢板弹簧悬架结构车辆载重的在线动态识别与道路管理。
LW{2,1}
b{1}
b{2}
1
2
1
IW{1,1}为第 1 层权值
LW{2,1}为第 2 层权值
b{1}为第 1 层阈值
b{2}为第 2 层阈值
图 4 钢板弹簧挠度- 载荷的 BP 模型辨识网络
4 车载动态称重系统的建模与分析
4.1 路面输入建模
本文基于滤波白噪声方法建立了路面随机激励
的时域模型,单个车轮受到的路面随机激励时域模
2 车载动态称重系统方案分析
由于载货汽车钢板弹簧承载形式的不同,钢板弹 簧加载和卸载时的挠度- 载荷特性也有所差异,现以 某货车的悬架系统[6](图 1a)为例来说明本文的解决 方案。图 1b 是该钢板弹簧的挠度- 载荷特性曲线。
(a)钢板弹簧前悬架
2 上海市重点学科建设项目(J50503))。
—8—
型可用式(8)表示[7]。
g
Z g (t)=2π!G0 v w(t)- 2πf0 Zg w(t)
(8)
式中,Zg 为路面不平度位移;w 为随机白噪声输入;v 为车速;G0 为路面谱密度不平度系数;通常,下截止 频率 f0 的范围可在 0.062 8 Hz 附近[7],以保证所得 的时域路面位移输入与实际路面谱尽量一致。
为解决钢板弹簧挠度- 载荷特性曲线自动识别 问题,提出了一种基于自适应神经网络的车载动态 称重的方案(图 2)。通过 4 组钢板弹簧悬架的挠度- 载荷辨识获得其车载质量,再根据左、右悬架特性相 同与前、后悬架的轴荷分配系数,对各载荷进行加权 计算即可得到整车的实际车载质量。
这一系统主要由位移传感器、51 单片机系统 (AD 转换、软件滤波、液晶显示、无线数传)和远程 计算机组成。