线性规划的实际应用
线性规划在生产调度中的实际应用
线性规划在生产调度中的实际应用在当今竞争激烈的市场环境中,企业要想提高生产效率、降低成本、优化资源配置,生产调度的合理性至关重要。
而线性规划作为一种有效的数学工具,在解决生产调度问题方面发挥着重要作用。
线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支。
它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题。
简单来说,就是在一组线性等式或不等式的约束条件下,求一个线性目标函数的最大值或最小值。
在生产调度中,企业通常面临着多种资源的有限性和多种任务的需求。
例如,原材料的供应有限、机器设备的产能有限、工人的工作时间有限等,而同时又需要满足订单的交付日期、产品的质量要求等。
线性规划可以帮助企业在这些限制条件下,做出最优的生产计划和调度安排。
假设一家服装厂,有三种款式的服装需要生产:衬衫、裤子和外套。
生产每种服装所需的布料、工时以及每种服装的利润都不同。
同时,工厂拥有一定数量的布料和工人工作时间。
那么,如何安排生产才能使工厂的利润最大化呢?这就是一个典型的线性规划问题。
首先,我们需要确定决策变量。
在这个例子中,决策变量可以设为生产每种服装的数量,比如生产衬衫的数量为 x1,生产裤子的数量为x2,生产外套的数量为 x3。
然后,我们需要确定目标函数。
目标是使工厂的利润最大化,利润等于每种服装的销售价格乘以生产数量再减去生产成本。
假设衬衫、裤子和外套的单位利润分别为 p1、p2 和 p3,那么目标函数可以表示为:Z = p1 x1 + p2 x2 + p3 x3接下来,我们需要确定约束条件。
约束条件包括布料的限制、工时的限制等。
假设生产一件衬衫需要 b1 米布料,生产一件裤子需要 b2米布料,生产一件外套需要 b3 米布料,工厂拥有的布料总量为 B,那么布料的约束条件可以表示为:b1 x1 + b2 x2 + b3 x3 <= B 同样,假设生产一件衬衫需要 h1 个工时,生产一件裤子需要 h2 个工时,生产一件外套需要 h3 个工时,工人的总工作时间为 H,那么工时的约束条件可以表示为:h1 x1 + h2 x2 + h3 x3 <= H 此外,还可能有其他的约束条件,比如每种服装的最低生产数量要求等。
线性规划应用案例分析
线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
线性规划的实际应用举例
线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。
1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。
问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。
那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。
从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。
作出以上不等式组所表示的平面区域(图1),即可行域。
令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。
答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。
2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。
每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。
可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。
问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。
实际问题中的线性规划方法
实际问题中的线性规划方法线性规划是数学中一种非常重要的优化方法,广泛应用于各个领域。
在实际问题中,线性规划方法可以很好地解决很多优化问题。
本文将会介绍线性规划方法在实际问题中的应用,例如网络流问题、供应链优化问题以及航空公司航班计划问题等。
一、网络流问题网络流问题是指在具有网络形式的问题中,求得网络中一些关键指标的最优解。
这些指标可能是物流方面的,也可能是通信方面的,甚至可能与能源、水资产有关。
这个问题的形式是一组由多个变量组成的线性方程组,并且这些方程组的决策变量通常用来描述网络的流量问题。
这里的问题是要求出网络中流量的最大值图。
在实际应用中,经常使用线性规划的方法来解决这种问题。
例如,在物流配送领域,我们可能需要在多个仓库和客户之间优化货物的运输路线。
当运输网络以“源点”(例如一个集散地或一个公路)开始,并以“汇点”(例如一家客户或一个仓库)结束时,通常需要考虑许多线性限制约束,例如运输成本、运输距离和货物数量等。
使用线性规划的方法,可以快速找到最小的总运输成本以及分配给每个节点的货物数量,从而提高物流的效率并降低成本。
二、供应链优化问题供应链优化问题通常可以看作是网络流问题的一个具体实例,它也可以使用线性规划的方法以最小化成本或最大化利润的方案来求解。
这个问题涉及到优化生产和分销的方案,从而最大限度地降低整个供应链的成本或提高利润。
这种问题通常包括许多限制条件,例如合理的货物存储、库存管理、运输和分销等。
线性规划的方法可以非常有效地解决这些问题,以实现最优化的运营方案。
例如,在某个制造公司中,我们可能需要考虑如何最小化原材料和物流成本,同时最大程度地利用现有的生产能力以及最大程度地满足客户要求。
这个问题涉及到许多因素,例如供应链的表现、货物的需求、生产规模等。
使用线性规划的方法,可以快速找到最佳的物流路线、最佳的生产数量以及最佳的库存管理方案等,从而提高供应链的效率。
三、航空公司航班计划问题航空公司航班计划问题是指在规定时间内,根据市场需要以及规定的飞行路线等因素,为航空公司确定一个最佳的航班计划。
线性规划应用案例
线性规划应用案例线性规划是一种在约束条件下寻找最优解的数学优化方法。
它在实际应用中广泛使用,涉及许多领域和行业。
本文将介绍两个典型的线性规划应用案例:运输问题和产能规划问题。
一、运输问题运输问题是线性规划最早发展起来的一个领域,它是指如何在各个供应地和需求地之间运输商品,以使得总运输成本最小。
一个典型的运输问题可以描述为:有m个供应地和n个需求地,每个供应地和需求地之间有一个固定的运输成本和一个固定的供应和需求量。
问题是如何确定每对供需地之间的运输量,以使得总运输成本最小。
举例来说,假设有三个供应地A、B、C,三个需求地X、Y、Z。
运输成本如下表所示:\begin{array}{ c c c c c c }&X&Y&Z&供应量\\A&10&12&8&100\\B&6&8&7&200\\C&9&10&11&300\\需求量&150&175&125&\\\end{array}求解此问题的线性规划模型如下:目标函数:minimize \quad Z = 10x_{11} + 12x_{12} + 8x_{13} + 6x_{21} + 8x_{22} + 7x_{23} + 9x_{31} + 10x_{32} + 11x_{33}约束条件:x_{11} + x_{12} + x_{13} \leq 100x_{21} + x_{22} + x_{23} \leq 200x_{31} + x_{32} + x_{33} \leq 300x_{11} + x_{21} + x_{31} \geq 150x_{12} + x_{22} + x_{32} \geq 175x_{13} + x_{23} + x_{33} \geq 125x_{ij} \geq 0, i = 1,2,3 \quad j = 1,2,3其中x_{ij}表示从供应地i到需求地j的运输量。
线性规划的应用与求解方法
线性规划的应用与求解方法线性规划是数学中一种重要的优化方法,被广泛应用于各个领域,如经济学、管理学、工程学等。
它可以帮助我们在给定的约束条件下,找到最优解,使得目标函数取得最大值或最小值。
本文将介绍线性规划的应用领域以及常用的求解方法。
一、线性规划的应用领域1. 生产与资源分配线性规划可以帮助企业合理安排生产资源,优化生产效率。
例如,一个工厂需要决定如何分配有限的人力、物力和财力,以满足最大产出或最小成本的要求。
线性规划可以帮助企业找到最佳的资源分配方案,提高生产效率。
2. 项目排程与调度线性规划可以用于项目排程与调度问题,帮助规划员安排项目的开始时间、结束时间和资源分配。
例如,在建设一个大型工程项目时,需要考虑多个任务的依赖关系、资源限制和时间限制,线性规划可以帮助规划员合理安排项目进度,最大程度地利用资源。
3. 物流与运输线性规划可以用于优化物流与运输问题。
例如,一个配送中心需要决定如何将货物从不同供应商配送到不同的客户,以最小化运输成本。
线性规划可以帮助物流公司找到最佳的配送路线和运输方案,提高运输效率。
4. 投资与资产配置线性规划可以用于优化投资与资产配置问题。
例如,一个投资者希望在多个资产中进行配置,以最大化收益或最小化风险。
线性规划可以帮助投资者找到最佳的资产配置方案,提高投资收益率。
二、线性规划的求解方法1. 图形法图形法是线性规划最直观的求解方法之一。
它通过绘制目标函数和约束条件所对应的直线或曲线,找到使目标函数取得最大(小)值的交点。
但是,图形法只适用于二维线性规划问题,对于多维问题并不适用。
2. 单纯形法单纯形法是线性规划最常用的求解方法之一。
它通过迭代的方式,在可行域内搜索有效解。
单纯形法首先找到一个基础解,并在每一步中通过改进的方式找到更优的基础解,直到找到最优解为止。
单纯形法可以求解多维线性规划问题,并且具有较高的效率。
3. 对偶理论对偶理论是线性规划的重要理论基础。
它将线性规划问题转化为对偶问题,并通过对偶问题的求解来获得原问题的最优解。
线性规划的应用
线性规划的应用引言概述:线性规划是一种优化问题的数学建模方法,可以用于解决许多实际问题。
本文将探讨线性规划在不同领域的应用,包括生产计划、资源分配、运输问题、金融投资和市场营销等。
一、生产计划1.1 产能规划:线性规划可以匡助企业确定最优产能规划,通过最大化产量和最小化成本,实现生产效益的最大化。
1.2 原材料采购:线性规划可以优化原材料的采购计划,确保原材料的供应充足,同时最小化采购成本。
1.3 生产调度:线性规划可以匡助企业制定最佳的生产调度方案,合理安排生产过程,提高生产效率和产品质量。
二、资源分配2.1 人力资源:线性规划可以匡助企业合理分配人力资源,根据不同部门和岗位的需求,确定最佳的人员配置方案。
2.2 设备调度:线性规划可以优化设备的调度计划,确保设备的利用率最大化,减少闲置时间和能源浪费。
2.3 资金分配:线性规划可以匡助企业合理分配资金,根据不同项目的需求,确定最佳的资金分配方案,实现资金的最大效益。
三、运输问题3.1 物流配送:线性规划可以优化物流配送路线,确定最佳的配送方案,减少运输成本和时间。
3.2 仓储管理:线性规划可以匡助企业优化仓储管理,确定最佳的仓储位置和库存量,减少库存成本和仓储空间的浪费。
3.3 运输调度:线性规划可以匡助企业制定最佳的运输调度计划,合理安排运输车辆和货物的装载,提高运输效率和减少运输成本。
四、金融投资4.1 资产配置:线性规划可以匡助投资者确定最佳的资产配置方案,平衡风险和收益,实现投资组合的最优化。
4.2 资金规划:线性规划可以优化资金的规划和运用,确保资金的最大化利用和最小化风险。
4.3 投资决策:线性规划可以匡助企业制定最佳的投资决策方案,根据不同项目的收益和风险,确定最优的投资方向。
五、市场营销5.1 定价策略:线性规划可以匡助企业确定最佳的定价策略,根据市场需求和成本考虑,确定最优的价格水平。
5.2 促销策略:线性规划可以优化促销策略,确定最佳的促销活动方案,提高产品销售量和市场份额。
高中数学突破线性规划的实际应用
高中数学突破线性规划的实际应用在高中数学的学习中,线性规划是一个重要的知识点,它不仅在数学领域有着广泛的应用,在实际生活中也发挥着巨大的作用。
线性规划问题可以帮助我们在有限的资源条件下,做出最优的决策,实现效益的最大化。
首先,让我们来了解一下线性规划的基本概念。
线性规划是研究在线性约束条件下,使某个线性目标函数取得最优值(最大值或最小值)的问题。
其数学模型通常由决策变量、目标函数和约束条件三部分组成。
决策变量表示我们需要做出决策的数量或取值;目标函数是我们想要优化的对象,比如成本最小化、利润最大化等;约束条件则限制了决策变量的取值范围。
那么,线性规划在实际生活中有哪些具体的应用呢?一个常见的应用是资源分配问题。
比如,一家工厂有一定数量的原材料、人力和设备,要生产多种产品。
每种产品的生产都需要消耗一定量的资源,并且能带来不同的利润。
那么如何安排生产计划,才能在资源有限的情况下,使总利润最大呢?这就可以通过建立线性规划模型来解决。
我们设生产产品 A 的数量为 x1,生产产品 B 的数量为 x2 等等。
然后根据每种产品所需的原材料、人力和设备等资源,列出相应的约束条件。
比如,原材料的使用总量不能超过现有的库存,人力的工作时间总和不能超过规定的时长,设备的运行时间也有一定的限制。
同时,设定目标函数为总利润,即每种产品的利润乘以其产量的总和。
通过求解这个线性规划问题,我们就能得到最优的生产计划,即每种产品应该生产多少,从而实现利润的最大化。
再比如,运输问题也是线性规划的一个重要应用场景。
假设一家物流公司要将货物从多个发货地运输到多个收货地,每个发货地有一定数量的货物,每个收货地有一定的需求,不同的运输路线有着不同的运输成本。
那么如何安排运输方案,才能在满足需求的情况下,使总运输成本最低呢?我们可以设从发货地 i 运往收货地 j 的货物数量为 xij。
然后根据发货地的货物总量和收货地的需求,列出相应的约束条件。
线性规划运用举例
线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。
线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。
下面将举例说明线性规划在实际生产和管理中的应用。
1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。
企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。
线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。
例如,生产一种食品有两个不同的发酵温度可以选择。
这个决策需要考虑到提高产量的同时也要保证产品质量。
通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。
2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。
为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。
线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。
例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。
3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。
在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。
通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。
例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。
总之,线性规划在生产和管理中的应用非常广泛。
通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。
线性规划 实际案例
线性规划是一种数学优化模型,用于解决在有一些约束条件下,如何使一个目标函数达到最优解的问题。
线性规划广泛应用于许多实际案例中,其中一些常见的案例如下:
1.生产规划:在生产过程中,企业可能需要在有限的生产资源和需求的限制下,决策
生产的数量、成本、产品组合等,以使生产效益最大化。
这就需要用到线性规划模
型来解决。
2.交通规划:在城市规划过程中,市政部门可能需要决策道路的建设、扩建、维护等,
以满足城市交通需求,并考虑到道路建设的成本和环境影响等因素。
这时候可以使
用线性规划模型来解决。
3.财务规划:在进行财务管理时,企业或个人可能需要在有限的资金和资产的限制下,
决策投资、储蓄、借贷等,以使财务效益最大化。
这时候可以使用线性规划模型来
解决。
4.供应链管理:在供应链管理过程中,企业可能需要决策采购、生产、运输、库存等
各个环节,以保证供应链的流畅运行并达到最优的效益。
这时候可以使用线性规划
模型来解决。
这些都是线性规划在实际案例中的应用,线性规划能够帮助企业和组织在有限的条件下,有效地规划和决策,并取得较好的效益。
浅谈线性规划在实际生活中的应用
浅谈线性规划在实际生活中的应用随着计算机技术的发展,线性规划(Linear Programming,LP)已被广泛应用于科学理论和实际生活中。
LP的出现使得工程师们能够快速的解决复杂的实际问题,使得各种优化事件在时间上有很大的优势。
本文将探讨线性规划在实际生活中的应用。
首先,线性规划可以用于企业的生产规划,以实现企业的目标以及降低成本。
要达到此目的,企业需要根据相关因素,如生产量、市场需求、库存水平、机器等,制定最佳生产计划。
例如,一家企业可以用线性规划来解决库存控制问题。
同时,企业还可以使用线性规划来进行工资管理、资产配置等,实现企业成本最低化。
其次,线性规划可以用于交通系统的路径规划。
线性规划可以解决交通运输问题,如最优路径规划、最短路径规划,以及交通系统的容量调度等。
例如,在城市交通系统中,可以使用LP来解决最优路径问题,以帮助出行者在拥堵的状态下,尽快到达目的地。
此外,线性规划还可以用于个人理财规划,以优化个人投资组合。
通过线性规划,个人理财者可以根据自己的风险偏好,使用资金最优化分配,即考虑投资组合中的收益、风险和成本等因素。
同时,也可以利用LP模型,结合投资者的利率偏好、投资期限等因素,探索个人最优投资组合。
此外,线性规划还可以用于建筑物的设计。
例如,可以使用LP 模型来优化财务计划,以确定最佳建筑设计,并考虑在建设过程中可能出现的各种问题。
另外,LP也可以用于求解土地利用、城市综合规划等问题。
最后,LP也可以用于自然资源的有效利用。
LP模型可以用于最佳利用公共资源,如水、电、矿产等,达到最大利益的若干目标。
此外,LP模型也可以用于环境污染的减排、森林的保护、植物的种植等,确保自然资源的可持续发展。
综上所述,线性规划在实际生活中有着广泛的应用,可以有效地解决复杂的实际问题。
但是,在实际应用中,也存在一定的局限性,像非线性问题这类更加复杂的问题就不能使用LP来求解。
因此,未来需要在 LP模型和非线性模型之间进行技术上的结合,以解决更多实际问题。
线性规划的应用
线性规划的应用标题:线性规划的应用引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
在现代社会中,线性规划被广泛应用于各个领域,如生产计划、资源分配、运输问题等。
本文将探讨线性规划在实际应用中的重要性和具体应用案例。
一、生产计划1.1 生产成本最小化:企业在生产过程中需要考虑成本问题,通过线性规划可以优化生产计划,使得成本最小化。
1.2 生产效率最大化:线性规划可以匡助企业合理安排生产资源,提高生产效率,实现生产效益最大化。
1.3 生产排程优化:通过线性规划可以制定合理的生产排程,避免生产过程中的资源浪费,提高生产效率。
二、资源分配2.1 人力资源优化:企业在进行人力资源分配时,可以利用线性规划方法,合理配置人员,提高工作效率。
2.2 资金分配优化:线性规划可以匡助企业合理分配资金,确保各项投资得到最大回报。
2.3 物资调配优化:在物资调配过程中,线性规划可以匡助企业合理安排物资的采购和使用,避免资源浪费。
三、运输问题3.1 最优运输路径:线性规划可以匡助企业确定最优的运输路径,降低运输成本,提高运输效率。
3.2 货物分配优化:在货物分配过程中,线性规划可以匡助企业合理分配货物,避免货物积压或者短缺情况。
3.3 运输成本最小化:通过线性规划可以优化运输计划,使得运输成本最小化,提高企业运输效益。
四、市场营销4.1 产品定价优化:线性规划可以匡助企业确定最优的产品定价策略,提高产品市场竞争力。
4.2 推广策略优化:在市场推广过程中,线性规划可以匡助企业制定合理的推广策略,提高市场覆盖率。
4.3 销售计划优化:通过线性规划可以优化销售计划,提高销售额,实现销售目标。
五、金融投资5.1 投资组合优化:线性规划可以匡助投资者优化投资组合,降低风险,提高回报率。
5.2 资产配置优化:在资产配置过程中,线性规划可以匡助投资者合理配置资产,实现资产增值。
5.3 风险控制优化:通过线性规划可以制定有效的风险控制策略,保护投资者的资产安全。
线性规划应用线性规划解决实际问题
线性规划应用线性规划解决实际问题线性规划应用:线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决各种实际问题。
通过对线性函数和线性不等式进行约束,线性规划能够找到最佳解,使得目标函数在约束条件下达到最大或最小值。
在本文中,将探讨线性规划在解决实际问题方面的应用。
一、生产问题的线性规划在生产过程中,线性规划可以帮助企业制定最佳的生产方案。
例如,某家制造公司生产两种产品A和B,每天的生产时间有限。
产品A每单位可以获得100元的利润,产品B每单位可以获得80元的利润。
根据市场需求,每天销售量的上限是200个单位的A和150个单位的B。
此外,生产一个单位的产品A需要2小时,而生产一个单位的产品B需要3小时。
企业想要最大化每天的利润,应该如何分配生产时间?这个问题可以用线性规划来解决。
假设$x$代表生产的产品A数量,$y$代表生产的产品B数量。
则目标函数为$100x+80y$,约束条件为$2x+3y \leq T$,其中$T$为每天的生产时间(以小时为单位)。
另外还有约束条件$x \leq 200$(销售上限)和$y \leq 150$(销售上限),以及$x,y \geq 0$(生产数量非负)。
通过求解这个线性规划问题,可以得到最佳的生产方案,从而实现最大的利润。
二、资源分配问题的线性规划线性规划还可以应用于资源分配问题。
例如,某社区有一定数量的土地可供开发,而开发商希望在这块土地上建造住宅和商业用地,以获得最大的利润。
由于土地有限,住宅和商业面积的总和不能超过土地面积。
此外,开发商希望确保住宅面积至少是商业面积的2倍。
在给定土地面积和其他约束条件的情况下,该如何确定住宅和商业面积的最佳分配?这个问题可以建模为一个线性规划问题。
假设$x$代表住宅面积,$y$代表商业面积。
则目标函数为$x+y$,约束条件为$x+y \leq A$,其中$A$表示土地面积。
另外还有约束条件$x \geq 2y$(住宅面积至少是商业面积的2倍),以及$x,y \geq 0$(面积非负)。
线性规划的实际应用
线性规划的实际应用一、引言线性规划是一种优化技术,它在多种领域中都有着广泛的应用。
它通过数学模型来描述和解决问题,如最大化利润、最小化成本、优化资源分配等。
本文将对线性规划的实际应用进行深入的探讨,旨在展示其在现实生活中的重要性和价值。
二、生产计划与资源分配在生产制造业中,线性规划发挥着举足轻重的角色。
通过运用线性规划技术,企业可以更好地安排生产计划、管理生产成本及制定预防维修规划,帮助生产和物控单位获取利润的最大化和亏损的最小化,制定合理的检修时间规划及最短人员出勤次数。
三、物流管理与运输问题在物流领域,线性规划也扮演着重要的角色。
例如,在运输问题中,线性规划可以帮助企业找到最优的运输路线,以最小的成本完成运输任务。
这不仅可以提高企业的物流效率,还可以降低企业的运营成本。
四、金融与投资决策在金融领域,线性规划也被广泛应用。
例如,在投资组合优化问题中,线性规划可以帮助投资者找到最优的投资组合,以实现最大的收益或最小的风险。
此外,线性规划还可以用于制定财务计划、优化贷款结构等方面。
五、环境优化与能源管理随着环境保护意识的日益增强,线性规划在环境优化和能源管理方面的应用也越来越广泛。
例如,在污水处理问题中,线性规划可以帮助企业制定最优的污水处理方案,以最少的资源消耗达到最好的处理效果。
在能源管理中,线性规划也可以帮助企业优化能源使用结构,提高能源利用效率。
六、教育与科研线性规划在教育和科研领域也有广泛的应用。
在教育领域,线性规划可以用于制定最优的教学计划、分配教育资源等。
在科研领域,线性规划可以用于优化实验设计、提高科研效率等。
七、结论综上所述,线性规划在实际应用中的价值和意义不容忽视。
它可以帮助企业解决各种优化问题,提高生产效率、降低运营成本、优化资源配置等。
随着科技的进步和社会的发展,线性规划的应用领域还将不断扩大,其在现实生活中的重要性也将不断提升。
为了更好地发挥线性规划的作用,我们需要在理论研究和实践应用中不断探索和创新。
线性规划模型及应用场景
线性规划模型及应用场景线性规划是一种运筹学中的数学方法,用于在有限的资源下寻找达到最佳目标的方案。
线性规划模型是通过建立线性关系式和目标函数以确定决策变量的最优值,来求解问题。
应用线性规划模型可以在诸多领域中找到合理的应用场景。
一、生产调度与物流管理生产调度是指以资源约束为条件,在规定时间内安排、组织和运用生产资源的管理活动。
而物流管理则是通过有效的供应链管理来实现流程和原料的优化配置。
线性规划可以通过建立生产资源约束条件和目标函数,来确定合理的生产进度和物流配送计划,从而提高生产效率、降低物流成本。
举个例子,某工厂生产两种产品A和B,生产线的时间和效率是有限的,同时每个产品有不同的售价和成本。
这时可以使用线性规划模型来确定每种产品的生产数量,使得总利润最大化。
二、金融投资与资产配置金融投资是指将资金投入到各种金融市场和资产中,以期获得回报。
而资产配置则是指在不同风险水平下,按照一定的比例配置资金到各种资产上。
线性规划可以通过建立风险约束条件和目标函数,来确定最佳的资产配置组合,以实现风险和回报间的平衡。
举个例子,某投资者有一笔固定资金,可以投资于股票、债券和货币市场基金等多个金融工具。
他可以将自己的投资目标、预期收益和风险偏好建立为线性规划模型,以确定最佳的资产配置比例,从而达到理想的投资回报。
三、运输与配送运输与配送是指将物品从生产地或仓库运往销售点或用户手中的过程。
针对运输与配送的问题,线性规划可以通过建立运输路径、运输容量和运输成本等约束条件,来确定合理的物流方案,从而达到最佳的运输效益。
例如,某物流公司需要将商品从N个供应商处运输到M个销售点,每个供应商的供货量和每个销售点的需求量是已知的,同时每个运输路径的距离和费用也是已知的。
利用线性规划模型,可以确定每个运输路径上的货物运输量和运输方式,从而降低运输成本,提高物流效率。
四、人力资源管理人力资源管理是指通过合理的组织、激励和管理,利用有限的人力资源实现组织目标。
线性规划的应用
线性规划的应用标题:线性规划的应用引言概述:线性规划是一种数学优化方法,通过建立线性数学模型来解决实际问题中的最优化问题。
线性规划在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将介绍线性规划的应用,并详细阐述其在不同领域中的具体应用。
一、生产计划中的应用1.1 生产成本最小化:通过线性规划模型,可以确定生产计划中各个生产要素的最佳组合,从而达到最小化生产成本的目标。
1.2 生产量最大化:线性规划可以帮助企业确定最佳的生产量,使得生产效率最大化,从而提高企业的竞争力。
1.3 生产资源优化:通过线性规划模型,可以有效地分配生产资源,使得生产过程更加高效和稳定。
二、资源分配中的应用2.1 人力资源调配:线性规划可以帮助企业合理分配人力资源,确保每个部门都有足够的员工支持其运作。
2.2 资金分配优化:通过线性规划模型,可以确定最佳的资金分配方案,使得企业在有限的资金下实现最大化效益。
2.3 物资调配:线性规划可以帮助企业确定最佳的物资调配方案,确保各个部门都能够得到所需的物资支持。
三、运输问题中的应用3.1 最短路径问题:线性规划可以帮助确定最短路径,从而优化运输路线,减少运输成本和时间。
3.2 运输成本最小化:通过线性规划模型,可以确定最佳的运输方案,使得运输成本最小化,提高物流效率。
3.3 运输资源优化:线性规划可以帮助企业合理分配运输资源,确保运输过程高效稳定。
四、市场营销中的应用4.1 定价策略优化:线性规划可以帮助企业确定最佳的定价策略,使得产品价格合理,吸引更多客户。
4.2 营销资源分配:通过线性规划模型,可以确定最佳的营销资源分配方案,确保广告宣传效果最大化。
4.3 市场份额最大化:线性规划可以帮助企业确定最佳的市场份额分配方案,提高企业在市场上的竞争力。
五、金融投资中的应用5.1 投资组合优化:线性规划可以帮助投资者确定最佳的投资组合,使得风险最小化,收益最大化。
5.2 资产配置优化:通过线性规划模型,可以确定最佳的资产配置方案,确保资产组合的稳健性和盈利性。
线性规划的应用
线性规划的应用引言概述:线性规划是一种数学优化方法,广泛应用于各个领域。
它通过建立数学模型,寻觅最优解来解决实际问题。
本文将介绍线性规划的应用,并分析其在经济、物流、生产、资源分配和运筹学等领域的具体应用。
一、经济领域的应用1.1 产量最大化:线性规划可以用于匡助企业确定最佳生产方案,以最大化产量。
通过考虑生产成本、资源限制和市场需求等因素,线性规划可以确定最优的生产数量和产品组合。
1.2 资源分配:线性规划可以匡助企业合理分配资源,以最大化利润。
通过考虑各种资源的供应和需求关系,线性规划可以确定最优的资源分配方案,提高资源利用效率。
1.3 价格优化:线性规划可以用于确定最佳定价策略,以最大化利润。
通过考虑市场需求、成本和竞争等因素,线性规划可以确定最优的价格水平,提高企业的竞争力。
二、物流领域的应用2.1 运输成本最小化:线性规划可以用于确定最佳的物流方案,以最小化运输成本。
通过考虑物流网络、货物流量和运输成本等因素,线性规划可以确定最优的运输路线和运输量,提高物流效率。
2.2 仓储优化:线性规划可以匡助企业优化仓储管理,以最小化仓储成本。
通过考虑仓库容量、货物存储需求和仓储成本等因素,线性规划可以确定最优的仓储方案,提高仓储效率。
2.3 供应链优化:线性规划可以用于优化供应链管理,以提高整体供应链效率。
通过考虑供应商、生产商和分销商之间的关系,线性规划可以确定最优的供应链方案,减少库存和运输成本。
三、生产领域的应用3.1 生产计划:线性规划可以用于匡助企业制定最佳的生产计划,以满足市场需求。
通过考虑生产能力、原材料供应和市场需求等因素,线性规划可以确定最优的生产计划,提高生产效率。
3.2 产能利用率优化:线性规划可以匡助企业提高产能利用率,以降低成本。
通过考虑设备利用率、工人数量和生产效率等因素,线性规划可以确定最优的产能利用方案,提高生产效率。
3.3 品质控制:线性规划可以用于优化品质控制过程,以提高产品质量。
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,可以用于解决各种实际问题。
本文将介绍线性规划的基本概念和应用领域,并通过一个实例详细说明线性规划的应用过程。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。
2. 约束条件:线性规划的解必须满足一系列线性约束条件,这些条件可以用一组线性不等式或等式表示。
3. 决策变量:线性规划中需要决策的变量被称为决策变量,它们的取值将影响目标函数的值。
三、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合等。
以下是其中几个常见的应用领域:1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,以最大化利润或最小化成本。
通过考虑资源限制、销售需求和生产能力等因素,可以确定最优的生产数量和产品组合。
2. 资源分配:线性规划可以帮助机构或组织合理分配有限的资源,以满足各种需求。
例如,一个学校可以使用线性规划确定最佳的课程安排,以最大化学生的满意度和资源利用率。
3. 运输问题:线性规划可以解决运输问题,如货物的最佳调度和运输路径的选择。
通过考虑运输成本、运输能力和需求量等因素,可以确定最优的运输方案,以降低成本并提高效率。
4. 投资组合:线性规划可以帮助投资者确定最佳的投资组合,以最大化回报并控制风险。
通过考虑不同投资资产的预期收益率、风险和相关性等因素,可以确定最优的投资权重。
四、线性规划应用实例:生产计划问题假设某公司有两种产品A和B,每个产品的生产需要消耗不同的资源,并且有一定的市场需求和利润。
公司希望确定每种产品的生产数量,以最大化总利润。
1. 建立数学模型设产品A的生产数量为x,产品B的生产数量为y。
根据题目描述,我们可以得到以下信息:目标函数:最大化总利润,即maximize Z = 3x + 5y。
约束条件:- 资源1的消耗:2x + 3y ≤ 10- 资源2的消耗:4x + y ≤ 8- 产品A的市场需求:x ≥ 0- 产品B的市场需求:y ≥ 02. 解决线性规划问题通过线性规划求解器或图形法,我们可以找到最优解。
线性规划算法的应用案例
线性规划算法的应用案例线性规划是应用最广泛的数学优化方法之一,也是一种非常有效的运筹学技术。
它的基本思想是将问题建模成一组线性方程和线性不等式的组合,通过寻找最优解来实现目标最大化或最小化。
线性规划算法广泛应用于制造业、金融、物流和交通等领域,以下将介绍几个重要的应用案例。
1. 生产计划和调度线性规划算法可以用于制造业的生产计划和调度。
例如,在一家造纸厂中,有若干个可用的生产线、仓库和运输车辆,需要考虑原材料的成本、工人的人工费用、工厂的能耗费用以及运输的成本等因素,制定出最佳的生产计划和调度方案。
对于这类问题,可以将目标函数设置为生产成本最小化或产出效率最大化,约束条件包括原材料的库存量、生产线的容量和物流的时间窗口等。
通过使用线性规划算法,可以得到最佳的生产计划和调度方案,使得企业的生产效率和盈利能力得到提升。
2. 市场营销和广告投放线性规划算法可以帮助企业制定最佳的市场营销和广告投放方案。
例如,在一家快递公司中,需要制定如何调整价格策略、开拓市场份额、投放广告等方案,以达到最大化利润或最小化成本的目标。
对于这类问题,可以将目标函数设置为销售额最大化或成本最小化,约束条件包括市场份额的限制、广告投放预算的限制等。
通过使用线性规划算法,可以得到最佳的市场营销和广告投放方案,提高企业的营销效率和市场竞争力。
3. 交通运输和物流配送线性规划算法可以用于交通运输和物流配送领域。
例如,在一个物流中心中,需要规划配送路线和运输车辆的分配,以最小化交通堵塞和物流成本的影响。
对于这类问题,可以将目标函数设置为运输成本最小化或配送效率最大化,约束条件包括车辆数量的限制、货物配送时间的限制等。
通过使用线性规划算法,可以得到最佳的路线规划和车辆分配方案,提高企业的配送效率和物流运转效率。
4. 金融投资和风险管理线性规划算法可以用于金融投资和风险管理领域。
例如,在一个投资银行中,需要制定最佳的投资组合和股票交易策略,以最大化收益和降低风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七届新世纪杯参评论文研究性学习——线性规划的实际应用天津一中高二数学备课组: 吉学静、牛美娜、庞湃、何强、魏春晓、李俊山、顾若政、董楠、付善林申报人姓名:天津一中高二数学备课申报学科:数学学科联系方式:(天津一中高二数学备课组)研究性学习——线性规划的实际应用高二备课组: 吉学静、牛美娜、庞湃、何强、魏春晓、李俊山、顾若政、董楠、付善林摘要本文就是在学生掌握简单的线性规划知识的基础上,结合教材课程安排布置数学研究性学习作业,目的就是对某些数学问题的探讨或者从数学角度对某些日常生活中与其它学科中出现的问题进行研究,充分体现教育新理念——以学生发展为本,调动学生自主学习的积极性与团结协作的意识,使学生注意体验数学活动的过程,以培养学生的创新精神与应用能力。
序言:《研究性学习与实习作业:线性规划的实际应用》就是在学习了“简单的线性规划”之后,安排的一节研究性的活动与实习课。
这就是高二(上)的一节研究性活动课,体现出它的独特地位。
线性规划就是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,就是一门研究如何使用最少的人力,物力去最优地完成任务,它就是解决科学研究、工程设计、经济管理、生产实践等许多方面的实际问题的专门科学。
由于它可以为我们提供最合乎经济原则的科学工作方法,因此在当前知识经济的潮流中,能发挥出越来越重要的作用。
虽然中学数学讲的线性规划就是一些简单初步的知识,但在实际工作中的很多地方都能找到它的应用。
按照教材的课程安排,我们结合学生的实际情况让高二年级同学充分利用“十一”长假的机会进行社会实践,又通过学生自主学习,通过报刊、书籍及其它媒体获取有关资料确定研究主题,用线性规划的知识,在实际问题中提炼数学模型进行分析,独立或合作写出的研究报告。
目的在于启发学生体会与领悟其中的数学思想与方法,提高学生的综合素质、能力与培养学生树立知识的纵横联系、交叉、融合、渗透的学习意识,提高学生用数学知识解决实际问题的能力。
一、设置情境线性规划问题研究的就是线性目标函数在线性约束条件下取得最大值或最小值问题, 线性规划的理论与方法主要在两类问题中得到应用:一就是在人力、物力、资金等资源一定的条件下如何使用它们来完成最多的任务;二就是如何合理安排与规划能以最少的人力、物力、资金等资源来完成该项任务。
常见的线性规划应用问题有物资调运问题、产品安排问题、下料问题以及与相关数学知识的整合问题。
二、确定问题研究性课题学习的关键就是确定研究专题,研究专题的确定有两种模式:一就是从学生生活与社会生活中选择与确定研究专题;二就是创设问题情境由课堂教学直接切入课题,后一种模式就是研究性课题开展的常用方法。
建议各小组以物资调运问题、产品安排问题与下料问题等几个常见问题为主,也可以根据各小组的实际自拟课题。
三、拟定方案解决线性规划应用问题可以按照下面的步骤完成:实际调查;采集数据;分析条件;确定目标函数;讨论最佳方案;进行检验。
四、执行方案要求各小组内部成员分工明确,团结协作,通过实践、调研,写出实习报告或论文。
以学生自主探究活动为主,最后各小组进行交流。
下面介绍几组有代表性的活动。
小组一:走出课堂,到实际生活中去,用线性规划的知识解决实际问题。
该小组在假期中走访了西青区花卉种植人李大民,并向她了解了相关数据,目的就是为了帮助她获取最大利润。
调查结果如下:鲜花店向李大民预定两种花卉——百合、玫瑰。
其中每株收购价百合为4元,玫瑰为3元,鲜花店需要百合在1100~1400株之间,玫瑰在800~1200株之间,李大民只有资金5000元, 要去购买良种花苗, 在自家902m的温室中培育,每株苗价百合为2、5元,玫瑰为2元,由于百合与玫瑰生长所需采光条件的不同,百合每株大约占地0、052m,玫瑰每株大约占地0、032m,应如何配置才能使李大民获利最大?数学建模:设种百合x 株,玫瑰y 株,则2、5 x + 2 y ≤50000、05 x + 0、03 y ≤901100 ≤x ≤1400800 ≤y ≤1200目标函数(即获利)z = (4 - 2、5) x+ (3 - 2) y = 1、5 x + y、求解问题:通过作图可知,当直线l 过M点时,即x = 1200 , y = 1000时, z取得最大值Zmax= 1、5 ×1200 + 1000 = 2800 (元) 。
所以,种百合1200株,玫瑰1000株时,李大民获利最大。
讨论验证:在不考虑种植物所用劳力差异与其她经济投入的情况下,与实际完全符合(已回访了李大民) 。
师生评析:种植经济作物就是农民致富的有效途径,但根据市场需求与个人资源情况,合理安排就是非常关键的问题,该组同学从实际出发,为花卉养植户李大民研究规划了一条有效的致富方案。
小组二:研究的就是线性规划实际应用的整数解问题,由于生活中常常涉及人数、商品个数等问题,而整点问题又就是线性规划中的难点,所以该小组在现有知识的基础上总结出确定整数解的几种方法。
1.平移直线法:先在可行域内打网格,再描整点,平移直线l ,最先经过或最后经过的整点坐标就是整点最优解。
2.检验优值法:当可行域内整点个数较少时,也可将整点坐标逐一代入目标函数求值,经比较得出最优解。
3.调整优值法:先求非整点最优解及最优值,再借助不定方程知识调整最优值,最后筛选出最优解。
下面具体阐述一下实际问题中如何确定整数解的。
可以利用y x ,为整数的条件,逐步缩小可行域来确定整数解。
例如:某运输公司有7辆载重量为6t 的A 型卡车与4辆载重量为10t 的B 型卡车,有9名驾驶员。
在建筑某段高速公路中,此公司承包了每天至少搬运360t 沥青的任务。
已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车6次,每辆卡车每天往返的成本费为A 型卡车160元,B 型卡车252元。
每天派出A 型卡车与B 型卡车各多少辆公司所花的成本费最低?解:设每天出动A 型车x 辆,B 型车y 辆,公司所花的成本为z 元,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥⨯⨯+⨯⨯≤+≤≤0036061086947y x y x y x y x ,以上约束条件可简化为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥+≤+≤≤003054947y x y x y x y x且y x z 252160+=,其中y x ,就是整数。
作出可行域(如图1), 在可行域中,点B )52,7(使z 取得最小值,但点的坐标不就是整数,而最优解),(y x 中,y x ,必须都就是整数,所以可行域中点B 不就是最优解,(图1) (图2)作直线1=y 得可行域(如图2)得)1,425(C 为最优解,但425=x 不就是整数,所以作直线6=x 得可行域(如图3)(图3) (图4)得)56,6(D 为最优解,但56=y 不就是整数。
所以作直线2=y ,得可行域(如图4)得)2,5(E 为最优解,因为5与2都就是整数,所以E 点为最优解,当2,5==y x ,z 取最小值1304答:每天出A 型车5辆,B 型车2辆,公司所花的成本费最低,为1304元。
除了课本中介绍的图解法以外,还可以利用不定方程的知识来求整数解。
例如:某人有楼房一座,室内面积共有180平方米,拟分隔成两类房间作为旅游客房。
大房间每间面积为18平方米,可住游客5名,每名游客每天住宿费40元,小房间每间面积15平方米,可住游客3名,每名游客每天住宿费50元;装修大房间每间需1000元,装修小房间每间需600元。
如果她只能筹款8000元用于装修。
且游客能住满客房,她应隔出大房间与小房间各多少间,能获得最大收益。
解:设隔出大房间x 间,小房间y 间时收益为z 元,则y x ,满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00800060010001801518y x y x y x作出可行域(略),作直线,0150200:=+y x l 即034:=+y x l 把直线l 向右上方平移,直线经过可行域上的点B 时,与原点距离最大,此时y x z 150200+=取得最大值,解方程组⎩⎨⎧=+=+40356056y x y x 得点B 的坐标为)760,720(,由于B 的坐标不就是整数,而最优解),(y x 中,y x ,必须都就是整数,所以可行域内的点B 不就是最优解。
B 点坐标代入,34z y x =+得7137=z ,所以令4337;34373734y x x y y x -=-=∴=+,代回约束条件得x y ,9=无解;再令4336;34363634y x x y y x -=-=∴=+,代回约束条件得40,127≤≤≤≤x y ,又因为3634=+y x ,所以得最优解为(0,12)与(3,8),此时z 的最大值就是36,最大利润就是1800元。
这就是课本中的习题,用图解法解决时,容易丢一组解,而选择调整优值法,即可避免丢解问题。
师生评析:三种确定整点的方法中,方法一要求精确的作图,方法二需要大量的计算,方法三则需要一定的不等式及不定方程的知识,三种方法各有利弊,在实际问题中要结合具体情况,选择恰当的方法。
小组三:研究线性规划问题的数学模型从建构数学模型的角度出发,把数学应用问题的解决分成几个步骤:辨识模型、分析模型、建立模型、解决模型、验证模型。
该小组以第一届北京市高中数学知识应用竞赛试题为例,研究线性规划的数学建模。
试题如下:某村一农民承包了100亩(中低产)地,土地租赁费50元/(年·亩),农业税60元/(年·亩),根据当年气候条件,可以种植小麦,玉米,花生,其种植周期就是:10月份(秋天)收玉米后可种冬小麦,第二年6月(夏天)收割小麦后可种玉米,10月份收割玉米,4月份种花生,10月份收花生,后可种冬小麦,有关冬小麦、花生、玉米三种作物的收支价格及产量如下表:这位农民每年必须完成2000kg 小麦公粮,每年留足1000kg 口粮,另外根据市场预测,1996年花生种植面积不宜超过20亩,1997年不宜再种花生,试问:这位农民应如何安排从1995年10月秋种至1997年10月秋收的两年生产计划,她既能完成公粮征购任务,又能留够口粮,并在100亩土地上取得对大收益?(为了便于计算,不妨假设从1995年至1997年内各种作物价格不变,产量也不变,并且不计承包人自己的工资,假定卖公粮价与卖余粮价相同)、此问题第一步:承包两年土地共需缴纳土地租用费与农业税)(22000100)6050(2元=⨯+⨯第二步:根据给出数据计算出每种作物收支费用表如下:第三步:两年内只能有以下两种种植模式(通过讨论得到的结论):方案一:1995年种植冬小麦→夏收完种玉米→秋收后种植冬小麦→夏收完再种玉米→1997年秋收玉米;方案二:1995年不种→1996年春种花生→秋收后种小麦→夏收后再种玉米→1997年秋收玉米;按方案一,每亩地里两年纯收入1096元/亩;按方案二,每亩地两年纯收入1153元/亩第四步:“算最优解”设方案一 种x 亩,方案二种y 亩,总收入z 元100068.122200011531096),(⨯⨯--+==y x y x f z其中约束条件⎪⎪⎩⎪⎪⎨⎧+≥=+≤≥≥)(10002000300100200,0 缴纳公粮和口粮x y x y y x 第五步:列可行域(略)第六步:求得最优解∴x =80,y =20时 可取最大收益最值2168022000201153801096max ⨯--⨯+⨯=z )(85380元=尽管这道题的模型框架还很粗糙,但能感受到线性规划在解决实际问题中的重要作用。