八年级数学上册第六章数据的分析1平均数教案(新版)北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第六章数据的分析1平均数教案(新版)北师大

本节课共有两课时,总体思路是:实际问题→平均数的概念→解决实际问题.

第一课时先从学生熟悉的现实背景抽象出算术平均数、加权平均数的概念,然后在理解概念的基础上,解决有关平均数的实际问题.

第二课时让学生进一步了解权的差异对平均数的影响,理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题.

1平均数(第1课时)

一、学生起点分析

学生的知识技能基础:学生在小学已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.

二、依据新课标和学情制定教学任务分析

本节课的学习任务是:理解算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.

1教学目标:知识与技能:掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数.

2.知识目标:过程与方法:经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力.

3.能力目标:情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.

依据新课标制定教学重点:求一组数的算术平均数和加权平均数.

依据新课标制定教学难点:如何求一组数的算术平均数和加权平均数.

三、教学过程设计

本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业.

第一环节:情境引入

内容:1. 投影展示课本第八章的章前文字、章前图和一组问题,引入本章主题.

2. 用篮球比赛引入本节课题:

篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加.下面播放一段CBA (中国篮球协会)2005—2006赛季“广东宏远队”和“八一双鹿队”的一场比赛片段,请同学们欣赏.

在学生观看了篮球比赛的片段后,请同学们思考:

(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素)

(2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)

在学生的议论交流中引入本节课题:“平均数”.

目的:创设接近学生生活的问题情境,让学生在轻松愉快的环境中,思考现实生活中收集数据、处理数据,并用数据的平均数作出判断的必要性.在课题引入中,激发学生学习本章新知识的兴趣,调动其积极性.

注意事项:本环节一要“有趣”,二要“紧凑”,达到引入课题,调动学生学习积极性的目的既可,不宜将时间拖得过长.

第二环节:合作探究

内容1:算术平均数

投影教材提供的CBA(中国篮球协会)2000—2001赛季冠亚军球队队员的身高、年龄的表格,提出问题:

“八一双鹿队”和“上海东方大鲨鱼队”两支篮球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?与同伴交流.

(1)学生先独立思考,计算出平均数,然后在小组交流.

(2)各小组之间竞争回答,答对的打上星,给予鼓励.

答案:八一双鹿队队员的平均身高为1.99m,平均年龄为25.3岁;

上海东方大鲨鱼队队员的平均身高为1.98 m,平均年龄为23.3 岁.所以,八一双鹿队队员的身材更为高大,上海东方大鲨鱼队队员更为年轻.

教师小结:日常生活中我们常用平均数来表示一组数据的“平均水平”.

一般地,对于n 个数1x 、2x …,n x ,我们把

++21(1x x n

…+n x ),叫做这n 个数的算术平均数,简称平均数,记为x . 目的: 独立思考是合作探究的一个前提,所以学习算术平均数的过程中让先学生独立思考,然后再与同伴交流.

小组之间竞争回答问题,让学生经历体验竞争的过程,并以打星的方式给予评价,旨在激发学生的积极性.

内容2: 加权平均数

想一想:小明是这样计算上海东方大鲨鱼队队员的平均年龄的:

平均年龄 =(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷

(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?

学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法.

例1:例1某广告公司欲聘广告策划人员一名,对A ,B ,C 三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:

(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?

使用例1进行教学,引导学生思考讨论:第(1)(2)问录用的人不一样说明了什么?从中认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的.

在学生认识的基础上,教师结合例1给出加权平均数的概念:

实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言

三项测试成绩的权,而称

1

3

4

1 88

3

50

4

72

+

+

⨯+

+

⨯为A的三项测试成绩的加权平均数.目的:“想一想”是从算术平均数到加权平均数的一个台阶,想让学生顺利完成新知识的建构.例1是引导学生思考重要性的差异对结果(平均数)的影响,以引入加权平均数的概念并加以诠释.

注意事项:本环节是这一节课的重点,教学的层次要清楚,从两个篮球队队员的平均身高和平均年龄问题引入算术平均数概念,再从“想一想”过渡到加权平均数的概念.整个教学过程中要充分发挥学生的主观能动性,让他们积极思考,合作探究,学会新知.第三环节:运用提高

内容:1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下(单位:元):

10, 12,13.5,21,40.5,19.5,20.8,25,16,30.

这10名同学平均捐款多少元?

2. 某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是多少?

3. 从一批机器零件毛坯中取出20件,称得它们的质量如下:(单位:千克)

2001 2007 2002 2006 2005

2006 2001 2009 2008 2010

(1)试求这批零件质量的平均数.

(2)你能用新的简便方法计算它们的平均数吗?

目的:第1,2题分别是算术平均数和加权平均数的直接应用,巩固本节课的“双基”内容.第3题是补充的题,考查学生能否将大数据转化为小数据,用新的简便方法求出平均数,以培养学生的思维能力和创新意识.

相关文档
最新文档