压力容器设计方法分析对比.docx

合集下载

压力容器的常规设计和分析设计

压力容器的常规设计和分析设计
劳分 析。 ( 3 ) 分析设计考 虑疲 劳分析 时要求详细计算 温差应力 , 而常规设 计 除个别元 件外 一般无 此要求
弹性失效. 弹塑性失效 设计准则
弹性析设计
应力 ; 平封头或顶盖 中央部分在 内压作 用下产生的应力 即为一次 弯曲 应力 ; 壳体 在 固定支座或接管处 由外 载荷 和力 矩产生的应力为局部 薄 膜应力 。 2 . 2二次应力
过去压力容器及其部件 的设计基本上属于常规设计 . 我 国现在执 二次应力 是 由于容器 部件的 自 身 约束或相邻部件 的约束而产 生 自限性 ” , 即局部屈服和小量 行 的相应 的设计规范是《 钢制压力容 ̄) ( c m5 o 一 9 8 ) 。 常规设计的特点 的正应力或剪 应力 。它的基本特点具有 “ 变形协调 , 只要不反 复加 载, 二次应力 不会引起 是: 筒体及其部 件的应力不允许超过 弹性 范围内的某一许用值 。如 果 变形就会使约束缓 和 、 达到这一要求 。 即认为筒体或部件就是 比较可靠的。 这样做比较 简单 , 容器结构破坏 2 . 3峰值应力 以现成 的设计 公式及 曲线 为依据 .多年来 一直按这样 的方法进行设 峰值应力是因局部结构不连续 或形 状突变引起的局部应力 集中. 计。 然而 。 这种方法 比较粗糙 , 许多重要 因素都未考虑进去 。 以内压 圆 自限性” 和“ 局部性 ” , 峰值 筒为例 . 在常规设 计时只考虑薄膜应力 , 至 于温差应 力 、 边缘应力 以及 它具有最高的应力值 。它 的基本 特点具 有“ 交 变应 力引起 的疲劳等问题 均未考虑 。所 以在规 范中 . 为了保证容器 应力不会 引起容器 明显 的变形 的安全 可靠在设计 中就采用 了较高的安全系数 最早 的安全 系数 n = 3 . 常规设计和分析设计 比较 5 . 4 0 年代末改 为 n = 4 。 这样做实 际上是企 图以高 的安全系数来包罗各 常规设计是一种简单易行 的传统设计方法, 而分析设计则不 同。 它 种 因素 的影 响 , 存在一些 问题 。 需要详尽 的应力分析报告为依据. 需要 近代 的分析计 算工具和实验技 近 年来 。 由于锅 炉、 石油 、 化工 等行业 的发 展 , 压力容器设 计参数 术 为手段, 因而提供 了充 分 的强度数 据, 对 新工艺 、 新 材料 、 新 结构 和 提高. 使用条件也越来越 苛刻 . 如果 单纯依靠提 高安全系数 的办法来 新 工况更具科学性 和可靠性 。 分析设计 提高 了许用应力 , 降低 了安 全 保证强度 . 会 导致设计变得不合理 。 为 了防止这种现象的发生 , 我们在 系数。3 O 多年来 的实际运行表 明: 采用分 析设计 的容器安全 可靠, 且 结构型式 与材料方面采取相应措施外 . 还必须从设计观 点和设计方法 具 有经济 性; 与常规设 计相 比, 可 节省材 料 2 0 %~ 3 0 %, 在 一定程 度上 上加 以改进和发展 。 目 前世界上一些先进 的国家都在运用应力分析方 有 效减少制 造加工量 、 降低运 输费用 。但 对于选 材 、 制造 、 检 验和验 法. 我 国也于 1 9 9 5 年 颁布 了f 钢 制压力容 器一一分 析设计标 准) 0 B 4 7 收规定 了 比常规设计 更为严格 的要 求 常规设计与分析设计 的对 比. 犯一 9 5 ) . 要求把零部件 中的应力较 为准确地设计 出来或用应力 测试 法 见表 1 测定出来 。其次是引入 了极限分析与安定性分析的概念 . 对求 得的应 表1 常规设计与分析设计 力加以分类和加 以限制 比较项 目 常规设计 分析设计 分析设计和常规设计的主要区别如下: ( 1 ) 分析设计 比常规设计在选 材、 结构、 设计 、 制造 、 检脸和使用等 方 面都提出了较高的要求和较多的限击 峰件 ( 2 ) 分析设计考 虑容器低循环 疲劳失效 , 而常规设计并 未包括疲

压力容器分析设计分析

压力容器分析设计分析

1 问题描述利用ANSYS软件对压力容器用标准椭圆形封头和半球形封头进行应力分析,并沿着压力容器轴向方向绘制笛卡尔坐标系下X、Y、Z方向应力曲线,三个主应力曲线以及第一强度理论,第三强度理论、第四强度理论计算方法下的应力理论值和应力曲线。

相关参数:筒体内径:400mm,筒体长度为1000mm,筒体、封头厚度均为5mm,材料弹性模量为206GPa,泊松比为0.3,内压P=1MPa。

2 建模过程:单元选取:本题研究的是薄壁压力容器,对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

材料特性:ANSYS 结构分析材料属性有线性 (Linear)、非线性 (Nolinear)、密度(Density)、热膨胀 (Thermal Expansion)、阻尼 (Damping)、摩擦系数 ( Friction Coefficient)、特殊材料 (Specialized Materials) 等七种。

本题选取材料模型为线弹性材料,材料参数E=206GPa,μ=0.3。

几何建模:本题采用实体建模,该方法适合于复杂模型,尤其适合于3D实体建模,需人工处理的数据量小,效率高。

允许对节点和单元实施不同的几何操作,支持布尔操作(相加、相减、相交等),支持ANSYS优化设计功能,可以进行自适应网格划分,可以进行局部网格划分,便于修正与改进。

本题采用的是从下往上的建模方式。

先建立点,再连线画圆,然后将线沿轴线旋转,得到压力容器模型,上封头为标准椭圆形封头,下封头为球形封头。

网格划分:对有限元分析,ANSYS有四种网格划分方法,自由网格划分、映射网格划分,延伸网格划分和自适应网格划分。

本题采用自由网格划分,自由网格划分功能十分强大,没有单元形状的限制,网格也不遵循任何的模式,因此适用于对复杂形状的面和体网格划分。

压力容器分析设计

压力容器分析设计

(3) 部位C
内压在球壳与接管中产生的应力 (PL+Q); 球壳与接管总体不连续效应产生的应 力(PL+Q); 径向温差产生的温差应力(Q+F); 因小圆角(局部不连续)应力集中产生 的峰值应力(F)。 总计应为(PL+Q十F)。 由于部位C未涉及管端的外加弯矩, 未涉及管端的外加弯矩 管子横截面中的一次弯曲应力Pb便不
一次应力 薄膜应力 一次总体薄 膜应力 (Pm)
一次总体薄膜应力是在容器 总体范围内存在的薄膜应力, 在容器筒体或封头在整体范 围内发生屈服后,应力不重 新分配 一次总体薄膜应力 新分配。 次总体薄膜应力 的一个实例 为承受内压的圆 柱形筒体。
一次弯曲应力(Pb) 一次局部薄膜 应力 (PL)
由内压或其他机械载荷 在结构不连续区产生的 薄膜应力和结构不连续 效应产生的薄膜应力。 一次局部薄膜应力的例 次局部薄膜应力的例 子有:在容器的支座或 接管处由外部的力或力 矩引起的薄膜应力. 由内压或其他机械 载荷作用而产生的 沿壁厚线性分布的 法向应力。典型实 例是平封头中部在 压力作用下产生的 弯曲应力.
7.2
压力容器的分析设计
压力容器的设计
常规设计
分析设计
GB150《 钢 制 压 力 容器》
JB4732 《钢制压力容器 ——分析设计标准》
一、概述 常规设计的局限性: (1)载荷性质
载荷 静载荷 交变载荷 常规设计 √ × 分析设计 √ √
(2)应力计算
应力计算 计算方法 研究的对象 常规设计 简单的公式计算 壳体 分析设计 解析法,数值法, 实验法 设备上的所有点
(1) 弹性失效设计准则 (韧性材料) ——将容器总体部位的初始屈服视为失效。 (2) 塑性失效设计准则 ——整个危险面屈服,极限设计。 (3) 爆破失效设计准则

压力容器的分析设计

压力容器的分析设计

过渡区或 与筒体连 接处 平 盖 中 心 区




与 筒 体 连 接 处


局部薄膜应力一次应力 弯曲应力二次应力
PL Q
表4-15 压力容器典型部位的应力分类
接 管 接 管 壁 內 压 一次总体薄膜应力 局部薄膜应力一次应力 弯曲应力二次应力 峰值应力 薄膜应力二次应力 弯曲应力二次应力 峰值应力 Pm PL Q F Q Q F Q F
4.4.2.1 应力分类
一次应力P (3)一次局部薄膜应力PL 在结构不连续区由内压或其它机械载荷产生的薄膜应力和 结构不连续效应产生的薄膜应力统称为一次局部薄膜应力。 作用范围是局部区域 。 具有一些自限性,表现出二次应力的一些特征,从保守 角度考虑,仍将它划为一次应力。
实例:壳体和封头连接处的薄膜应力; 在容器的支座或接管处由外部的力或力矩引起的薄膜应力。
一次总体薄膜应力强度SⅠ;
一次局部薄膜应力强度SⅡ; 一次薄膜(总体或局部)加一次弯曲应力(PL+Pb)强度SⅢ; 一次加二次应力(PL+Pb+Q)强度SⅣ; 峰值应力强度SⅤ(由PL+Pb+Q+F算得)。
4.4.3 应力强度计算
应力强度计算步骤 除峰值应力强度外 ,其余四类应力强度计算步骤为: (1)在所考虑的点上,选取一正交坐标系, 如经向、环向与法向分别用下标x 、q 、z表示, 用x、q和z表示该坐标系中的正应力, txq、txz、tzq表示该坐标系中的剪应力。 (2)计算各种载荷作用下的各应力分量,并根据定义将各 组应力分量分别归入以下的类别:一次总体薄膜应力 Pm;一次局部薄膜应力PL;一次弯曲应力Pb;二次应 力Q;峰值应力F。
4.4.3 应力强度计算

压力容器设计方法对比与应力分类

压力容器设计方法对比与应力分类

压力容器设计方法对比与应力分类压力容器是用于贮存或运输气体、液体或蒸汽的设备。

压力容器在化工、石油、航空航天等领域中广泛应用,因此其设计和制造至关重要。

在设计压力容器时,工程师需要考虑材料选择、设计方法和应力分类等许多因素。

本文将对不同的压力容器设计方法进行对比,并介绍常见的应力分类。

一、压力容器设计方法对比1. 牛顿法牛顿法是最简单、最常见的设计方法之一,用于计算压力容器的壁厚。

它基于材料的抗拉强度和设计压力来确定壁厚。

牛顿法适用于一些简单的压力容器设计,但对于复杂的容器来说,往往需要更加精确的方法。

2. ASME标准ASME(美国机械工程师学会)发布的压力容器设计规范是工程师设计压力容器时参考的标准之一。

ASME标准涵盖了压力容器的设计、制造、检验和安全要求,可以确保压力容器的安全性和可靠性。

ASME标准考虑了诸多因素,如材料强度、焊接、腐蚀等,适用于各种不同类型的压力容器。

3. 有限元分析有限元分析是一种先进的设计方法,通过建立复杂的数学模型来模拟压力容器在不同工况下的受力情况。

有限元分析可以更精确地计算应力分布,帮助工程师发现潜在的问题,并进行优化设计。

有限元分析需要借助计算机软件,并且对工程师的要求更高,但可以提供更加精确的设计方案。

4. 材料弹性理论材料弹性理论是一种基于材料力学性质进行压力容器设计的方法。

通过对材料的本构关系和应力应变关系进行分析,可以得到压力容器在不同载荷下的应力和变形情况。

材料弹性理论考虑了材料的非线性特性和弹塑性行为,适用于各种复杂工况下的压力容器设计。

二、应力分类在压力容器的设计和制造过程中,应力是一个非常重要的参数。

应力分类是将应力分为不同类型,并根据不同类型的应力进行分析和设计。

常见的应力分类主要有以下几种:1.轴向应力轴向应力是指垂直于截面的应力,是压力容器中常见的一种应力类型。

轴向应力的大小取决于容器的载荷和几何形状,对容器的稳定性和强度有重要影响。

压力容器设计方法分析对比

压力容器设计方法分析对比

压力容器设计方法分析对比压力容器在化工、石化、工程机械等领域得到广泛的应用,而正确的设计是压力容器安全运行的基础。

本文将介绍三种常用的压力容器设计方法,并分析其各自的优缺点,以便应用者根据实际需求选用合适的设计方法。

1. ASME VIII-1 标准ASME VIII-1 标准是美国机械工程师学会发布的压力容器设计规范,适用于低压容器 (设计压力不大于 10MPa)。

该标准要求设计考虑容器的载荷、材料性能、焊接、校核、检验等各方面问题,并对各个部位的厚度、连接件的要求以及强度校核进行详细规定。

ASME VIII-1 标准以其全面、详细的设计要求而得到了广泛应用。

优点:•ASME VIII-1 标准设计要求全面、严谨,设计过程具有一定保障。

•认可度高,符合国际标准,可以接受国际认可。

缺点:•该标准要求详细、繁琐,需要对标准内容熟悉,且容器设计需要由认可的专业人员进行。

•需要经过审查与认证,过程较为繁琐。

2. CODAP 标准CODAP (Construction Operation Design of Pressure Vessels) 标准是欧洲标准委员会发布的压力容器设计规范,适用于设计压力不超过3000MPa 的容器。

通过规定基本要求、公差、厚度、防腐、焊接、检验、强度校核等方面的规范,保证了压力容器的安全性和可靠性。

优点:•CODAP 标准对压力容器的设计和制造过程提供了全面的规范,以保证容器在长时间的使用中保持良好的使用性能。

•该标准可以适用不同条件下的容器,使得设计者可以根据实际条件来选择不同的设计方案。

•CODAP 标准的认同度很高,在国际上具有广泛的通用性和识别度。

缺点:•该标准的设计过程繁琐,需要一定的设计经验和专业技能。

•CODAP 标准可能不适合一些非欧洲的国家,需要根据不同的国家标准进行认证。

3. CNS 三合标准CNS 三合标准是由中华民国国家标准局颁布的压力容器设计标准,适用于设计压力不超过 50MPa 的容器。

压力容器结构设计要点分析及解读

压力容器结构设计要点分析及解读

压力容器结构设计要点分析及解读摘要:随着现代化工企业的发展,压力容器越来越广泛地使用在石油、化工、制药、食品等各个领域。

压力容器作为承受压力等较高载荷的设备,若设计不合理,可能会导致容器变形甚至爆炸,给人员和环境带来严重危害。

为此,笔者结合多年的工作实践经验,对现代压力容器结构设计的要点进行了分析和总结。

关键词:压力容器;结构设计;要点引言随着工业化进程的不断推进,各类化工制品的需求量也与日俱增,压力容器作为一种安全系数较高的特种设备,在生产中承担了越来越重要的作用。

压力容器是一种封闭结构,通常用于储存或运输气体、液体或其他物质。

它们必须承受高压和高温等特殊工作状态,同时还必须防止泄漏和爆炸等危险。

这些要求使压力容器的设计变得至关重要,这不仅涉及容器中包含的介质,还涉及压力的大小、温度以及容器的结构、尺寸等方面。

因此,压力容器结构设计是至关重要的。

注重立足于安全、及时、经济和谐的原则,全面优化压力容器结构设计,会使其设计更加科学合理。

1压力容器结构设计要求压力容器广泛应用于精细化工、石化、医药行业、石化电子和机械电器等行业,特别是化工压力容器,其内部采用的材料大多为装配式的内件,设计过程复杂繁琐,如果产品设计有问题,将对压力容器的稳定性造成威胁,甚至可能形成重大安全隐患,影响设备的正常运行。

在压力容器的设计过程中,应根据其工况、介质特性、环境温度、工作气压、连接管口等使用条件,结合当前压力容器的相关设计法规和标准,进行系统风险评估,以确保产品在设计过程中不会出现风险问题,确保容器质量达到使用最高要求。

2压力容器结构设计的原则2.1 应力的均匀性在设计压力容器时,应该特别注意壳体结构的连续性,以确保它能够承受较大的应力变化,避免突变情况的发生。

如壳体结构有难于连续之处,为保证应力的均匀分布,应采用圆滑过渡的办法。

2.2应力集中或削弱强度的结构相互错开在设计压力容器时,应该尽量避开在结构强度较弱或应力集中的部位进行设计,以防止应力的叠加情况发生。

探讨压力容器设计方法

探讨压力容器设计方法

探讨压力容器设计方法压力容器正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。

基于此,本文就压力容器的设计要求和设计方法进行分析和阐述,希望可以为压力容器的优化设计提供借鉴。

标签:压力容器;设计要求;设计方法随着工业不断发展和工业规模的不断扩大,压力容器的操作条件越来越苛刻,结构也越来越复杂。

压力容器所处理的介质往往是易燃易爆或者有毒的,一旦发生事故将造成不可估量的损失。

因此对压力容器的安全及优化设计就显得极为重要,探索更好地设计方法也是促进其予以更好发展的重要根基。

1 压力容器概述一般来说,压力容器就是符合《固定式压力容器安全技术监察规程》中所定义的容器,即工作壓力≥0.1MPa;容积大于或者等于0.03m?并且内直径(非圆形截面指截面内边界最大几个尺寸)≥150mm;盛装介质为气体、液化气体以及介质最高工作温度高于或者等于其标准沸点的液体。

压力容器具有极为广泛的用途,诸如石化、科研、能源、军工等都是其重要的应用领域,并在多部门中担任重要设备。

压力容器一般情况由筒体、封头、接管、法兰、密封元件等元件组成,因为其对密封、承压、介质的应用,极容易发生爆炸和环境污染,对其进行优化设计就显得极为重要。

2 压力容器设计方法压力容器的设计可以采用规则设计方法或者分析设计方法,必要时也可以采用试验方法或者可对比的经验设计方法。

压力容器的设计应当给予设计条件,综合考虑所有相关因素、失效模式和足够的安全裕量,以保证压力容器具备足够的强度、刚度、稳定性和抗腐蚀性,确保压力容器在设计使用年限内的安全。

2.1 规则设计方法规则设计方法就是采用弹性失效准则,对容器各处实际存在的应力一般不进行严格而详细的计算,在对材料、结构、制造、检验等作出相应限定后,用比较简单的计算公式确定元件厚度以保证容器安全性的設计方法。

规则设计是对材料力学、板壳薄膜理论的简化,其仅是对“最大荷载”工况的考虑,以一次施加的静力荷载作为处理原则,忽略边缘应力、局部应力,以及热应力,对于容器的疲劳寿命同样不再考虑范围内。

压力容器分析设计

压力容器分析设计
总体不连续效应相互约束变形协调局部非均弹塑性失效材料部分失效iopp外加外载内力平衡ip??????弹失效屈服总体塑失效爆破op?总体失稳????整风震局支反力外载内力平衡???整体非均局部非均???弹失效局部范围或塑?????几何外载突变材质6载荷产生原因求解方法范围沿分布对失效影响自身约束变形协调弹塑性失效材料部分失效5
研究对象—矩形截面(宽b、高h),受纯弯曲梁 。
外载——弯矩M
17
上下表面 屈 M 弹区 M M P 求 M 全塑性,极限载荷 限制 塑区 其余 弹区 “弹”观点 失效 “塑” 不失效 “塑”观点 不失效 仍可承载 “塑”观点 失效( ) M P (不能再增加)
含义: 容器在某一载荷下整体屈服,结构达到极限承载能力。 (塑性失效)
解决: 1)极限载荷
求 2)虚拟弹性应力
定 3)限制条件
目的: 确定SⅢ的限制条件:
SⅢ 1.5KSm
纯弯曲/ 拉弯组合 达到塑性失效
极限载荷
求解方法:以矩形截面梁为例
限制条件
16
⑴纯弯曲:
例: 薄壁
厚壁 z
特点: 存在于局部范围 ; 沿δ均布 ; 危害较小 ; 限制条件宽 例:pi→在不连续区产生 的薄膜应力; 结构不连续效应→ 薄膜应力;
9
㈡、二次应力Q:
定义: 由容器自身或相邻部件约束产生的正应力或剪应力 特点:1)满足变形协调条件 2)具有自限性: 局部屈服→相邻部分约束缓解 →变形协调 →σ、变形不再继续增大。 所以危害更小/限制变宽 例:1)总体不连续处弯曲应力(
8
一次应力P
分为
二次应力Q

分析压力容器设计方法的进步

分析压力容器设计方法的进步

分析压力容器设计方法的进步摘要应用力学在推动压力容器设计方面发挥了非常积极的作用。

本文结合关于压力容器设计方法进步的真实案例,分析了应用力学对于压力容器的积极价值,并给出了推动我国压力容器设计快速发展的相关建议。

关键词压力容器设计;应用力学;分析设计;设计规范中图分类号th490 文献标识码a 文章编号 1674-6708(2013)83-0095-010 引言为了推动我国压力容器的快速发展,提高我国自行设计压力容器的技术水平,我国工业领域在上个世纪70年代意识到应用力学理论对于压力容器设计的重要价值,并开始着手做相关方面的工作。

经历将近40年的努力之后,我国在压力容器设计方面取得了显著的成绩和巨大的进步。

1 基于真实案例的压力容器设计方法进步分析1.1 圆柱壳大开孔接管应力分析设计方法的进步性在多种荷载共同作用于圆柱壳开孔接管时,又因支管与主壳相互连接的部位几何结构不连续,相贯区域产生应力集中。

一旦设备发生破坏,则这些部位就成为灾害性事故的原发部位。

所以迫切需要借助相关科学理论来分析圆柱壳开孔接管的应力情况。

以此为基础来实现对压力容器的合理设计,才能确保压力容器安全有效地运行。

不论是欧洲采用的“压力面积法”还是我国采用的“等面积补强法”,均只适用于较小开孔率且容器受内压空旷的情形下。

目前在数学和应用力学理论方面需要解决的问题便是寻找大开孔率下的薄壳理论解。

经过专家多年的不懈努力,我国在薄壳理论解方面获得了相对于前人的重大突破。

其表现为:首先圆柱薄壳方程采用经过修正之后的morley方程,放弃了以往采用的简化扁壳方程。

经过修正的morley方程不仅能够有效对开孔问题进行求解,还能够保证较高的精度[1],该解的精度提高到了薄壳理论的精度o(t/r)量级。

其次以往因为精确连续条件以及复杂精确方程而导致的诸多数学难题得到了有效的克服,获得了外载和内压作用下的圆柱壳开孔接管的薄壳理论解。

无论是三维有限元解,还是近年来在国际上发表的相关试验结果,均对该理论解的高度可靠性进行了有力证明。

压力容器设计方法比较和应力分类准则

压力容器设计方法比较和应力分类准则
三 分析设计及应力分类准则
以美国的 ASME 锅炉压力容器规范第 VIII 卷第二册的诞生为标志,压力容器的设计方 法发生了一次革命,从传统的按规则设计的方法过渡到以详细的应力分析与评定的设计基准 的更高阶段。分析设计从设计思想上来说,就是放弃了传统的“弹性失效”准则,而采用以 极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹塑性失效”准则,允许结构出 现可控的局部塑性变形区,允许对峰值应力部位作有限寿命设计,采用这个准则,可以较好 地解决前述的矛盾,合理地放松了对计算应力过严限制,适当的提高了许用应力值,但又保 证了结构的安全性。由于分析设计采用了塑性失效准则,因而安全系数相对降低,许用应力 相对提高。而常规设计的安全系数相对较大,其原因主要就是为了弥补前项的某些不足之处。
常规设计内容一般是以材料力学及板壳薄膜理论的简化公式为基础,加上一些经验系数 组成的,未对容器某些区域的实际应力进行严格而详细的计算,而是通过加大相应安全系数 来保证压力容器的安全工作。对于高温情况,要把热应力控制在传统标准允许的水平之下有 时是做不到的。在高温、高压的容器中热应力与内压应力之和已超过传统的允许值,无论加 厚或减薄壁厚均不能满足传统标准要求,因为两者对壁厚大小的要求是相反的,对于一些弹 性元件(如膨胀节)对壁厚要求也属于这类问题(强度与柔度的矛盾)。若按常规设计的原 则与方法,就无法得到十分合理的设计,在实际运行中的设备中出现的疲劳裂纹是反复加载 条件下结构的一种破坏形式,静载荷设计和产品水压试验都不能对此作出合理的评定和预 测。因此,人们在生产实践中发现,常规设计在某些场合暴露出一些细节上的问题。尽管如 此,实际生产证明常规设计还是合理且安全的。
计算方法
平衡机械载荷 整体(总体) 无自限性 静力强度失效
一次加载

压力容器常见结构的设计计算方法

压力容器常见结构的设计计算方法

第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。

2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。

轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。

、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。

压力容器分析设计基础

压力容器分析设计基础

一、应力性质
1.薄壁容器
pr2 2T
pr2 2T
(2
r2 ) r1
应力特点:
➢ 沿壁厚均布;
➢ 平衡外载,无自限性;
➢ 外压时为压应力,需 考虑失稳。
一、应力性质
2. 厚壁容器
K
p 2
1
(1
R02 r2
)
r
K
p 2
1
(1
R02 r2
)
z
K
p 2 1
K R0 Ri
一、应力性质
2. 厚壁容器
为了分析应力的性质,将非线性分布的应力视为均 匀分布、线性分布和非线性分布的三部分的叠加。
许用应力分类 GB150-98,约27种
JB4732-95,约27种
15 制造与检验
按压力容器常规要求 比前者要求严格
制造资格 16 综合经济性
要有压力容器制造许可 证
一般结构的容器综合经 济性好
必须有相应的许可证,例如第三类 压力容器许可证
大型、复杂结构的容器综合经济性 好(用户需提供详细的设计任务书)
16MnR正火,6-100mm -20 ℃ 16MnDR正火,6-32mm, -40 ℃ 09Mn2VDR正火,6-20mm,-50 ℃ 09MnNiDR正火,6-60mm,-70 ℃
5 钢板的韧性要 20R
≥18J
求(以冲击功Akv 16MnR,15MnVR
≥20J
表示)
15MnVNR,18MnMoNbR,
2、分析设计
设计准则
塑性失效准则——只有当结构沿厚度方向全部屈服时, 结构才失效。
疲劳失效准则——一定许循环应力幅作用下的构件,只 有其循环次数超过允许的最大循环次数后,才会发生疲 劳破坏。

压力容器设计方法对比与应力分类5篇

压力容器设计方法对比与应力分类5篇

压力容器设计方法对比与应力分类5篇第1篇示例:压力容器是工业生产中常见的一种设备,用于存放气体或液体,并承受内部或外部的压力而不泄漏。

在设计压力容器时,需要考虑材料的选择、结构的设计、应力的分类以及安全性等因素,以确保其可以安全可靠地工作。

本文将对压力容器设计方法进行对比,并介绍压力容器中常见的应力分类。

一、压力容器设计方法对比在压力容器的设计中,常见的方法有ASME(美国机械工程师协会)标准、PD 5500(英国压力容器标准)、EN 13445(欧洲压力容器标准)等。

这些标准都是为了确保压力容器的安全可靠而制定的,但在具体的设计方法上有一些差异。

1. ASME标准ASME标准是美国机械工程师协会制定的压力容器设计标准,被广泛应用于全球范围内。

ASME标准强调了对材料强度、焊接、设计压力、热处理等方面的要求,并将压力容器分为不同的等级,以满足不同工作条件下的需求。

2. PD 5500标准PD 5500标准是英国的压力容器设计标准,与ASME标准类似,也着重于对材料、焊接、设计压力等方面的要求。

PD 5500标准在设计方法上与ASME有一些不同,但在实际应用中也得到了广泛的认可。

3. EN 13445标准以上三种标准在压力容器的设计方法上都有一些差异,但它们都致力于确保压力容器在工作过程中的安全和可靠性。

在实际应用中,设计人员需要根据具体的情况选择适合的标准进行设计。

二、应力分类压力容器在工作过程中会承受各种各样的力,这些力会导致容器内部产生应力。

根据受力的不同方向和性质,可以将压力容器中的应力分为以下几种:1. 内压应力当压力容器内部充满气体或液体时,容器壁会承受内部的压力而产生内压应力。

内压应力是压力容器设计中最重要的一种应力,需要通过合理的材料选择和结构设计来保证其安全。

外压应力是指在容器壁外部承受外部载荷或介质的作用下产生的应力。

在设计压力容器时,需要考虑外部载荷对容器的影响,并采取相应的措施来减小外压应力的影响。

压力容器设计常用计算

压力容器设计常用计算

压力容器设计常用计算一、强度计算强度计算是压力容器设计中最基本的计算,其目的是通过计算容器的应力和应变,判断容器在承受工作压力时是否会发生破坏。

根据不同的容器形状和材料性质,常用的强度计算方法有以下几种:1.束缚应力法:根据容器的材料属性,计算容器各部位的允许最大内、外应力和总应力,然后与工作过程中的应力进行比较,判断容器是否会发生破坏。

2.等效应力法:将容器内、外表面上的应力用一个等效应力来代替,然后与容器的抗拉极限强度进行比较,以判断容器是否会发生破坏。

3.具体应力分析法:针对特定形状的容器,通过具体的应力分布分析,计算出容器各部位的应力和应变,进而判断容器是否会发生破坏。

二、蠕变计算蠕变是指材料在高温和长时间作用下发生的塑性变形,其对压力容器的安全性和可靠性产生较大的影响。

常用的蠕变计算方法有以下几种:1.应力分析法:根据容器的材料性质和工作条件,计算容器各部位的蠕变应力,然后与容器材料的蠕变强度进行比较,以判断容器在工作过程中是否会发生蠕变破坏。

2.强度工作时间积法:将容器的工作时间乘以其工作温度下的应力值,得到强度工作时间积,然后与容器材料的蠕变强度工作时间积进行比较来判断容器是否会发生蠕变破坏。

三、疲劳计算在压力容器的使用过程中,往往会受到不断重复的循环载荷,这会导致容器材料的疲劳破坏。

常用的疲劳计算方法有以下几种:1.安全系数法:根据容器的工作周期和载荷特性,计算容器的疲劳安全系数,然后与容器要求的疲劳安全系数进行比较,以判断容器是否会发生疲劳破坏。

2.极限状态法:根据容器的应力分布和载荷变化情况,通过计算容器的疲劳极限状态,判断容器在使用过程中是否会发生疲劳破坏。

四、稳定性计算容器的稳定性计算主要是为了防止在工作过程中容器发生失稳和挤压变形等现象,影响容器的安全性和稳定性。

常用的稳定性计算方法有以下几种:1.柱稳定计算:根据容器的几何形状和材料性质,通过计算容器的柱稳定系数,判断容器在工作过程中是否会发生失稳破坏。

压力容器设计方法分析对比.docx

压力容器设计方法分析对比.docx

压力容器设计方法分析对比目前我国压力容器设计所采用的标准规范有两大类:一类是常规设计标准,以GB150-2011《压力容器》标准为代表;另一类是分析设计,以JB4732-1995《钢制压力容器--分析设计标准》为代表。

两类标准是相互独立的、自成体系的、平行的压力容器规范, 绝对不能混用, 只能依据实际的工程情况而选其一。

设计准则比较常规设计主要依据是第一强度理论,认为结构中主要破坏应力为拉应力,限定最大薄膜应力强度不超过规定许用应力值,当结构中某最大应力点一旦进入塑性, 结构就丧失了纯弹性状态即为失效。

常规设计是基于弹性失效准则,以壳体的薄膜理论或材料力学方法导出容器及其部件的设计计算公式。

一般情况它仅考虑壁厚中均布的薄膜应力,对于边缘应力及峰值应力等局部应力一般不作定量计算,如对弯曲应力。

分析设计的主要依据是第三强度理论,认为结构中主要破坏应力为剪切力。

采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹塑性失效”的设计准则,对容器的各种应力进行精确计算和分类。

对不同性质的应力, 如:总体薄膜应力、边缘应力、峰值应力等;同时还考虑了循环载荷下的疲劳分析, 在设计上更合理。

标准适用范围对比常规设计标准GB150-2011适用于设计压力大于或等于0.1MPa且小于35MPa,及真空度高于0.02MPa。

对于设计温度,GB150-2011规定为-269℃-900℃,是按钢材允许的使用温度确定设计温度范围, 可高于材料的蠕变温度范围。

分析设计标准JB4732-1995适用于设计压力大于或等于0.1MPa且小于100MPa,及真空度高于0.02MPa。

对于设计温度,JB4732-1995 将最高的设计许用温度限制在受钢材蠕变极限约束的温度。

应力评定对比常规设计标准GB150-2011,采用统一的许用应力,如容器筒体,是采用“中径公式”进行应力校核,最大应力满足许用应力即可。

分析设计标准JB4732-1995的核心是将压力容器中的各种应力加以分类,根据所考虑的失效模式比较详细地计算了容器及受压元件的各种应力。

压力容器设计方法分析对比参考文本

压力容器设计方法分析对比参考文本

压力容器设计方法分析对比参考文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月压力容器设计方法分析对比参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

目前我国压力容器设计所采用的标准规范有两大类:一类是常规设计标准,以GB150-2011《压力容器》标准为代表;另一类是分析设计,以JB4732-1995《钢制压力容器--分析设计标准》为代表。

两类标准是相互独立的、自成体系的、平行的压力容器规范, 绝对不能混用, 只能依据实际的工程情况而选其一。

设计准则比较常规设计主要依据是第一强度理论,认为结构中主要破坏应力为拉应力,限定最大薄膜应力强度不超过规定许用应力值,当结构中某最大应力点一旦进入塑性, 结构就丧失了纯弹性状态即为失效。

常规设计是基于弹性失效准则,以壳体的薄膜理论或材料力学方法导出容器及其部件的设计计算公式。

一般情况它仅考虑壁厚中均布的薄膜应力,对于边缘应力及峰值应力等局部应力一般不作定量计算,如对弯曲应力。

分析设计的主要依据是第三强度理论,认为结构中主要破坏应力为剪切力。

采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹塑性失效”的设计准则,对容器的各种应力进行精确计算和分类。

对不同性质的应力, 如:总体薄膜应力、边缘应力、峰值应力等;同时还考虑了循环载荷下的疲劳分析, 在设计上更合理。

压力容器设计

压力容器设计

设计厚度 计算厚度 腐蚀裕度
td
pDi
2[ ]t P
C2
2.51200 1.0 11.47mm 2170 0.85 2.5
8.3 内压薄壁容器的设计
名义厚度 设计厚度 钢板厚度负偏差 圆整值
tn td C1 11.47 0.8 12.27 14mm
该厚度同时满足最小壁厚要求。 储罐的水压实验压力:
F
F=Fcr


临界载荷


T



6.1 压杆失稳的概念
稳定性:构件保持原有形状的能力。
失稳:构件失去原有形状的平衡。失稳现象 的发生决定于构件及其作用载荷。
压杆的临界载荷Fcr:压杆保持直线稳定平衡时所 能承受的最大轴向压力。当轴向压力达到Fcr时, 压杆随时有失稳的可能,一旦失稳变弯,将不可能 恢复。
d 环向应力为:
pD 2t
• 球形壳体的应力分析
• 环向应力和经向应力相等:
PR PD 2t 4t
椭球形壳体的应力分析
x
M
b
a
P 2tb
a4 x2 (a2 b2 )
P 2tb
a4
x 2 (a2
b2
)
2
a4
a4 x 2 (a 2
b2
)

顶点:
Pa a 2t b
薄壁壳体: R0 / Ri 1.2或 tn / Di 0.1
p
B
二向应力状态:经向应力、周向应力
Di
1. 经向应力 (轴向应力)
截面法求 取右半部分受力分析:
p
Di
列平衡方程:
Fx 0
4
D2

压力容器分析设计的应力分类法与塑性分析法

压力容器分析设计的应力分类法与塑性分析法

压力容器分析设计的应力分类法与塑性分析法压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。

进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。

标签:压力容器;应力分类法;塑性分析法近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。

以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。

但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。

1应力分类法1.1一次应力一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。

一次应力超过材料屈服极限时压力容器就会发生变形破坏。

主要可以分为以下几种情况:第一,总体薄膜应力。

因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。

第二,局部薄膜应力。

是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。

第三,一次弯曲应力。

由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。

1.2二次应力二次应力是指压力容器部件受到约束而出现的剪应力。

二次应力满足变形条件。

例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。

在这种情况下,连接部位会附加剪力应力,从而形成二次应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力容器设计方法分析对比
目前我国压力容器设计所采用的标准规范有两大类:一类是常规设计标准,以GB150-2011《压力容器》标准为代表;另一类是分析设计,以JB4732-1995《钢制压力容器--分析设计标准》为代表。

两类标准是相互独立的、自成体系的、平行的压力容器规范, 绝对不能混用, 只能依据实际的工程情况而选其一。

设计准则比较
常规设计主要依据是第一强度理论,认为结构中主要破坏应力为拉应力,限定最大薄膜应力强度不超过规定许用应力值,当结构中某最大应力点一旦进入塑性, 结构就丧失了纯弹性状态即为失效。

常规设计是基于弹性失效准则,以壳体的薄膜理论或材料力学方法导出容器及其部件的设计计算公式。

一般情况它仅考虑壁厚中均布的薄膜应力,对于边缘应力及峰值应力等局部应力一般不作定量计算,如对弯曲应力。

分析设计的主要依据是第三强度理论,认为结构中主要破坏应力为剪切力。

采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹塑性失效”的设计准则,对容器的各种应力进行精确计算和分类。

对不同性质的应力, 如:总体薄膜应力、边缘应力、峰值应力等;同时还考虑了循环载荷下的疲劳分析, 在设计上更合理。

标准适用范围对比
常规设计标准GB150-2011适用于设计压力大于或等于0.1MPa且小于35MPa,及真空度高于0.02MPa。

对于设计温度,GB150-2011规定为-269℃-900℃,是按钢材允许的使用温度确定设计温度范围, 可高于材料的蠕变温度范围。

分析设计标准JB4732-1995适用于设计压力大于或等于0.1MPa且小于100MPa,及真空度高于0.02MPa。

对于设计温度,JB4732-1995 将最高的设计许用温度限制在受钢材蠕变极限约束的温度。

应力评定对比
常规设计标准GB150-2011,采用统一的许用应力,如容器筒体,是采用“中径公式”进行应力校核,最大应力满足许用应力即可。

分析设计标准JB4732-1995的核心是将压力容器中的各种应力加以分类,根据所考虑的失效模式比较详细地计算了容器及受压元件的各种应力。

根据各种应力本身的性质及对失效模式所起的不同作用予以分类如下:
3.1一次应力
一次应力是由于受到外加机械载荷的作用而在容器中产生的为平衡这种外载所必须的正应力或剪应力, 它需要满足外载和内力的平衡关系。

一次应力是个统称, 具体包括下述三类: 3.1.1 一次总体薄膜应力
一次总体薄膜应力存在于结构总体范围内, 其应力达到材料的屈服强度时, 会使元件的总体范围内整个壁厚的材料同时进入屈服, 使元件产生过量的弹性和塑性变形而直接导致结构破坏, 它是各类应力中对容器危害性最大的应力。

例如各种壳体中平衡内压或分布载荷所引起的薄膜应力。

3.1.2一次局部薄膜应力
一次局部薄膜应力存在于结构局部范围内, 由介质压力或其他机械载荷所引起, 只要符合“局部地区”和“薄膜应力”的特征都可以称为一次局部薄膜应力。

一次局部薄膜应力即使达到材料的屈服强度也不会造成结构整体过大的弹性和塑性变形, 因而允许这类应力强度有比一次总体薄膜应力较宽的校核条件。

例如容器支座, 由于自重或外载在壳体上所引起的薄膜应力。

3.1.3 一次弯曲应力
一次弯曲应力是弯曲应力中的一种, 是由介质压力或其他机械载荷引起, 沿容器壁厚方向形成线性分布, 内外壁表面大小相等、方向相反、中间面为中性面的应力, 它满足外载和内力的平衡关系。

一次弯曲应力对结构整体的危害程度同一次局部薄膜应力相似, 因而这类应力的强度校核条件也比一次总体薄膜应力为宽。

如平盖中心部件由压力引起的弯曲应力。

3.2 二次应力
二次应力是由容器同一元件上不同部位的材料或者相邻元件之间的总变形协调条件导出的正应力或剪应力。

由温度差而引起的热应力都由变形协调关系导出, 根据其存在范围是属于整体还是局部分别划入二次应力或峰值应力。

如换热器管板与筒体联接处由于径向膨胀量不同所产生的热应力等。

3.3 峰值应力
峰值应力定义为在局部结构不连续处总应力去除一次应力及二次应力后剩余的应力。

它的基本特性是不会引起结构任何比较显著的变形, 仅可能是导致容器出现疲劳破坏和脆性断裂的潜在原因。

峰值应力的划分并不是以它沿器壁厚度是均匀分布、线性分布还是非线性分布来定义, 不是高度集中的应力, 如果它不会引起结构显著的变形, 也可划归为峰值应力。

例如在碳钢容器的奥氏体钢覆层中出现的温差应力。

优势与不足的比较。

相关文档
最新文档