分子生物学的研究方法-DNA-蛋白质相互作用
蛋白质与生物大分子的相互作用研究
蛋白质
01
是由氨基酸组成的大分子,具有复杂的空间结构和功能,是生
命活动中不可或缺的组成部分。
生物大分子
02
是指细胞内存在的除蛋白质以外的其他大分子物质,如核酸、
脂质和糖类等。
相互作用
03
是指两个或多个分子之间发生的相互影响和作用,这种作用力
可以是物理的、化学的或者是生物学上的。
蛋白质与生物大分子相互作用的重要性
详细描述
蒙特卡罗模拟通过随机抽样和统计分析,可以模拟蛋白质与生物大分子的结合和 相互作用过程。该方法可以预测蛋白质与生物大分子的结合常数、亲和力以及结 合过程中的能量变化,提供有关结合机制和动力学特性的信息。
粗粒化模型
总结词
粗粒化模型是一种简化模型,将分子体系中的原子或分子的复 杂行为简化为较少的“粗粒”或“组分”,以便于模拟计算。
总结词
研究蛋白质与生物大分子相互作用的调控机 制有助于发现新的药物靶点和治疗策略。
详细描述
蛋白质与生物大分子的相互作用在许多生物 学过程中发挥着关键作用,包括基因表达、 物质代谢等。研究这些相互作用的调控机制 可以帮助我们更好地理解这些过程,并发现 新的药物靶点和治疗策略,为疾病治疗提供 新的思路。
蛋白质与生物大分子相互作用的类型
共价结合
通过化学键将蛋白质与生物大分子永久性地结合在一起。例如,蛋白质与核酸 的磷酸二酯键就是共价结合。
非共价结合
通过非共价键将蛋白质与生物大分子暂时性地结合在一起,这种结合力可以在 一定条件下被打破。例如,蛋白质与核酸的氢键、范德华力和疏水相互作用等。
02
蛋白质与生物大分子相 互作用的实验研究方法
蛋白质折叠与稳定性研究
总结词
研究蛋白质的折叠方式和稳定性对于理解其功能和疾病发生机制具有重要意义。
DNA与蛋白质的相互作用-生化课件
蛋白质与DNA主链骨架接触,大多数涉 及磷酸二酯键中的氧原子。 与DNA碱基序列特异性无关 结构的匹配性: 旋转对称性 特定距离的相反电荷 形成氢键基团排布上的匹配 形成足够大的范德华力
Pr-DNA特异性结合中DNA的特点
大沟内存在特异性识别信息 氨基酸与碱基对共平面 氨基酸和碱基对之间形成氢键
经典举例
• 操纵子(operon):是指原核生物中由一个或多个相关 基因以及转录翻译调控元件组成的基因表达单元。 • 启动子(promoter):与基因表达启动相关的顺式作用 元件,是结构基因的重要成分。它是一段位于转录起始位 点5’端上游区大约100~200bp以内的具有独立功能的DNA 序列,能活化RNA聚合酶,使之与模板DNA准确地相结 合并具有转录起始的特异性。 • RNA聚合酶(polymerase):以一条DNA链或RNA为模 板催化由核苷-5′-三磷酸合成RNA的酶。是催化以DNA为 模板(template)、三磷酸核糖核苷为底物、通过磷酸二 酯键而聚合的合成RNA的酶。因为在细胞内与基因DNA 的遗传信息转录为RNA有关,所以也称转录酶。
• 催化转录的RNA聚合酶是一种由多个蛋白亚基组 成的复合酶。全酶(holoenzyme)的组成是 α2ββ’δ。α亚基与RNA聚合酶的四聚体核心 (α2ββ’)的形成有关;β亚基含有核苷三磷酸的 结合位点;β’亚基含有与DNA模板的结合位点; 而Sigma因子只与RNA转录的起始有关,与链的 延伸没有关系,一旦转录开始,δ因子就被释放, 而链的延伸则由四聚体核心酶(core enzyme) 催化。所以,δ因子的作用就是识别转录的起始 位置,并使RNA聚合酶结合在启动子部位。
两个概念
• 顺式作用元件(cis-acting element):存在于 基因旁侧序列中能够影响基因表达的序列,包括 启动子、增强子、调控序列和可诱导元件等。其 本身不编码任何蛋白质,它仅仅提供一个作用位 点,与反式作用因子相互作用参与基因表达调控。 • element反式作用因子(trans-acting ):指能 直接或间接地识别或结合在各类顺式作用元件核 心序列上参与调控靶蛋白基因转录效率的蛋白质。
细胞分子生物学研究中常用的技术和方法
细胞分子生物学研究中常用的技术和方法细胞分子生物学是指研究细胞内发生的生物分子互作及其调控的学科。
随着生命科学技术的不断发展和完善,许多技术和方法得以应用于细胞分子生物学的研究中。
本文将从多个方面介绍细胞分子生物学研究中常用的技术和方法。
一、基因克隆技术基因克隆技术是一种常用的细胞分子生物学研究方法。
它可以通过将感兴趣的DNA序列插入载体DNA上,构建含有特定目的基因的重组DNA,最终将重组DNA引入宿主细胞中来研究某一基因的生物学功能。
基因克隆技术的核心是重组DNA技术,其中最常用的重组DNA方法包括限制性内切酶切割、DNA连接、转化及放大等步骤。
特别是在近年来的分子克隆技术中,基因编辑技术的应用使得基因克隆技术更加得到精细化和精确化。
二、蛋白质结构分析技术蛋白质是生物体中极其重要的分子之一,其结构对蛋白质的生物学功能有着至关重要的作用。
蛋白质的功能在很大程度上取决于其三维结构,因此蛋白质结构的研究是细胞分子生物学的重要研究领域。
蛋白质结构分析技术包括X射线晶体学、核磁共振、电子显微镜等。
其中,X射线晶体学是目前分析蛋白质最为常用的方法之一,其原理是利用X射线的衍射来确认蛋白质的三维结构。
三、荧光素酶标记技术酶标记技术是研究酶在细胞中的分布和功能的重要方法,其中荧光素酶标记技术则成为近年来应用最广泛的方法之一。
荧光素酶由日本学者O. Shimomura于1962年首次发现,可以发出明亮的荧光,被广泛应用于生物学研究中。
目前,荧光素酶标记技术被用来研究蛋白质的定位和运动等生物学过程,其原理是将荧光素酶标记的免疫球蛋白等物质与荧光素底物结合,从而通过荧光显微镜来研究生物分子的动态变化。
四、蛋白质互作筛选技术蛋白质在细胞中的互作是细胞分子生物学研究的重要问题之一。
蛋白质互作筛选技术则可以用来鉴定蛋白质之间的相互作用关系。
目前常见的蛋白质互作筛选技术包括酵母双杂交法、共免疫共沉淀、荧光共聚焦显微镜等。
分子生物学第九章--分子生物学研究方法电子教案精选全文
可编辑修改精选全文完整版•第九章分子生物学研究方法1.课程教学内容(1)核酸技术1—基本操作(2)核酸技术2—克隆技术(3)核酸技术3—测序(4)基因表达和表达分析基因定点诱变(5)蛋白质与核酸的相互作用(6)其他(热点)技术2.课程重点、难点基因克隆技术、杂交技术、测序技术、蛋白质与核酸的相互作用检测技术3.课程教学要求掌握基因克隆技术、杂交技术、测序技术、蛋白质与核酸的相互作用检测等各种技术的原理。
本章内容•核酸的凝胶电泳•DNA分子的酶切割•核酸的分子杂交•基因扩增•基因的克隆和表达•细菌的转化•DNA核苷酸序列分析•蛋白质的分离与纯化•研究DNA与蛋白质相互作用的方法一、核酸的凝胶电泳基本原理:当一种分子被放置在电场当中时,它们会以一定的速度移向适当的电极。
电泳的迁移率:电泳分子在电场作用下的迁移速度,它同电场的强度和电泳分子本身所携带的净电荷成正比。
由于在电泳中使用了一种无反应活性的稳定的支持介质,如琼脂糖和丙烯酰胺,从而降低了对流运动,故电泳的迁移率又同分子的摩擦系数成反比。
在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基团,是呈离子化状态的。
从这个意义上讲,DNA和RNA的多核苷酸链可叫做多聚阴离子,因此,当核酸分子放置在电场中时,它就会向正极移动。
在一定的电场强度下,DNA分子的这种迁移率,取决于核酸分子本身大小和构型。
分子量较小的DNA 分子,比分子量较大的分子,具有较紧密的构型,所以其电泳迁移率也就比同等分子量的松散型的开环DNA分子或线性DNA分子要快些。
Gel matrix (胶支持物) is an inserted, jello-like porous material that supports and allows macromolecules to move through.Agarose (琼脂糖):(1) a much less resolving power than polyacrylamide,(2)but can separate DNA molecules of up to tens of kbDNA can be visualized by staining the gel with fluorescent dyes, such as ethidium bromide (EB 溴化乙锭)Polyacrylamide (聚丙稀酰胺):(1)has high resolving capability, and can resolve DNA that differfrom each other as little as a single base pair/nucleotide.(2)but can only separate DNA over a narrow size range (1 to a fewhundred bp).Pulsed-field gel electrophoresis (脉冲电泳)(1)The electric field is applied in pulses that are orientedorthogonally (直角地) to each other.(2)Separate DNA molecules according to their molecule weight, as wellas to their shape and topological properties.(3)Can effectively separate DNA molecules over 30-50 kb and up toseveral Mb in length.二、DNA分子的酶切割Restriction endonucleases (限制性内切酶) cleave DNA molecules at particular sitesRestriction endonucleases (RE) are the nucleases that cleave DNA at particular sites by the recognition of specific sequences.RE used in molecular biology typically recognize (识别) short (4-8bp) target sequences that are usually palindromic (回文结构), and cut (切割) at a defined sequence within those sequences. e.g. EcoRIThe random occurrence of the hexameric (六核苷酸的) sequence: 1/4096 (4-6=1/46)(1) Restriction enzymes differ in the recognition specificity: target sites are different.(2) Restriction enzymes differ in the length they recognized, and thus the frequencies differ.(3) Restriction enzymes differ in the nature of the DNA ends they generate: blunt/flush ends (平末端), sticky/staggered ends (粘性末端).(4) Restriction enzymes differ in the cleavage activity.三、核酸的分子杂交原理:带有互补的特定核苷酸序列的单链DNA或RNA,当它们混合在一起时,其相应的同源区段将会退火形成双链的结构。
分子生物学试题及答案2
分子生物学试卷(二)生分子生物学试卷(二)一、选择题,选择一个最佳答案(每小题1.5分,共30分)1.DNA双螺旋结构模型的描述中哪一条不正确:()A.腺嘌呤的克分子数等于胸腺嘧啶的克分子数B.同种生物体不同组织中的DNA碱基组成极为相似C.DNA双螺旋中碱基对位于外侧D.二股多核苷酸链通过A-T,C-T之间的氢键连接E.维持双螺旋稳定的主要因素是氢键和碱基堆集力。
2.有关DNA的变性哪条正确:()A.变性是分子中磷酸二酯键的断裂B.变性后紫外吸收增加C.变性后粘度增加D.热变性DNA速冷后可复性E.DNA分子开始变性的温度叫Tm3.DNA聚合酶III的描述中哪条不对:()A.需要四种三磷酸脱氧核苷酸作底物B.具有5′→3′外切酶活性C.具有3′→5′外切酶活性D.具有5′→3′聚合活性E.聚合反应需要引物4.有关反转录的正确叙述:()A.反转录反应不需要引物B.反转录后的产物是cDNAC.反转录的板可以是RNA,也可以是DNAD.合成链的方向是3′→5′E.反转录反应的底物是4种NTP。
5.有关蛋白质合成,下列哪条是错误的:()A.基本原料是20种氨基酸B.直接模板是mRNAC.合成的方向是从羧基端到氨基础D.是一个多因子参加的耗能过程E.是多聚核蛋白体循环6.在乳糖操纵子中,阻遏蛋白结合的是:()A.操纵基因B.调节基因C.启动基因D.结构基因E.终止基因7.氨基酸活化酶:()A.能识别一组同功tRNAB.催化磷酸二酯键的形成C.催化氨基酸结合到tRNAD.催化氨基酸的氨基与tRNA结合E.催化氨基酸的羧基与GTP反应8.稀有核苷酸含量最高的核酸是:()A.tRNAB.mRNAC.rRNAD.DNAE.hnRNA9.真核与原核细胞蛋白质合成的相同点是:()第 1 页共5 页A.翻译与转录偶联进行B.模板都是多顺反子C.转录后的产物都需要进行加工修饰D.甲酰蛋氨酸是第一个氨基酸E.都需要GTP10.与pCAGCT互补的DNA序列是:()A.pAGCTGB.pGTCGAC.pGUCGAD.pAGCUGE.pTCGAC11.色氨酸操纵子的调控需要:()A.增强子B.转录子C.衰减子D.顺反子E.调节子12.下列哪种氨基酸的密码子可作为起始密码:()A.甲硫氨酸B.S-腺苷蛋氨酸C.苯丙氨酸D.丙氨酸E.以上都不是,而是TAG13.真核细胞中mRNA的加工修饰不包括:()A.在mRNA3′末端另polyA尾B.mRNA的前体是核内hnRNAC.在mRNA5′端形成7甲基尿苷酸帽子结构D.除去非结构信息部分E.不同RNA片断之间的拼接14.真核生物基因组中没有:()A.内含子B.外显子C.转录因子D.插入序列E.高度重复序列15.DNA的半保留复制需要()A.核心酶和单链DNA结合蛋白B.模板DNA和四种NTPC.引物和RNA聚合酶D.DNA引物和连接酶E.冈崎片段和终止因子16.PCR实验的特异性主要取决于()A.DNA聚合酶的种类B.反应体系中模板DNA的量C.引物序列的结构和长度D.四种dNTP的浓度E.循环周期的次数17.RNA电泳转移后与探针杂交叫作:()A.SouthernblotB.NorthernblotC.WesternblotD.斑点杂交E.原位杂交18.对限制性核酸内切酶的作用,下列哪个不正确:()A.识别序列长度一般为4-6bpB.识别序列具有回文结构C.切割原核生物D分子D.只能识别和切割双链DNA分子E.只能识别和切割原核生物DNA分子19.在基因工程实验中,DNA重组体是指:()A.不同来源的的两段DNA单链的复性B.目的基因与载体的连接物C.不同来原的DNA分子的连接物D.原核DNA与真核DNA的连接物E.两个不同的结构基因形成的连接物20.对基因工程载体的描述,下列哪个不正确:()A.都可以转入宿主细胞B.都有限制性核酸内切酶的识别位点C.都可以连接进目的基因D.都是环状双链DNA分子E.都有筛选标志二、简答题(每题5分,共40分)1.衰减子2.DNA拓扑异构酶3.基因表达4.前导肽5.启动子6. DNA分子克隆技术7.G蛋白8.受体型酪氨酸激酶三、论述题(每题10分,共30分)1.操纵子中的诱导剂和辅阻遏对基因表达的调控有何不同?2.细胞内第二信使包括哪些物质?它们是怎样产生的,有何作用?3.PCR和细胞内DNA复制两者有哪些主要的相同点和不同点?参考答案一、选择题,选择一个最佳答案(每小题1.5分,共30分)1.D;2.B;3.A;4.A;5.A;6.C;7.C ;8.C ;9.B;10.E二、填空题(每题1分)1.质粒DNA具有三种不同的构型分别是:(SC构型)、(oc构型)、(L构型)。
南开大学结构生物学第五讲-2-核酸-蛋白质的相互作用研究方法的新进展
2.2 核苷酸-氨基酸相互作用数据库
核苷酸-氨基酸相互作用数据库搜集核苷酸和氨基 酸间4 埃大小内的成对原子,能让使用者找到成对 的核苷酸和氨基酸。
使用者可以指定残基名称( 核苷酸或氨基酸)、原子 类型和侧链/ 骨干。
3 生物芯片技术
生物芯片技术是基于生物大分子间相互作用 的大规模并行分析方法,使得生命科学研究 中所涉及的样品反应、检测、分析等过程得 以连续化、集成化和微型化,现已成为当今 生命科学研究领域发展最快的技术之一。
目前的生物芯片主要有核酸芯片、蛋白质芯 片和糖体芯片等几大类。
蛋白质芯片是依靠手工、压印或喷墨的方 法将探针蛋白点样在化学膜、凝胶、微孔 板或玻片上形成阵列,经过与样品的杂交 捕获靶蛋白,再用原子力显微镜、磷光成 像仪、光密度仪或激光共聚焦扫描仪进行 检测,获得靶蛋白表达的种类、数量及关 联等信息。
研究蛋白质/ 核酸相互作用近期采用的新技 术有:1.核酸适体技术、2.生物信息学方法、 3.蛋白质芯片技术以及4.纳米技术等。
蛋白质和核酸是构成生命体最为重要的两类 生物大分子。
蛋白质与核酸的相互作用是分子生物学研究 的中心问题之一,它是许多生命活动的重要 组成部分。
随着人类基因组计划的完成,大量基因被发 现和定位,基因的功能问题将成为今后研究 的热点。大多数基因的最终产物是相应的蛋 白质,因此要认识基因的功能,必然要研究 基因所表达的蛋白质。
通过准确检测DNA分子穿孔过程中引起的 电流阻塞效应,可将DNA与组蛋白的相互 作用的一些性质反映出来。
蛋白质的功能往往体现在与其他蛋白质及 (或)核酸的相互作用之中。
细胞各种重要的生理过程,包括信号的转导、 细胞对外界环境及内环境变化的反应等,都 是以蛋白质与其他物质的相互作用为纽带。
简述分子生物学的主要研究内容
简述分子生物学的主要研究内容分子生物学是研究生物体内生命活动的基础单位——生物分子的结构、功能和相互关系的学科。
其主要研究内容包括以下几个方面:1. DNA 的结构和功能:分子生物学研究DNA 的双螺旋结构、碱基序列以及 DNA 的复制、修复、重组等功能。
此外,还研究 DNA 的转录为 RNA 的过程,进一步揭示基因的表达和调控机制。
2. RNA 的结构和功能:分子生物学研究各种 RNA 分子的结构、合成与分解、调控以及功能,例如信使 RNA (mRNA)、转运RNA (tRNA)、核糖体 RNA (rRNA) 等,以及其他非编码 RNA 的功能。
3. 蛋白质的合成和调控:分子生物学研究蛋白质的合成、折叠、修饰和降解等过程,同时也研究蛋白质的结构和功能。
此外,还研究基因表达调控中的转录因子、启动子、细胞信号转导等分子机制。
4. 基因工程和基因治疗:分子生物学在基因工程和基因治疗领域有重要应用。
基因工程利用分子生物学技术修改和调控基因,创造出具有特殊功能的生物体或蛋白质。
基因治疗是利用DNA 或RNA 分子为基础,将健康基因导入到疾病患者体内,以修复或替代异常基因。
5. 分子进化与系统生物学:分子生物学通过比较生物体内分子的序列或结构,揭示物种之间的进化关系和生物进化机制。
此外,还应用分子生物学技术研究生物多样性、系统分类学和物种分化。
6. 生物信息学:随着大规模基因组测序技术的发展,分子生物学与信息学的交叉研究逐渐成为一个新兴领域。
生物信息学的研究内容包括基因组学、蛋白质组学、转录组学和表观基因组学等,主要应用于基因组序列分析、生物序列比较、蛋白质结构预测和表达调控网络研究等方面。
总之,分子生物学的主要研究内容可以总结为 DNA、RNA 和蛋白质的结构、功能和相互关系,以及与之相关的基因表达调控、基因工程、基因治疗、分子进化和生物信息学等方面的研究。
分子生物学 常用分子生物学技术的原理及应用
(三)基因突变
利用PCR技术可以随意设计引物在体外对目的 基因片段进行嵌和、缺失、点突变等改造。
T G C
(四)DNA序列测定
将PCR技术引入DNA序列测定,使测序工 作大为简化,也提高了测序的速度;
待测DNA片段既可克隆到特定的载体后进 行序列测定,也可直接测定。
(五)基因突变分析
PCR与其他技术的结合可以大大提高基 因突变检测的敏感性 。
▪ 分子杂交: 不同来源的单链核苷酸链根据碱基互补原则形成
杂种双链的过程。
▪ 分子杂交的目的: 检测DNA和RNA
▪ 探针: 分子杂交中和待测核苷酸链碱基互补的被标记的
核苷酸链。
待测DNA或RNA
探针
碱基对间氢键
增色效应: DNA变性伴随260nm吸收值增高
减色效应: DNA复性伴随260nm吸收值降低
Taq
5’
Taq
5’
R
R
R Taq
R
Taq
R
l
R
3’
Extension Step
1. Strand Displacement
3’
5’
2. Cleavage
3’
5’ 3. Polymerization
3’
Complete
4. Detection
5’ 3’
PCR衍生技术
▪ 反向PCR ▪ 逆转录PCR ▪ 原位PCR ▪ 重组PCR ▪ 不对称PCR ▪ 多重PCR
酵母双杂交系统的建立基于对真核生物转录激 活因子结构与功能的认识
真核生物转录激活因子
DNA结合结构域 转录激活结构域
BD
AD
组件式:结构可互相分开 功能互相独立 空间较近时表现活性 中间序列对活性无影响
研究蛋白质与dna相互作用的方法
X射线晶体学
总结词
X射线晶体学是一种通过分析晶体结构来研究分子结构和相互作用的方法。
详细描述
X射线晶体学利用X射线照射蛋白质和DNA的晶体,通过散射现象分析出分子内 部的原子排列和空间结构,从而揭示蛋白质与DNA相互作用的细节。
核磁共振(NMR)
总结词
核磁共振是一种通过分析原子核的磁性和射频响应来研究分 子结构和动态的方法。
研究蛋白质与DNA相 互作用的方法
• 引言 • 研究蛋白质与DNA相互作用的方法 • 实验技术与数据分析 • 结果与讨论 • 结论与展望
目录
Part
01
引言
研究背景与意义
蛋白质与DNA相互作用在生物学中具有重要意义,是基因表达、复制和修复等过程的关 键环节。
了解蛋白质与DNA相互作用有助于揭示生命活动的本质,为疾病诊断和治疗提供新思路。
统计分析
01
统计分析方法选择
根据研究目的和数据特点,选择 合适的统计分析方法,如回归分 析、方差分析、聚类分析等。
02
统计分析过程
对处理后的数据进行统计分析, 探索蛋白质与DNA相互作用的特 点和规律。
03
结果解释与报告撰 写
根据统计分析结果,给出合理的 解释和结论,并撰写研究报告或 论文。
Part
同时,我们也需要加强与其他学科的 交叉合作,如物理学、化学和计算机 科学等,以推动蛋白质与DNA相互作 用研究的深入发展。
THANKS
感谢您的观看
蛋白质与DNA相互作用概述
蛋白质与DNA相互作用 是指蛋白质通过与DNA 结合,调控基因的表达、 复制和修复等过程。
蛋白质与DNA相互作用 的主要方式包括DNA结 合蛋白、转录因子和 DNA酶等。
DNA蛋白质的相互作用
6.染色质免疫沉淀的DNA的分析和蛋白质在DNA 上结合位点的鉴定 染色质免疫沉淀的DNA的分析方法有许多种。 如果目的蛋白的靶序列是已知的或者怀疑某个序列 是目的蛋白的靶序列,可以采用狭缝杂交和PCR分析; 如果目的蛋白的靶序列未知或者高通量的研究目的蛋 白在基因组上的分布情况,找出反式作用因子的结合位 点,可以采用Southern杂交、ChIP克隆和DNA芯片方法。
酵母中的转基因相互作用 同样可通过转录激活结构域激活RNA聚合酶启动下游报告 基因的转录 。
13
设计含目的基因(称为诱饵)和下游报告 合表达的cDNA质粒转化入同一酵母中;11
检测靶DNA中特异G残基的优先甲基化对而 后的蛋白质结合作用会有什么效应,从而更 加详细地揭示DNA与蛋白质之间的相互作用 模式。 DMS化学干扰只能在G和A残基甲基化,不能 使T和C甲基化。 故本实验为足迹实验的补充手段。
12
四、酵母单杂交技术
真核生物中 ,转录因子中DNA 结合结构域(DNAbinding domain BD)与转录激活结构域( activationdomain AD) 能够相互独立发生作用。
2
凝胶阻滞试验 DNaseI足迹试验 甲基化干扰试验 体内足迹试验 酵母单杂交技术 染色质免疫沉淀技术 噬菌体展示技术 核酸适体技术 生物信息学方法 蛋白质芯片技术及纳米技术
3
一、凝胶阻滞试验 (DNA迁移率变动试验 DNA mobility shift assay)
1 原理: 在凝胶电泳中,由于电场的作用,裸露的DNA朝正电 极移动的距离与其分子量的对数成反比。 如果此时DNA分子与某种蛋白质结合, 由于分子量增大,它在凝胶中的迁移作用便会受到阻滞 在特定电压和时间内朝正电极移动的距离也就相应缩短了。
蛋白质相互作用的主要研究方法
蛋白质相互作用的主要研究方法细胞接受外源或是源的信号,通过其特有的信号途径,调节其基因的表达,以保持其生物学特性。
在这个过程中,蛋白质占有很重要的地位,它可以调控, 介导细胞的许多生物学活性。
虽然有一些蛋白质可以以单体的形式发挥作用,但是大部分的蛋白质都是和伴侣分子一起作用或是与其他蛋白质形成复合物来发挥作用的。
因此,为了更好地理解细胞的生物学活性,必须很好地理解蛋白质单体和复合物的功能,这就会涉及到蛋白质相互作用的研究。
在现代分子生物学中,蛋白质相互作用的研究占有非常重要的地位。
研究蛋白质相互作用时要根据不同的实验目的及条件选择不同的实施策略。
研究已知蛋白间的相互作用人们关注的是蛋白间能否发生结合,实验本身更趋向于验证性,因此,应选择操作性强、可信度高、接近生理条件的技术方法,尽量减少实验本身带来的假阴性或假阳性。
蛋白质相互作用方面的研究方法主要有免疫共沉淀、Far Western blotting、生物信息学、酵母双杂交系统、噬菌体展示、表面等离子共振、荧光能量转移等几种。
1 免疫共沉淀免疫共沉淀(Co-Immunoprecipitation)是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。
是确定两种蛋白质在完整细胞生理性相互作用的有效方法。
其基本原理是:细胞裂解液中加入抗体,与抗原形成特异免疫复合物,经过洗脱,收集免疫复合物,然后进行SDS-PAGE及Western blotting分析。
免疫共沉淀既可以用于检验已知的两个蛋白质在体的相互作用,也可以找出未知的蛋白质相互作用,不管是两者的哪个,其原则都是一样的,都需要用特异性的抗体与其中的一种蛋白质结合,之后通过蛋白质A或蛋白质G琼脂糖微珠将复合物沉淀下来,然后用SDS-PAGE鉴定。
免疫共沉淀中设置正确的对照非常重要,因为该方法可能出现假阳性的概率比较高,设置的对照包括:在对照组中使用对照抗体,以缺失目的蛋白的细胞系作为阴性对照等等。
分子生物学常用实验方法原理介绍
分子生物学常用实验方法原理介绍分子生物学是研究生物分子的结构、功能和相互作用的一门科学。
为了研究分子生物学,科学家们开发了一系列实验方法来解析生物分子的结构和功能,从而揭示生物学的奥秘。
以下是一些常用的分子生物学实验方法的原理介绍。
1.DNA分离与纯化实验方法DNA是分子生物学研究的重要对象之一、DNA分离与纯化是获取纯净DNA样品的最基本步骤。
DNA可以通过细胞裂解、蛋白酶处理和有机溶剂萃取等方法从生物样品中分离出来。
DNA纯化则通过离心、凝胶电泳、柱层析等手段去除杂质,得到高纯度的DNA。
2.RNA提取与纯化实验方法RNA是转录过程中产生的核酸分子,具有调控基因表达的功能。
RNA提取与纯化是研究RNA的第一步。
常用的方法包括酚/氯仿法、硅胶柱层析法和磁珠法等。
通过这些方法,可以从生物样品中纯化出RNA,并通过凝胶电泳或分光光度计等手段评估纯化效果。
3.蛋白质提取与纯化实验方法蛋白质是生物体内重要的功能分子,它们参与几乎所有的生物过程。
研究蛋白质功能的首要步骤就是提取和纯化蛋白质。
蛋白质提取方法包括细胞裂解、超声波处理和离心等。
蛋白质的纯化则通过不同的方法,如离心沉淀、柱层析、电泳和亲和层析等手段,从混合物中分离出目标蛋白质。
4.凝胶电泳实验方法凝胶电泳是一种分离和分析生物分子的常用方法。
凝胶电泳可以通过差异的电荷、大小和形状来分离DNA、RNA和蛋白质等分子。
常见的凝胶电泳包括琼脂糖凝胶电泳、聚丙烯酰胺凝胶电泳和聚丙烯酰胺凝胶电泳等。
通过凝胶电泳,我们可以分析DNA片段的大小、RNA的表达水平以及蛋白质的组成和纯度。
5.PCR(聚合酶链式反应)PCR是一种通过体外扩增DNA序列的技术。
PCR的核心是DNA的反向转录和DNA序列的扩增。
PCR反应体系主要由DNA模板、引物、dNTP、聚合酶和缓冲液组成。
反应通过循环加热和降温来实现,每个循环包括DNA的变性、引物的结合和DNA的延伸。
PCR技术可以扩增DNA片段,从而用于DNA测序、基因克隆、基因突变分析等研究。
分子生物学的研究方法
分子生物学的研究方法分子生物学是生命科学领域中的重要分支,研究生物大分子(如DNA、RNA、蛋白质等)的结构、功能及其在生物体内的相互作用关系。
分子生物学的研究方法随着技术的不断进步,越来越高效、精准。
本文将介绍几种常见的分子生物学研究方法。
1. PCR技术PCR技术是分子生物学中最常用的研究方法之一。
PCR技术简单来说就是以DNA为模板,通过循环加热和降温的方式使DNA 分离成两条单链,并利用DNA聚合酶合成新的DNA分子。
通过PCR技术可以扩增目标DNA片段,为其他分子生物学研究提供了重要的基础。
PCR技术的具体操作是:首先选择适当的引物,引物是一段长度为15~30个核苷酸的单链DNA,与目标DNA上的两端互补,可用来定向扩增DNA。
然后将待扩增的DNA样品与引物混合,加入适当浓度的DNA聚合酶和反应缓冲液,反复加热降温,反应若干个周期后,就可以得到扩增的DNA产物。
近年来,PCR技术不断发展,出现了许多高级变体,如RT-PCR技术和qPCR技术等。
这些技术在分子生物学、医学以及疾病诊断等领域得到了越来越广泛的应用。
2. 质谱技术质谱技术是一种分析化学技术,用于测定化合物的分子量、化学式以及数量等信息。
在分子生物学中,质谱技术主要用于分析蛋白质和核酸的结构和功能。
质谱技术的基本原理是将待测样品中的分析物(如蛋白质、核酸等)转化成气态或溶液状态下的离子,并利用质谱仪测定离子的质荷比。
通过离子的质谷比可以确定分析物的分子量、化学式以及数量等信息。
质谱技术的应用范围非常广泛,包括蛋白质组学、代谢组学以及疾病诊断等领域。
随着技术的不断进步,质谱技术也变得更加高效、精准,未来将有更多的应用。
3. 基因编辑技术基因编辑技术近年来获得了长足发展,它可以通过将基因序列中的单个碱基替换、插入或删除,来打造定制化的基因组序列。
这种技术有巨大的应用潜力,可以用于人类基因疾病的治疗以及植物、动物品种改良等领域。
基因编辑技术最常用的手段是CRISPR-Cas9系统,它是一种通过结合RNAs和酶分子来定向剪切DNA的系统。
生物化学第五节 生物大分子相互作用研究技术
第五节生物大分子相互作用研究技术2015-07-16 70976 0生物大分子之间可相互作用并形成各种复合物,所有的重要生命活动,包括DNA的复制、转录、蛋白质的合成与分泌、信号转导和代谢等,都是由这些复合物所完成。
研究细胞内各种生物大分子的相互作用方式,分析各种蛋白质、蛋白质-DNA、蛋白质-RNA复合物的组成和作用方式是理解生命活动基本机制的基础。
有关研究技术发展迅速,本节选择性介绍部分方法的原理和用途。
一、蛋白质相互作用研究技术目前常用的研究蛋白质相互作用的技术包括酵母双杂交、各种亲和分离分析(亲和色谱、免疫共沉淀、标签蛋白沉淀等)、FRET效应分析、噬菌体显示系统筛选等。
本部分简要介绍标签蛋白(tagged protein)沉淀和酵母双杂交技术(yeast two-hybrid system)。
(一)标签蛋白沉淀标签融合蛋白结合实验是一个基于亲和色谱原理的、分析蛋白质体外直接相互作用的方法。
该方法利用一种带有特定标签( tag)的纯化融合蛋白作为钓饵,在体外与待检测的纯化蛋白或含有此待测蛋白的细胞裂解液温育,然后用可结合蛋白标签的琼脂糖珠将融合蛋白沉淀回收,洗脱液经电泳分离并染色。
如果两种蛋白有直接的结合,待检测蛋白将与融合蛋白同时被琼脂糖珠沉淀( pull-down),在电泳胶中见到相应条带(图20-6)。
图20-6 标签融合蛋白沉淀实验流程示意图目前最常用的标签是谷胱甘肽S-转移酶( GST),有各种商品化的载体用于构建GST融合基因,并在大肠杆菌中表达为GST融合蛋白。
利用GST与还原型谷胱甘肽(glutathione)的结合作用,可以用共价偶联了还原型谷胱甘肽的琼脂糖珠一步纯化GST融合蛋白。
另一个常用的易于用常规亲和色谱方法纯化的标签分子是可以与镍离子琼脂糖珠结合的6个连续排列组氨酸( 6xHis)标签。
标签融合蛋白结合实验主要用于证明两种蛋白分子是否存在直接物理结合、分析两种分子结合的具体结构部位及筛选细胞内与融合蛋白相结合的未知分子。
第六章:分子生物学研究方法(下全文编辑修改
人类染色体端粒DNA的荧光原位杂交
4. 基因定点突变技术
• 通过改变基因特定位点核苷酸序列来改变所编码 的氨基酸序列,用于研究某个(些)氨 基酸残基 对蛋白质结构功能的影响。
二、基因敲除技术
• 基因敲除(gene knock-out)又称基因打靶,通 过外源DNA与染色体DNA之间的同源重组,进行 精确的定点修饰和基因改造。
方法: • 以9~11bp作为标签(tag)=49=262144组合 • 串联tag并通过两端接头PCR扩增 • 扩增产物进行测序 • 每个tag通过Genebank或EST数据库进行比对 • 确认tag代表的基因表达情况
2. RNA的选择性剪接从一个 mRNA前体产生不同的mRNA剪接异构体的过程。
2.凝胶阻滞试验 ➢ 是用于研究DNA与蛋白质相互作用的一种
特殊的凝胶电泳技术。
➢ 当DNA与蛋白质结合时,在电泳中会受到阻滞, 说明可能与某种特殊蛋白结合了。
3. DNAase足迹试验 ➢ 蛋白质结合在DNA片段上,能保护结合部位不被
DNAase水解,电泳中对应于结合部位没有条带。
• 常用RT-PCR法研究某个基因是否存在选择性剪切。
3.原位杂交技术( In Situ Hybridization,ISH)
• 用标记的核酸探针,在组织、细胞上对核酸进行 定位和相对定量研究的一种手 段。
• 探针标记用同位素或地高辛、生物素荧光标记等。
地
同
高
位
辛
素
标
标
记
记
染色体原位杂交
三、蛋白质与RNA、DNA相互作用
1. 酵母单杂交系统 • 将待测转录因子cDNA与表达载体导入酵母细胞,
该基因产物如 果能够与顺式作用元件相结合,就 能激活启动子,使报告基因得到表达。
第5章 分子生物学基本研究方法4-研究DNA-蛋白质互作的方法
第五章 分子生物学基本技术——核酸蛋白互作
足迹试验的优点 可以形象地展示出一种特殊的蛋白质因子同特定DNA片段 之间的结合区域。
使用较大的DNA片段,通过足迹试验便可确定其中不同的
核苷酸序列与不同蛋白质因子之间的结合位点的分布状况。
可以加入非标记竞争DNA,来消除特定的足迹,据此确定
其核酸序列的特异性。
西北师范大学
精品课程 武国凡 2015.11
分子生物学 与基因工程
第五章 分子生物学基本技术——核酸蛋白互作
西北师范大学
精品课程 武国凡 2015.11
分子生物学 与基因工程
第五章 分子生物学基本技术——核酸蛋白互作
2 DNasel足迹试验
西北师范大学
精品课程 武国凡 2015.11
分子生物学 与基因工程
分子生物学 与基因工程
第五章 分子生物学基本技术——核酸蛋白互作
3 甲基化干扰试验
检测靶DNA中特异G残基的优先甲基化对尔后的蛋白质结合作
用究竟会有什么效应,从而更加详细地揭示 DNA 与蛋白质之 间相互作用的模式。
西北师范大学
精品课程 武国凡 2015.11
分子生物学 与基因工程
第五章 分子生物学基本技术——核酸蛋白互作
西北师范大学
精品课程 武国凡 2015.11
分子生物学 与基因工程
第五章 分子生物学基本技术——核酸蛋白互作
西北师范大学
精品课程 武国凡 2015.11
分子生物学 与基因工程
第五章 分子生物学基本技术——核酸蛋白互作
思考题
1、研究DNA与蛋白质相互作用的方法有哪些? 2、凝胶阻滞试验原理是什么?
西北师范大学
精品课程 武国凡 2015.11
分子生物学研究方法
分子生物学研究方法
分子生物学研究方法是研究生物分子结构、功能和相互作用的一系列实验方法和技术。
这些方法帮助科学家了解细胞的基本结构和功能,研究生物分子在疾病发展、遗传变异和进化中的作用。
以下是一些常用的分子生物学研究方法:
1. DNA提取:从细胞或组织中提取DNA,以用于后续实验。
2. 聚合酶链式反应(PCR):用于扩增DNA片段,以便进行分析和检测。
3. 凝胶电泳:用电场将DNA、RNA或蛋白质分离成不同大小的片段,以便研究其结构和功能。
4. 蛋白质纯化:通过一系列步骤将目标蛋白质从混合物中纯化出来,以获得足够的纯度用于研究。
5. 克隆:将DNA序列插入到载体中,以产生大量目标DNA 分子,用于进一步的分析和实验。
6. 基因测序:确定DNA序列的顺序,以研究基因功能、分析遗传变异或进行进化研究。
7. 基因表达:将目标基因转录成mRNA,并翻译成蛋白质,以研究基因功能和调控机制。
8. 蛋白质相互作用:使用技术如亲和层析、酵母双杂交等研究蛋白质之间的相互作用关系,以探索细胞信号传导和代谢途径。
9. 基因编辑:利用技术如CRISPR/Cas9,对细胞或生物体的基因进行精确的编辑,以研究基因功能或治疗遗传疾病。
分子生物学研究方法的不断发展和创新使得科学家可以更深入地了解生物分子的结构、功能和相互作用,为疾病治疗和生物技术的发展提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
足迹试验的优点
可以形象地展示出一种特殊的蛋白质因子同特定DNA片段 之间的结合区域。如果使用较大的DNA片段,通过足迹试 验便可确定其中不同的核苷酸序列与不同蛋白质因子之间 的结合位点的分布状况。如同凝胶阻滞试验一样,也可以 加入非标记竞争DNA,来消除特定的足迹,据此确定其核 酸序列的特异性。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
返回目录
返回第二章
第六节
原理
研究DNA与蛋白质相互作用的方法
2.6.1 凝胶阻滞试验
又叫做DNA迁移率变动试验,是80年代初出现的用于在体外研究 DNA与 蛋白质相互作用的一种特殊的凝胶电泳技术。简单、快捷,是当前被选 作分离纯化特定DNA结合蛋白质的一种典型的实验方法。 在凝胶电泳中,由于电场的作用,裸露的 DNA朝正电极移动的距离是同 其分子量的对数成反比,如果DNA分子结合上一种蛋白质,那么由于分 子量加大,在凝胶中的迁移作用便会受到阻滞,朝正电极移动的距离也 就相在缩短了。所以当特定的 DNA片段同细胞提取物混合之后,若其在 凝胶电泳中的移动距离变小了,这就说明它已同提取物中的某种特殊蛋 白质分子发生了结合作用。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
从此混合物中除去蛋白质之后,将DNA片段群体加样在变性的DNA
测序凝胶中进行电泳分离,经放射自显影,便可显现出相应于DNasel
切割产生的不同长度DNA片段组成的序列梯度条带。但是,如果有一 种蛋白质已经结合到DNA分子的某一特定区段上,那么它就将保护这 一区段的DNA免受DNasel的消化作用,因而也就不可能产生出相应长 度的切割条带。所以在电泳凝胶的放射自显影图片上,相应于蛋白质 结合的部位是没有放射标记条带的,出现了一个空白的区域,人们形 象地称之为“足迹” 。
DMS甲基化,因而也就不会被六氢吡啶所切割。因此,同对照的体外裸露
DNA所形成的序列梯比较,就会发现由完整的活细胞染色质DNA形成的序 列梯中,缺少了G残基没有被切割的相应条带(图2-45)。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
西北师范大学 ---生命科学院<分子生物学>
使用竞争 DNA,可间接阐明体内的 DNA 与蛋白质的相互作用。如,使用 一种具有与已知转录因子结合位点的竞争DNA,就可以判断检测到的蛋白 质是否属于此类转录因子,或是与之相关的其它转录因子;如果事先引入 突变,可以检测突变对其与转录因子结合作用的影响。
西北师范大学 ---生命科学院<分子生物学>
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
思考题
1、研究DNA与蛋白质相互作用的方法有哪些? 2、凝胶阻滞试验原理是什么? 3、用图示的方法说明DNasel足迹试验的过程。 4、甲基化干扰试验有什么用途? 5、什么是体内足迹试验?
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
DNasel足迹试验发展
目前还出了若干种其它类型的足迹试验。例如,自由羟基足迹试验及
菲咯琳铜足迹试验等。其中最有趣的是硫酸二甲脂(DMS)足迹试验。
它所依据的原理是,DMS能够促进DNA中裸露的G甲基化,而六氢吡啶 又会对甲基化的G残基作特异的化学切割。假如有一种蛋白质同DNA分 子中的某一区段结合,在它的保护下,区域内的G免受六氢吡啶的切割, 于是在DNA片段的序列梯中,便不存在具这些G残基末端的DNA片段, 故出现个空白区域,此即通常所说的足迹。 与其它足迹试验不同,由于DMS足迹试验中被切割的是G残基,因此 可用来鉴定同转录因子蛋白质结合的DNA区段中的特异碱基。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
凝胶阻滞试验方法
首先是用放射性同位素标记待检测的DNA片段(亦称探针DNA),然后同 细胞蛋白质提取物一道温育,于是便有可能形成DNA一蛋白质复合物。将 它加样到非变性的凝胶中,在控制使蛋白质仍与DNA保持结合状态的条件 下进行电泳分离,并应用放射自显影技术显现具放射性标记的DNA条带位 置。如果细胞层白质提取物中不存在可同放射性标记的探针DNA结合的蛋 白质,那么所有放射性标己都将集中出现在凝胶的底部;反之,将会形成
-2等,它们可与八聚体结合蛋白质结合)这样的序列而言,这些甲基化
干扰试验技术具有特别的价值,因为只要研究G残基的甲基化干扰,就 可获得有用的信息。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
DMS化学干扰的主要局限性
它只能使G和A残基甲基化,而不能使T和C残基甲基化。尽管 如此,它仍不愧为足迹试验的一种有效的补充手段,可以鉴定 足迹区段中DNA与蛋白质相互作用的精确位置。
DNasel(它可沿着靶 DNA作随机单链切割)消化DNA分子,并控制酶的 用量使之达到平均每条链只发生一次磷酸二脂键的断裂。如果蛋白质提取
物中不存在与DNA结合的特异蛋白质,经DNasel消化之后便会产生出距
放射性标记末端1个核苷酸、2个核苷酸、3个核苷酸等一系列前后长度均 仅相差一个核苷酸的、不间断的、连续的DNA片段梯度群体。
第五章 分子生物学研究的主要方法
体内足迹试验优缺点
显而易见,与应用克隆DNA片段所作的体外足迹试验的结果相比,经 体内足迹试验从染色质总DNA中所获得的任何一种特异DNA的数量, 都是微不足道的。因此,有必要通过PCR扩增特异的靶DNA,以获得 足够数量的DNA样品。如今体内足迹试验已发展成为研究在完整的活 细胞内,DNA一蛋白质结合位点及检测结合位点中碱基突变效应的一 种极有效的手段。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
2.6.3 甲基化干扰试验
应用甲基化干扰试验(methvlation interference assay)技术, 可以检测靶DNA中特异G残基的优先甲基化对尔后的蛋白质结
合作用究竟会有什么效应,从而更加详细地揭示 DNA 与蛋白
第五章 分子生物学研究的主要方法
凝胶阻滞试验用途
鉴定特殊细胞提取物中,是否存在可同放射性标记的探针DNA结合的蛋白 质分子(比如特异的转录因子等)
研究发生此种结合作用之精确的 DNA 序列的特异性:其办法是在 DNA 一 蛋白质结合反应体系中,加入超量的非标记竞争DNA。如果竞争同一种蛋 白,由于竞争 DNA 与探针 DNA 相比是极大超量的,绝大部分蛋白质都会 被其竞争结合掉而使探针DNA处于自由状态,自显影图片上不出现阻滞的 条带,相反,如果不竞争同一蛋白,探针DNA仍与特定蛋白复合,呈现阻 滞的条带。
第五章 分子生物学研究的主要方法
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
2.6.2 DNasel足迹试验
尽管凝胶阻滞试验能够揭示出在体内发生的 DNA蛋白质之间 相互作用的有关信息,然而它却无法确定两者结合的准确部 位 。 要 解 答 这 个 问 题 , 则 需 要 应 用 DNasel 足 迹 试 验 (footprinting assay)。它是一类用于检测与特定蛋白质结合
DNA一蛋白质复合物,由于凝胶阻滞的缘故,其特有的放射性标记的探针
DNA条带就将滞后出现在较靠近凝胶顶部的位置。所以有的文献中也称这 种试验为条带阻滞试验(band retardation assay)。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
西北师范大学 ---生命科学院<分子生物学>
不起作用,那么六氢吡啶对这个G残基的切割作用,则在同蛋白质结合的
DNA分子及不同蛋白质结合的DNA分子中均可观察到(图2-44)
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
甲基化干扰试验的用途
甲基化干扰试验不仅可以用来研究蛋白质与G残基之间的联系,而且同 样也可以用来研究DNA结合蛋白质与结合位点中的腺嘌呤A残基之间的 联系作用。头一个办法是使所有的嘌呤残基甲基化,以便同时研究甲基 化的G和A残基对蛋白质与DNA结合的干扰效应。第二种办法是使用焦 碳酸二乙脂(DEPC)特异性修饰A,而使之易受六氢吡啶的切割作用。 对于研究诸如像具有相对少数G残基的八聚体基序(例如 OCt-1,OCt
质之间相互作用的模式。
西北师范大学 ---生命科学院<分子生物学>
第五章 分子生物学研究的主要方法
甲基化干扰试验的具体操作
先用硫酸二甲脂(DMS)处理靶DNA,控制反应条件,使平均每条DNA分
子只有一个G甲基化,而后将这些局部甲基化的DNA群体同含有DNA结合
蛋白的适当的细胞提取物一道温育,并作凝胶阻滞试验。经电泳分离之后, 从凝胶中切取出具有结合蛋白质的DNA条带和没有结合蛋白质的DNA条带, 并用六氢吡啶处理之,于是甲基化的G残基被切割,非甲基化的G残基则不 被切割。显而易见,如果某个G因甲基化而不与蛋白质结合,那么六氢吡 啶对这个甲基化G残基的切割作用,就只能在没有同蛋白质结合的DNA分 子上表现出来。相反地,如果一个特殊的G残基在DNA与蛋白质的结合中
的DNA序列的部位及特性的专门的实验技术。