二次函数基础测试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.已知抛物线 ,其顶点为 ,与 轴交于点 ,将抛物线 绕原点旋转 得到抛物线 ,点 的对应点分别为 ,若四边形 为矩形,则 的值为()
A. B. C. D.
【答案】D
【解析】
【分析】
先求出A(2,c-4),B(0,c), ,结合矩形的性质,列出关于c的方程,即可求解.
【详解】
∵抛物线 ,其顶点为 ,与 轴交于点 ,
【详解】
∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y>0,
即a-b+c>0,所以①正确;
∵抛物线的对称轴为直线x=- =1,即b=-2a,
∴3a+b=3a-2a=a,所以②错误;
t
0
1
2
3
4
5
6
7

h
0
8
14
18
20
20
18
14

下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线 ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
【详解】
解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,
∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+ )2+ >0,
∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;
∵(x﹣2)*3=5,
∴(x﹣2)×3﹣(x﹣2)+3=5,
解得,x=3,故选项D错误;
故选D.
【点睛】
本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
根据题意,求得 ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.
【详解】
由题可知 ,与 轴的一个交点坐标为 ,则另一个交点坐标为 ,
故可得 , ,
故可得
①因为 ,故①正确;
②因为二次函数过点 ,故②正确;
③当 时,函数值为 ,故③正确;
④由图可知,当 时, ,故④正确;
∴A(2,c-4),B(0,c),
∵将抛物线 绕原点旋转 得到抛物线 ,点 的对应点分别为 ,
∴ ,
∵四边形 为矩形,
∴ ,
∴ ,解得: .
故选D.
【点睛】
本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.
∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】
答案图1(m=1时)答案图2(m= 时)
②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.
此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.
将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m= .
4.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A. ≤m<1B. <m≤1C.1<m≤2D.1<m<2
【答案】B
【解析】
【分析】
画出图象,利用图象可得m的取值范围
【详解】
∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,
∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.
由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.
①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点答案】D
【解析】
【分析】
根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+ )2+ >0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误,∴正确的有②③,
故选B.
6.已知抛物线 与 轴的一个交点坐标为 ,其部分图象如图所示,下列结论:①抛物线一定过原点;②方程 的解为 或4;③ ;④当 时, ;⑤当 时, 随 增大而增大.其中结论正确的个数有()
【答案】C
【解析】
【分析】
利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=- =1,即b=-2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到 =n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.
二次函数基础测试题含答案
一、选择题
1.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是( )
A.不等式(﹣2)*(3﹣x)<2的解集是x<3
B.函数y=(x+2)*x的图象与x轴有两个交点
C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数
【详解】
①∵函数开口方向向上,
∴a>0;
∵对称轴在y轴右侧
∴ab异号,
∵抛物线与y轴交点在y轴负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,
∴图象与x轴的另一个交点为(3,0),
∴当x=2时,y<0,
∴4a+2b+c<0,
【答案】A
【解析】
【分析】
原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.
【详解】
y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x2的顶点坐标是(0,0),
则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.
⑤由图可知,当 时, 随 增大而减小,故⑤错误;
故选:D.
【点睛】
本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.
7.要将抛物线 平移后得到抛物线 ,下列平移方法正确的是()
A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位
A.1个B.2个C.3个D.4个
【答案】C
【解析】
试题分析:由抛物线与x轴有两个交点,可知b2-4ac>0,所以①错误;
由抛物线的顶点为D(-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,可知抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y<0,即a+b+c<0,所以②正确;
2.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
A.1B.2C.3D.4
A.4个B.3个C.2个D.1个
【答案】B
【解析】
【分析】
【详解】
解:∵抛物线和x轴有两个交点,
∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正确;
∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,
∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,
∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,
∵抛物线的顶点坐标为(1,n),
∴ =n,
∴b2=4ac-4an=4a(c-n),所以③正确;
∵抛物线与直线y=n有一个公共点,
∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选C.
【点睛】
本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
将(1,﹣1)代入y=mx2﹣4mx+4m﹣2得到﹣1=m﹣4m+4m﹣2.解得m=1.
此时抛物线解析式为y=x2﹣4x+2.
由y=0得x2﹣4x+2=0.解得
∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.
则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.
即正确的有3个,
故选B.
考点:二次函数图象与系数的关系
9.抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()
①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;
②c=a+3;
③a+b+c<0;
④方程ax2+bx+c=3有两个相等的实数根.
由抛物线的顶点为D(-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x= =-1,可得b=2a,因此a-2a+c=2,即c-a=2,所以③正确;
由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.
故选C.
【答案】B
【解析】
【分析】
根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c之间的关系,从而对④作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出③的正误.
此时抛物线解析式为y= x2﹣2x.
当x=1时,得 .∴点(1,﹣1)符合题意.
当x=3时,得 .∴点(3,﹣1)符合题意.
综上可知:当m= 时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,
∴m= 不符合题.
考点:二次函数的图像与性质
10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③ <a< ;④b>c.其中含所有正确结论的选项是()
A.①②③B.①③④C.②③④D.①②④
【详解】
∵a*b=ab﹣a+b,
∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,
∵(﹣2)*(3﹣x)<2,
∴x﹣1<2,解得x<3,故选项A正确;
∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,
∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+ ,x2=﹣1﹣ ,故选项B正确;
∴4a+c>2b,∴②错误;
∵把(1,0)代入抛物线得:y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b,2c<0,∴③正确;
∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正确;
∴m> .
综合①②可得:当 <m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,
故选:B.
【点睛】
考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.
5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
故选:A.
【点睛】
此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.
8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()
相关文档
最新文档