基于ANSYS的齿轮接触应力有限元分析【文献综述】

合集下载

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇基于ANSYS的齿轮接触应力与啮合刚度研究1齿轮作为一种常用的传动元件,在机械系统的运转中发挥着重要的作用。

因此,对于齿轮的力学性能研究具有重要的意义。

本文以ANSYS软件为工具,研究齿轮接触应力与啮合刚度的相关问题。

一、齿轮模型的建立齿轮模型的建立是研究齿轮力学性能的基础。

初步建模需要确定齿轮参数、材料参数等。

在本次研究中,我们选取了一个模数为4的齿轮进行建模,在材料参数选取方面,我们选择了常用的20CrMnTi材料,以其为基础进行实验。

建模之后需要进行网格划分,网格密度的选择会影响后续分析的准确性以及计算时间,因此需要选择合适的密度。

选取太粗的网格会导致结果失真,选取太细的网格则会消耗大量的计算时间。

本次研究选取了相对均匀的中等密度网格,以保证结果的准确性。

二、齿轮接触应力分析齿轮在啮合过程中会产生接触应力,这对于齿轮的寿命和工作效率都有着至关重要的作用。

因此,研究齿轮接触应力,选择适当的润滑方式,对齿轮寿命和传动效率都有着重要的意义。

在ANSYS中进行齿轮接触应力的分析和计算,需要考虑到许多复杂的因素,如齿形、材料参数、润滑方式等。

在本次研究中我们采用了基于有限元方法的接触分析(FEM),对齿轮接触应力进行评估。

得到接触应力的结果后,我们可以对齿轮的寿命进行评估,并针对接触应力过大的地方进行优化处理。

三、齿轮啮合刚度分析除了接触应力之外,齿轮的啮合刚度对于传动的效率和精度也有着重要的影响。

啮合刚度是指啮合中两齿之间相对于轴线方向的相对运动能力,也可以视为齿轮在啮合过程中的弹性变形程度。

齿轮的啮合刚度与齿轮副的堆叠误差、硬度、几何尺寸等的影响有关。

在本次研究中,我们采用了ANSYS的非线性有限元分析方法,对齿轮的啮合刚度进行建模和优化。

通过对啮合刚度的研究,我们可以指导齿轮的加工和优化,提高其传动效率和精度。

四、总结本次研究基于ANSYS对齿轮接触应力和啮合刚度进行了研究。

基于ANSYS WORKBENCH的齿轮接触应力分析

基于ANSYS WORKBENCH的齿轮接触应力分析

基于ANSYS WORKBENCH 的齿轮接触应力分析蓝娆1 杨良勇 2 罗昌贤3(1柳州市采埃孚机械有限公司 广西柳州5450072四川工程职业技术学院 四川 德阳 6180003广西柳工机械股份有限公司 广西柳州545007) 摘要:在理论分析的基础上,建立齿轮接触对的有限元模型,在有限元分析软件ANSYS Workbench 建立接触对,添加约束和加载,得到齿轮接触应力大小,齿轮应力集中主要发生在齿根圆角处,和理论计算分析对比。

得出相关结论为以后齿轮接触的有限元分析提供了依据。

关键词:齿轮接触对;ANSYS Workbench ;接触应力;有限元分析0引言齿轮是传动系统中承受载荷和传动动力的主要零部件,也是最容易出故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的6 0 %以上,其齿面损坏又是齿轮失效的主要原因之一。

因此,工程中需要发大量工作对齿面强度及其应力进行分析。

ANSYS Workbench 是用 A NS YS 求解实际问题的新一代产品,它是专门从事于模型分析的有限元软件,拥有与CAD 的无缝接口、新一代的参数化建模工具,其强大的分析功能可以很准确地反映实际物体的状态。

可进行静力学分析、动力学分析、非线性分析等。

本文从柳州市采埃孚机械有限公司实际问题出发,建立齿轮接触对的三维有限元模型,在有限元分析软件ANSYS Workbench 计算得到齿轮接触对的接触应力,与传统理论计算公式得出比较,为齿轮的快速设计和进一步的优化设计提供条件。

1齿轮参数化建模齿轮的设计,加工,生产是一个复杂、严格的过程 ,如果能够实现齿轮在设计上的参数化建模,那么就避免了齿轮的反复设计,每次只要改变参数就能得到自己想要的齿轮,这将为齿轮的生产带来极大的方便。

利用CAD 软件UG ,其与ANSYS Workbench 可以实现无缝连接,其参数化建模功能和有限元分析模块可以在同一平台完成,避免了从CAD 软件到CAE 软件的转换,提高了设计效率,同时又有利于设计数据的统一管理。

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。

为较好地改善齿轮传动性能,有必要对齿轮进行静力学以及动力学分析。

对于齿轮的静力学分析,本文利用ANSYS对齿轮进行了齿根弯曲应力分析以及齿轮接触应力分析。

对于齿轮的动力学分析,本文利用ANSYS对其进行了模态分析,提取了齿轮的前十阶固有频率和固有振型。

最后实验表明,基于ANSYS的齿轮弯曲应力和接触应力相比较传统方法具有一定的裕度,而模态分析能较形象地展现其振型。

标签:齿轮;弯曲应力;接触应力;模态分析引言随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。

改善齿轮传动性能成为齿轮设计中的重要内容。

为了避免由于齿轮接触疲劳而引发的行驶事故,有必要对齿轮的齿根弯曲应力和齿面接触应力进行分析和评估。

同理,为避免由于齿轮共振引起的轮体破坏,有必要对齿轮进行固有特性分析,通过调整齿轮的固有振动频率使其共振转速离开工作转速。

齿轮的工作寿命与最大弯曲应力值的六次方成反比,因此最大弯曲应力略微减小,齿轮工作寿命即会大大提高[1]。

齿轮的最大弯曲应力往往出现在齿轮的齿根过渡曲线处,因此精确计算渐开线齿轮齿根过渡曲线处的应力,进而合理设计过渡曲线,对延长齿轮工作寿命、提高齿轮承载能力至关重要。

为了进行齿面接触强度计算,分析齿面失效和润滑状态,必须分析齿面的接触应力。

经典的齿面接触应力计算公式是建立在弹性力学基础上,而对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础。

但由于齿轮副啮合齿面的几何形状十分复杂,采用上面的方法准确计算轮齿应力和载荷分配等问题非常困难甚至无法实现。

随着计算机的普及,齿轮接触问题的数值解法获得了越来越广泛的应用。

齿轮副在工作时,在内部和外部激励下将发生机械振动。

振动系统的固有特性,一般包括固有频率和主振型,它是系统的动态特性之一,同时也可以作为其它动力学分析的起点,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等都具有重要的影响。

基于ANSYSWorkbench的直齿轮接触分析_周钊

基于ANSYSWorkbench的直齿轮接触分析_周钊
将本文各物理量数据代入式(1),计算得直齿轮 副的最大接触应力为 736.8 MPa,最大切应力表达式
为 max 为 0.3 σH, 最大切应力的理论解为 221 MPa。 最大接触应力和最大切应力的理论解与有限元解 误差很大。 一般来说,小的接触刚度会导致大的穿 透深度,会产生较大的误差。 增大接触刚度来抵抗 穿透,使有限元仿真结果更可靠。
图 1 齿轮分割几何模型 齿轮接触处应力变化急剧, 需要设定较密网 格,而远离关注部位的非接触区域,改用较大尺寸
收 稿 日 期 :2011-10-06 基 金 项 目 :湖 北 省 教 育 厅 优 秀 中 青 年 课 题 (Q20082301);湖 北 汽 车 工 业 学 院 学 生 科 研 项 目 (S201003018)
Abstract: Taking a pair of meshing involute spur gears as the research object, the finite element model is established for spur gears contact by ANSYS Workbench. The gears are simulated based on nonlinear contact method and finite element analysis. The corresponding calculation results of different contact stiffness values are listed and the convergence is analyzed. The simulation results are compared with the traditional theory. The results show it is feasible to analyze gear contact by using finite element method. Key words: finite element; spur gear; contact stress; contact stiffness

基于ANSYS的齿轮弹流润滑的有限元应力分析

基于ANSYS的齿轮弹流润滑的有限元应力分析

1.0 山一
望o.8 《
O.6
.6 A
.3

B Pc J,mm



图1 油膜中心压力沿啮合线变化曲线 Fig 1 Variation of central film pressure along the line of action
2齿轮建模及有限元分析 2.1齿轮三维建模
在有限元分析过程中,建模是非常关键的步骤, 模型是否准确将直接影响计算结果的正确性。一个渐 开线轮齿,其截面曲线是由齿顶圆、渐开线、齿根过 度曲线和齿根圆4部分组成。建模的关键是如何获得 精确的齿面曲线方程及如何生成齿面曲线。
有限元分析软件中对齿轮进行网格划分,并设置加载 区;在轮齿上选取5个特殊啮合点,将油膜压力作为 载荷,建立了油膜压力条件下齿轮的有限元模型;考
【4】刘哲,陈定方.基于ANSYS的渐开线齿轮建模和有限元分 析[J].湖北工业大学学报,2008(2):35—37.
Liu Zhe,Chen Dingfang.Modeling and Finite Element Analysis
图2齿轮三维模型
2.2
Fig 2 Thine.dimensional model of gear
ANSYS有限元分析
通过接口,可以把在Pro/E建好的齿轮三维模型
直接导入ANSYS中,对齿轮的应力场进行有限元仿 真分析,确定齿轮的最大齿根应力值和相应啮合位 置。
(1)添加材料常数,划分网格。在对模型进行 网格划分之前,要定义所需要的单元类型,不同的单 元类型会直接影响网格化分以及最终求解的效果。针 对不同的结构模型,选择不同的单元类型。由于对于 此齿轮划分采用先对端面进行网格划分,然后通过体 扫掠生成单元体网格。在端面网格划分中选择的单元 类型为Quad8node82。体扫掠网格划分选择单元类型 为Brick20node95。定义材料的弹性模量为2.06×10“ Pa和材料的泊松比为0.3。最终生成的网格如图3所 示。

基于ANSYS的齿轮接触非线性有限元分析

基于ANSYS的齿轮接触非线性有限元分析

基于ANSYS的齿轮接触非线性有限元分析XXXX大学(硕、博士)研究生试卷本考试课程名称有限元方法与应用考试考查学科专业机械工程学号XXXXX姓名XXX题目序号 1 2 3 4 5 6 7 8 9 10 总计评卷教师基于ANSYS的齿轮接触非线性有限元分析摘要:通过研究接触问题有限元基本理论,应用大型有限元分析软件ANSYS对齿轮啮合对进行接触非线性有限元分析。

有限元处理传统解析法无法处理的啮合问题结果比传统计算公式更为准确,且可定量的分析齿轮啮合应变与应力分布情况。

关键词:有限元;ANSYS齿轮;应变;应力Abstract:By studying the basic theory of finite element contact problem, using large-scale finite element analysis software ANSYS to the gear mesh to the contact nonlinear finite element analysis. The finite element mesh of dealing with the traditional analytic method cannot handle problems more accurate results than the traditional calculation formula, and the quantitative analysis of the gear meshing of strain and stress distribution.Key words: finite element; ANSYS gear; strain; stress一、研究背景接触是一种常见的物理现象,它涉及到接触状态的改变,还可能伴随有热、电等过程,因此成为一个复杂的非线性问题。

齿轮啮合就是一种接触行为,传统的齿轮理论分析是建立在弹性力学基础上的,对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础,在计算过程中存在许多假设,不能准确反映齿轮啮合过程中的应力以及应变。

基于ANSYS软件的齿轮接触强度分析

基于ANSYS软件的齿轮接触强度分析

10.16638/ki.1671-7988.2018.08.013基于ANSYS软件的齿轮接触强度分析季景方1,黎遗铃2(1.汽车动力传动与电子控制湖北省重点实验室(湖北汽车工业学院),湖北十堰442002;2.比亚迪汽车工业有限公司,广东深圳518000)摘要:齿轮传动是汽车传动的主要形式,其强度不足导致的失效问题给汽车企业造成巨大经济损失,文章基于ANSYS软件对齿轮接触强度进行分析。

首先使用CATIA软件建立了一对渐开线直齿圆柱齿轮的三维模型,并将三维模型导入ANSYS软件中进行了齿轮强度接触分析,得到了齿面、齿根等处的应力分布规律。

论文的研究为齿轮的设计提供了理论参考。

关键词:齿轮;接触强度;有限元中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)08-36-03Contact strength analysis of gear based on ANSYSJi Jingfang1, Li Yiling2( 1.Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology), Hubei Shiyan, 442002; 2.BYD Automotive Industry Limited Company. Guangdong Shenzhen 518000 )Abstract: The gear transmission is the main form of automobile transmission and the failure of gear causes great economic loss for automobile enterprise. Contact strength analysis of gear is researched based on ANSYS in this paper. The three- dimensional model of a pair of involutes spur gear is established by using CATIA and the three dimensional model is introduced into the ANSYS to carry out contact strength analysis, and the stress distribution law of the tooth surface and the tooth root is obtained. The research provides a theoretical reference for gear design in this paper.Keywords: gear; contact strength; finite elementCLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)08-36-03前言齿轮传动以其工作可靠、寿命长等特点在汽车传动系中具有非常广泛的应用,其齿轮的质量和性能直接影响了产品的品质。

基于ANSYS的齿轮应力有限元分析报告

基于ANSYS的齿轮应力有限元分析报告

本科毕业设计论文题目:基于ansys的齿轮应力有限元分析学生:所在院系:机电学院所学专业:机电技术教育导师:完成时间:摘要本文主要分析了在ansys中齿轮参数化建模的过程。

通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。

再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。

运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。

通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。

关键词:ANSYS,APDL,有限元分析,渐开线,接触应力。

Modeling and Finite Element Analysis of InvoluteSpur Gear Based on ANSYSAbstractWe have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishesgear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gearby using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy.Keywords:ANSYS; APDL;finite element analysis;involute line;contact stress目录1绪论52齿轮仿真分析方法63齿轮实体模型的建立方法63.1直齿轮建模要求描述73.2渐开线的生成原理73.3创建渐开线曲线73.4齿根过渡曲线生成原理93.5创建齿廓特征104齿轮接触应力分析124.1模型网格划分124.2创建接触对144.3施加边界条件和载荷154.4求解164.5计算结果分析174.5.1仿真计算分析174.5.2理论分析175齿根弯曲应力分析175.1建立齿轮模型175.2划分网格185.3施加载荷和约束185.4求解185.5仿真分析与理论结果对比19 6结论19参考文献21附录22[1]大齿轮渐开线生成的命令流22[2]大小齿轮的基本参数表23辞241绪论齿轮是机械中广泛应用的传动零件之一,形式很多,应用广泛。

基于ANSYS的直齿面齿轮的接触应力分析

基于ANSYS的直齿面齿轮的接触应力分析

1072013年9月下 第18期 总第174期1 概述随着齿轮传动向重载、高速、低噪、高可靠性方向发展,现代齿轮设计对齿轮传动系统的静、动态特性提出了更高的要求。

齿轮设计的主要内容之一是强度设计,因此,建立比较精确的分析模型,准确的掌握齿轮应力的分布特点和变化规律具有重要的意义。

①③④设计模型的几何尺寸及边界条件如下表所示,大齿轮与小齿轮的齿厚为10mm,两个齿轮的中心距离为81mm。

小齿轮为主动齿轮,大齿轮为从动齿轮,小齿轮均匀转速0.2rad/s,大齿轮承受600N.m 的阻力扭矩,计算时间为1s.(如表1表2)2 模型的建立定义小齿轮渐开线,定义小齿轮根部过渡曲线,定义小齿轮齿廓线,建立小齿轮模型,同理建立大齿轮模型,调整两个齿轮的位置,如图1所示。

3 齿轮有限元网格模型的建立在Ansys中对齿轮副进行分析,首先要建立齿轮的有限元网格模型。

依据齿轮啮合模型参数,把根据齿面方程设计的专有程序计算结果导人Ansys,建立齿轮单齿有限元网格模型如图2所示。

针对所建齿轮模型,在齿高方向划分了17层单元,过渡部分划分4层单元,齿厚方向划分41层单元,为节省计算资源,省略了齿轮的辐板和轮载部分等对接触分析结果影响不大的部分。

该模型共有7896个节点,7678个单元,轮齿采用Solid45八节点线性等参元,将生成的单齿模型数据导人到Ansys中,并对其进行旋转复制等操作,把单齿模型拓展为有限元网格模型。

4 齿面接触情况及分析过程在上述模型上施加扭矩,对面齿轮副进行分析计算。

由于面齿轮的传动误差都很小,一般都在10-4-10-2范围内,基本上呈一条直线,并且波动性不大。

下图给出面齿轮轮齿在一个啮合周期内5个啮合位置的接触情况。

其中:图3为初始啮合位置的接触情况,图4为啮合终了位置的接触情况。

图中显示了不同啃合位置面齿轮轮齿接触区域的位置和形状变化,反映了齿轮副的啃合性能。

理论上讲,面齿轮啃合时为点接触,而在加载时齿面形成椭圆状接触区,接触区的大小用接触椭圆的长轴来衡量。

基于ANSYS的齿轮强度有限元分析

基于ANSYS的齿轮强度有限元分析

622013年第31期(总第274期)NO.31.2013( CumulativetyNO.274 )通常在设计齿轮强度选择过程中,采取的多是人工方式进行设计和齿轮强度校验,具体方法是材料力学,用齿轮作为悬臂梁,对齿面接触强度和翅根弯曲强度进行设计和校核。

接着利用所得的设计结果对结构进行设计,同时将二维图纸画出来。

1 设计想法实践中可以看到,ANSYS技术对复杂实体建模表现出一定的局限性,一方面难以保证渐开线齿廓自身的形状精确度,另一方面也不能完成参数化设计。

对于Pro/E软件而言,其可以有效解决这一问题,实现这一操作目标;此外,与ANSYS之间的数据接口性能也比较好。

笔者建议在Pro/E软件应用基础上,建立一个精确度非常高的三维参数化圆柱齿轮模型,然后向ANSYS中导入Pro/E软件得到的模型,对齿轮模态、静态特性等进行有限元分析,此时推土机的终传齿轮自身的强度特性就可以得出,最后可以通过振型图、应用云图以及变形云图等方式和方法,对分析结果进行最为直接的显示。

2 建模图1 齿轮模型以笔者之见,齿轮模型建立只需将模数、齿数以及压力角和螺旋角等齿轮参数整合,并对轮缘、辅板的厚度以及轴孔的半径等参数进行综合考虑,便可以自动生成 齿轮。

低,所以得到了极大的推广。

而现代社会中随着PC机的普及发展,虚拟仪器的测试技术得到了实现,与前两段历程相比,这个阶段操作性更强,且费用最低,其灵活性与效率也最高,势必在将来得到大发展,但是其漏洞在于潜在的第三方技术的升级成为了始终威胁安防系统的隐患。

5 结语信息技术与通信技术的发达使安防技术的质量与效率愈加提高完善。

目前,安防技术已经涵盖了几乎所有行业,包括建筑、生活区、银行、交通、车辆等。

伴随人民生活水平的提高其需求水平相应增加,安防意识也越来越强,信息技术的飞速发展也反过来刺激了不法人员的升级换代,所以安防系统的重要性可想而知,由于智能安防市场的扩大,越来越多的企业开始介入对其的研发,但是客观的安防并不能根除危机隐患,要从根本上杜绝还依赖于社会精神文明的建设,人民总体素质的提高。

基于ANSYS的齿轮应力有限元分析

基于ANSYS的齿轮应力有限元分析

基于ANSYS的齿轮应力有限元分析ANSYS是一种常用的有限元分析软件,可用于齿轮等机械零件的应力分析。

齿轮作为传动系统的关键部件,其可靠性和寿命对系统的运行至关重要。

因此,进行齿轮的应力有限元分析可以帮助我们评估其强度和稳定性,并优化设计,提高其性能和寿命。

首先,我们需要建立齿轮模型。

使用ANSYS软件中的几何建模工具,可以通过几何体的建立、相对位置的确定以及齿轮几何参数的输入来创建齿轮模型。

齿轮的几何参数包括齿数、齿宽、齿高、模数等,这些参数可以根据实际设计要求来确定。

接下来,我们需要设置齿轮材料的力学性能参数。

ANSYS软件中有一个材料库,可以选择常见材料的力学性能参数,如弹性模量、泊松比、屈服强度等。

根据实际使用材料的特性,选择合适的材料模型。

然后,我们需要对齿轮模型进行网格划分。

网格划分是有限元分析中非常重要的一步,它将复杂几何形状划分为许多小单元,以便对每个小单元进行分析。

ANSYS软件提供了多种网格划分算法和工具,可以根据需要选择合适的网格划分方案。

完成网格划分后,我们可以设置齿轮的边界条件和加载情况。

边界条件包括支撑条件、固定条件和对称条件等。

加载情况包括外力、扭矩和速度等。

根据实际应用情况,设置合适的边界条件和加载情况。

接下来,我们可以进行齿轮的应力分析。

利用ANSYS软件的求解器,可以对齿轮模型进行有限元分析。

通过求解器的迭代计算,可以得到齿轮模型中各个单元的位移、应力和应变等信息。

最后,我们可以对结果进行后处理。

ANSYS软件提供了丰富的后处理工具,可以对齿轮模型的应力分布、变形情况等进行可视化和分析。

通过分析结果,可以评估齿轮的强度和稳定性,并在需要的情况下进行设计优化。

总之,基于ANSYS的齿轮应力有限元分析是一种有效的方法,可以帮助我们评估齿轮的强度和稳定性,并优化设计。

通过合理的模型建立、准确的材料参数输入、合适的网格划分、准确的边界条件和加载情况设置,可以得到可靠的分析结果,为齿轮的设计和改进提供有力支持。

ANSYS有限元齿轮接触及弯曲应力研究

ANSYS有限元齿轮接触及弯曲应力研究

机械设计制造 《机电技术》2009年第3期ANSYS 有限元齿轮接触及弯曲应力研究刘斌彬(福建工程学院机电及自动化工程系 福建 福州 350000)摘 要:本文针对ANSYS 有限元齿轮接触仿真进行了探讨,计算齿轮的弯曲应力,对计算过程中可能影响收敛的因素进行了分析,并通过计算实例说明了有限元分析在齿轮接触问题上的有效性。

关键词:齿轮接触 有限元 弯曲应力 ANSYS中图分类号:TH132.41 文献标识码:A 文章编号:1672-4801(2009)03-071-02引言齿轮的接触问题是典型的接触非线性问题,传统的计算设计方法将非线性问题进行一定的简化与假设,存在一定的局限,计算结果不是十分精确。

以齿根弯曲应力为例,传统的计算方法计算得到的应力大小一般偏大,存在不小的误差,使得齿轮的承载能力存在一定的浪费。

而以有限元法为基础的计算方法可以很好地解决这个问题。

1 传统理论分析齿轮弯曲应力在计算轮齿齿根弯曲应力时,通常的做法是将轮齿视为一宽度为齿宽B 的悬臂梁,其危险截面是与轮齿齿廓对称线成30º角的两直线与齿根过渡曲线相切点连线的齿根截面。

假定载荷全部作用在该轮齿的齿顶,计算危险截面处的等效应力,其公式如下:F F1Fa1sa1εFa2Sa2F2F1Fa1Sa1K FY Y Y BmY Y Y Y σσσ==………(公式1)其中,K F 为载荷系数;Y Fa2、Y Fa1分别为内外齿轮的齿形系数;Y Sa2、Y Sa1为内外齿轮的应力修正系数;Y ε为重合度系数;F 为啮合力;m 、B 为齿轮的模数和啮合宽度。

但该公式计算并不精确,存在以下不足:(1)该公式是建立在变截面悬臂梁的基础上,并假设为接触区域为点接触(平面情况),这与实际接触情况有所不同,造成计算的应力偏大;(2)为计算方便假设均为单对齿啮合,并将计算点取为齿顶。

齿轮的接触问题是典型的非线性问题,传统方法很难适用,应用有限元方法可以较好地解决这个问题。

基于Ansys Workbench的齿轮轴有限元分析

基于Ansys Workbench的齿轮轴有限元分析

引言摆线针轮行星传动属于K-H-V 行星齿轮传动,与普通的齿轮传动相比,摆线针轮行星传动具有以下主要特点:传动比范围大,单级传动比为6~119,两级传动比为121~7569,三级传动比可达6585030;结构紧凑、体积小、质量轻。

摆线针轮行星传动采用了行星传动结构和紧凑的输出机构,因而结构紧凑,与相同功率的普通齿轮传动相比,体积和质量均可减少1/2~1/3;运转平稳,噪声低;在摆线针轮行星传动过程中,摆线行星轮与针轮啮合齿数较多,且摆线行星轮与针轮的啮合、输出机构的销轴与行星轮端面的销轴孔及行星轮与偏心套之间的接触都是相对滚动,因而运转平稳、噪声低;传动效率高,除了针轮的针齿销支承部分外,其他部件均为滚动轴承支承,同时针齿套的使用使得针轮与摆线行星轮的啮合由滑动摩擦变为滚动摩擦。

因而,摆线针轮行星齿轮传动机构同一般的减速机构相比有更高的传动效率。

一般单级传动效率为90%~95%。

齿轮轴是传动的薄弱环节,限制了高速轴的转速和传递的功率。

减速器系统强度取决于减速器内部各个零件的强度,它们直接决定了减速器的使用寿命,因而各零件具有合理的强度是十分重要的。

国内外许多专家学者对减速器的强度分析作了深入的研究,常用的方法有解析法、试验法和有限元法。

张迎辉等利用MATLAB 软件分析计算得出行星架的支承刚度和曲轴的弯曲刚度对固有频率的影响明显[1]。

张迎辉等分析了机器人用RV 减速器中支承轴承刚度及曲轴和齿轮之间角度周期性变化的影响,并对轴承刚度的灵敏度进行了分析,提出了避免共振和保持精度的方法[2]。

在风电变桨减速器零部件设计过程中需要考虑零部件的传动可靠性、安装合理性,而齿轮轴作为传动的关键零件,在实际应用中至关重要,该零件也容易造成磨损,所以对其进行强度分析就显得尤为重要。

此外,对于轴这些传递动力的零件应在满足强度要求的前提下,使其尺寸尽量小、寿命尽量长。

1齿轮轴的设计因轴为齿轮轴,材料与行星齿轮的相同,故选用20CrMnTi ,渗碳淬火、回火处理。

基于ANSYS的直齿圆锥齿轮建模及动态接触有限元分析

基于ANSYS的直齿圆锥齿轮建模及动态接触有限元分析

式中 , r 是齿轮的起始半径 ;α是基圆锥半锥角 , 可以 由节锥角 、啮合角求出 ;β是啮合面上起始线段与瞬时
回转轴之间的夹角 ,是个变量 ,对于基圆锥上渐开线的 始点 ,β为零 。
为绘制精确的渐开线 , 可以把渐开线划分为满足
工程需求的若干个分点 , 用样条曲线来近似替代渐开
线 。为保证准确性 , 每个分点之间的渐开线弧的曲率
的面 ,A1 、A2 、A3 为背锥面 ,A4 为轮毂面 ,这 4 个面都
必须拉伸汇聚于坐标原点 ,4 个面不能同时采用同一
个坐标系进行拉伸 ,因为 A1 、A2 、A3 与笛卡儿坐标 Y
轴成一定角度 ,拉伸时将不能汇聚于原点 ,因此必须建
立局部笛卡儿坐标系 ,局部坐标系以垂直于背锥面的
球半径为 Z 轴 ,相当于从一个较大的球面变成一个较
置已申请国家专利 。
参考文献 1 施进发. 机械模块学. 重庆 :重庆出版社 ,1994 2 肖正扬. 自动机械的凸轮机构设计. 北京 :机械工业出版社 ,1990
收稿日期 :20040929 作者简介 :李军利 (1966 - ) ,男 ,陕西泾阳人 ,讲师 ,研究生
50 机械传动 2005 年
轮齿的接触碰撞变形包含翘曲变形 、接触变形及 轮毂变形 。很多研究都只针对部分轮齿进行研究 ,忽 略了轮毂部分对变形的影响 。J IANDE WANG 研究了 齿轮基础部分 (即轮毂) 在单齿啮合区和双齿啮合区的 静态扭转刚度 ,研究表明 ,在双齿啮合区齿体的刚度比 单齿啮合区突变了 8 %[6] ,这在齿轮的刚度分析中是 不能忽略的 。杨生华的研究也表明局部和整轮仿真分 析的变形结果误差可以达到 9. 1 %[1] 。因此 ,为精确 模拟齿轮的接触状况应该采用整轮模型 。本文研究齿 轮的重合度在 1~2 的范围内 ,选取出两个轮齿进行加 密网格划分 ,研究单个啮合周期的整轮接触情况 。

基于ANSYS有限元软件的直齿轮接触应力分析

基于ANSYS有限元软件的直齿轮接触应力分析

基于ANSYS有限元软件的直齿轮接触应力分析一、本文概述随着现代机械工业的飞速发展,齿轮作为机械设备中的关键传动元件,其性能的稳定性和可靠性对于设备的长期运行和维护至关重要。

直齿轮作为齿轮传动的一种基本形式,其接触应力的分布与大小直接影响着齿轮的工作性能和使用寿命。

因此,对直齿轮接触应力的深入研究与分析,对于提高齿轮的设计水平、优化制造工艺以及提升设备的整体性能具有重要意义。

本文旨在利用ANSYS有限元软件对直齿轮的接触应力进行分析。

简要介绍了直齿轮的基本结构和传动原理,阐述了接触应力分析的必要性和重要性。

详细阐述了ANSYS有限元软件在齿轮接触应力分析中的应用,包括建模、网格划分、材料属性设定、接触设置、求解及后处理等关键步骤。

通过实例分析,展示了ANSYS软件在直齿轮接触应力分析中的具体操作流程,并对分析结果进行了详细的解读。

总结了利用ANSYS进行直齿轮接触应力分析的优势和局限性,并对未来的研究方向进行了展望。

本文旨在为齿轮设计师和工程师提供一种有效的直齿轮接触应力分析方法,帮助他们更好地理解直齿轮的应力分布特性,优化齿轮设计,提高齿轮的工作性能和可靠性。

本文也为相关领域的学者和研究人员提供了一种有益的参考和借鉴。

二、直齿轮接触应力的理论基础在直齿轮传动过程中,接触应力是决定齿轮使用寿命和性能的关键因素之一。

因此,对其进行准确的接触应力分析至关重要。

接触应力的分析主要基于弹性力学、材料力学和摩擦学的基本理论。

弹性力学是研究弹性体在外力作用下变形和应力分布规律的学科。

在直齿轮接触问题中,通常假设齿轮材料为线性弹性材料,满足胡克定律。

齿轮在啮合过程中,由于接触力的作用,齿面会产生弹性变形,进而产生接触应力。

材料力学是研究材料在受力作用下的应力、应变和强度等性能表现的学科。

对于直齿轮,材料的选择对齿轮的接触应力分布和承载能力有重要影响。

通常,齿轮材料需要具备较高的弹性模量、屈服强度和疲劳强度等。

基于ANSYS汽车发动机前端齿轮的接触应力分析毕业论文

基于ANSYS汽车发动机前端齿轮的接触应力分析毕业论文

(此文档为word格式,下载后您可任意编辑修改!) 本科毕业设计(论文)论文题目:基于ANSYS汽车发动机前端齿轮的接触应力分析毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

基于ANSYS的直齿轮应力有限元分析

基于ANSYS的直齿轮应力有限元分析
( 2):2 -1 7
可 建立财 务会计档案统 计台帐 ,如财 务会计档案查阅登记簿 、文书档 案 汇总登记簿 、财务会 计档案数量统 计台帐 、财务会计档案移交清册 等 ;要将 基建会 计档案分开编号存放 ,并将各项基建合同 、协议等资 料作 为原始凭证 ,一同归档 。 总之 ,高校的财务会计档案是利用各种财务基础数据资料分析高
( 稿 日期 :2 1 - 3 1 ) 收 02 0- 5
( 2 页 )5 ℃ 、压 力 为8 a ,注入 水 和地 层 水 的混 合比 例从 接 3 5 MP T"
垢量在减少 。此实验结果 与预测结果相符 。
4 结 论
2 、37 :、6 、 : : :、5 8 5 : 82 4 变化 时 ,对注入 水与地层 水的硫酸 钙 、硫酸 钡和硫酸锶的结垢趋势进行预测 。结垢预测进行主要硫酸盐结垢趋 势 的预测。预测结果见表2 。 通过对 表2 的结果分析 可知 ,注入 水与地层水混 合后硫酸钙和 硫 酸锶结垢 的饱和指数值S< ,处于溶解状态 ,没有结垢趋 势 , 会出 IO 不 现沉淀 。注入水与地层 水混合 后硫酸 钡 ,s> ,硫酸 钡就处 于过饱 和 I0 状态 ,而且相 同温度下随着注入水在混合水 中比例 的升 高 ,硫酸钡结 垢趋势越强 。相同比例下 ,随着温度的升高 ,硫酸钡结垢趋势降低。 ( ) 入水 与地 层 水混合 硫酸 钡静 态结 垢实 验 。在 实验温 度 3 注 5 ℃,压 力为8 a 件下 ,选择 不同比例 的注入水 与地层水混 合 , 5 MP 条 观察硫酸钡结垢量 的变化 。
档案 管理 的效率 。 ( ) 5 要建立财 务会计档案统 计台帐 。在财 务会计档案和 管理 中
校经济发展 ,充分发挥财务会计档案的潜在作用 ,方便利用 ,更好地 为财务工作服务 ,发现财务运行 中的特点 、存在的不足 ,研究预防对 策 ,为领导决策服 务 ,为学院服 务。

基于ANSYS的斜齿轮接触有限元分析_凡增辉

基于ANSYS的斜齿轮接触有限元分析_凡增辉

y = ? rbsin( tBtan B/ rb)
( 7)
z = tB 式中 H ) ) ) 渐开线在在 K 点的滚动角
H= Hk + Ak Ak ) ) ) 压力角
Hk ) ) ) 展角, Hk= tan Ak- Ak rb ) ) ) 基圆半径 b )) ) 齿宽 t ) ) ) 参数, 0 [ t [ 1 基于 Pro/ E 的参数化建模功能[ 3] , 利用以上方程, 实现斜齿轮的的参数化精确造型。在斜齿轮接触分析 中, 由于考虑到单齿模型不能完全表示斜齿轮啮合的 状况, 运算结果不能准确反映接触变形与应力, 而全齿 模型的单元数量又太大, 影响分析的效率与时间。综 合考虑, 基于圣维南原理, 生成如图 1 所示的 5 对齿啮 合的三维模型。 2. 3 啮合齿轮副接触有限元模型的建立 (1) 定义单元属性 在有限元模型建立中, 首 先需要定义合适的单元属性, 包括单元类型、单元实常 数、材料属性等。
分离状态
r2ij =
r
1 ij
=
0
(j= n, t)
( 4)
式中 L ) ) ) 齿面摩擦因数
Din ) ) ) 齿面接触点 i 在法向方向的初始间隙
Dit ) ) ) 齿面接触点 i 在切向方向的初始间隙
Rit ) ) ) 齿面接触点 i 在切向方向的接触力
Rin ) ) ) 齿面接触点 i 在法向方向的接触力
图 2 轮齿部分的网格细化
实体单元 Solid185 只
有沿 3 个坐标轴移动自由
度, 无转动自由度, 且缺省
情况下节点坐标系与总体
笛卡尔坐标系平行。为了
施加 主动力矩, 将主动力
矩转化为齿轮内圈上的切
向力, 在齿轮转动中心轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文文献综述机械设计制造及其自动化基于ANSYS的齿轮接触应力有限元分析一、研究现状及研究主要成果1. 《基于ANSYS的渐开线啮合齿轮有限元分析》中指出:采用有限元软件ANSYS建立了啮合齿轮的有限元模型,利用ANSYS软件的非线性接触分析功能,对啮合齿轮的接触问题进行仿真,计算出接触应力,为齿轮的强度计算和设计在方法上提供了参考和依据。

建立了渐开线圆柱啮合齿轮的三维有限元模型;研究了齿轮系统整体分析中接触对的建立、齿轮加载方式的选择;研究了齿轮副结构有限元分析方法。

采用在圆柱面的节点上加切向力来代替力矩的加载方式,对齿轮面接触参数进行设置,并且得到了接触分析的最终结果,说明该有限元建模的方法是可行的,为将来齿轮系统动力学的研究奠定基础。

2.《基于ANSYS的多齿差摆线齿轮有限元分析》中指出:应用ANSYS分析软件对多齿差摆线齿轮进行建模,推导出不同啮合相位角摆线齿轮根部应力计算公式,计算了不同啮合相位角摆线齿轮根部应力,找出齿轮齿根过渡圆弧半径与齿根处最大应力的关系和摆线齿轮根部过渡圆弧半径对齿轮根部应力的影响。

摆线齿轮在齿顶啮合时齿轮根部具有最大应力值,采用了过渡圆弧的摆线齿轮齿根危险截面处的最大应力值明显比未采用过渡圆弧的摆线齿轮低,危险截面处的最大应力值随着过渡圆弧半径的增大而减小,当圆弧半径较小时最大应力减小趋势较快,当圆弧半径逐渐增大时应力减小趋势逐渐变缓。

3.《齿轮接触有限元分析》指出:计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。

过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。

随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,适应求解。

通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。

建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。

计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。

4.《渐开线直齿圆柱齿轮有限元仿真分析》中指出:ANSYS软件对齿轮变形和齿根应力进行了有限元计算,建立了一对齿轮接触仿真分析的模型,利用ANSYS的面面接触单元进行齿轮接触仿真分析,计算了齿轮啮合中的接触应力和接触变形,说明了ANSYS在齿轮计算尤其在接触分析上的有效性,为齿轮的优化设计和可靠性设计及CAE奠定了基础。

利用ANSYS大型通用分析软件以直齿圆柱齿轮为例分析了齿轮受载时单齿齿根应力分布以及轮齿加载点处法向和对称中心点变形值,通过一对齿轮轮齿接触仿真分析,分析了轮齿变形和应力在齿轮啮合过程中的变化。

二、发展趋势有限元的发展概况1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。

1960年 clough的平面弹性论文中用了“有限元法”这个名称。

1965年冯康发表了论文“基于变分原理的差分格式”,这篇论文是国际学术界承认我国独立发展有限元方法的主要依据。

1970年随着计算机和软件的发展,有限元发展起来。

ANSYS是一个多用途的有限元分析软件,用来求结构、流体、电力、电磁场及碰撞等问题的解答。

它包含了前置处理、解题程序以及后置处理,将有限元分析、计算机图形学和优化技术相结合,已成为现代工程学问题必不可少的有力工具。

利用ANSYS有限元分析,可以对各种机械零件,构件进行应力,应变,变形,疲劳分析,并对某些复杂系统进行仿真,实现虚拟的设计,从而大大节省人力,财力和物力。

由于其方便性、实用性和有效性,ANSYS软件在各个领域,特别是机械工程当中得到了广泛的应用。

齿轮是现代机器设备的基础元件之一,广泛应用于机械传动,如飞机、汽车等。

精确描述齿轮传动中齿轮内部的应力,应变状况,对优化齿轮结构,获得高性能的齿轮传动机构具有重大意义。

由于其形状比较复杂,用传统的计算方法不能确定其真实的应力及变形分布规律,因此从弹性力学出发,用现代设计方法研究齿轮的受载变形情况和接触强度,具有广泛的用途,它可以提高整个齿轮结构的设计水平。

随着计算机技术的发展和大型有限元分析软件的出现,基于CAD/CAE技术的结构仿真分析方法给人们展示了在实际工况下,齿轮的应力,应变分布情况,为齿轮的设计和制造提供了有力的依据。

相对于传统的计算方法,有限元由于其能快速、准确可靠、灵活地分析计算,在国内外齿轮设计和计算中得到广泛应用。

齿轮变形的有限元分析七十年代已开始,但仅仅计算挠曲变形,接触变形和接触应力的有限元分析在九十年代才真正开始,主要方法有罚函数法,拉格朗日乘子法等,其中罚函数法由于经济和方便,得到了广泛使用。

三、存在问题1)虽然有较多研究对齿轮的几何模型作了精确的模拟,对齿轮传动中齿根应力因几何非线性而产生的应力集中作了详尽描述,但没有提及材料非线性产生的应力集中对齿根应力分布的影响。

在以后的研究中应增加加工刀痕产生的应力集中的模拟。

2) 在动力分析方面,本文仅考虑静力低速情况下的应力响应。

以后应增加在高速冲击情况下的应力、模态分析,因为高速情况下,齿轮因离心作用将产生预应力,使应力分布更加复杂。

3)应进一步考虑摩擦及热效应的影响,从而能真正模拟实际工况下的齿轮传动。

4)应进一步进行复杂齿轮的静力动力的结构仿真研究,将研究的范围进一步扩大到包括齿轮轴及其支撑件的接触仿真分析。

参考文献[1] 孙桓等.机械原理[M].第七版.北京:高等教育出版社,2006.5,174-189.[2] 杜白石等.三维机械设计基础教程[M].陕西:西北农林科技大学,2009.[3] 易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,第四版.[4] 杨创创等.有限元软件ANSYS 11.0上机指导[M].陕西:西北农林科技大学机电学院,2010.[5] 曾攀.有限元分析基础教程[M].北京:清华大学,2008年.[6] ansys适合初学者教程,网址:ftp:///.[7] ANSYS LS-DYNA 教程及练习,网址:ftp:///.[8] 王新敏.王新敏ANSYS讲义,网址:ftp:///.[9] 刘斌彬.ANSYS有限元齿轮接触及弯曲应力研究[J].机电技术,2009,3.[10] ANSYS接触分析实例,网址:/p-26093486.html.[11] 基于ANSYS的齿轮有限元分析,网址:/p-29729628906.html.[12] 吴宗泽等.机械设计课程设计手册[M].第三版.北京:高等教育出版社,2006年.[13] 黄亚玲.基于ANSYS的斜齿轮接触非线性有限元分析[J].理论与探索,2006,4.[14]王丽娟等.基于ANSYS的齿轮模型建立及齿根弯曲应力分析[J].机械工程与自动化,2008,2.[15] 戴进.基于齿轮加工原理的精确建模及ANSYS有限元分析[J].CAD/CAM/CAPP应用,2007.[16] 李珊珊等.基于ANSYS的斜齿轮接触应力有限元分析[J].机械工程与自动化,2009年,第四期.[17] 雷镭等.基于ANSYS有限元软件的直齿轮接触应力分析[J].机械传动,2006年.[18] 林吉靓等.基于ANSYS的齿轮参数化建模和弯曲应力分析[J].制造业信息化,2007.[19] 周秦源.基于Pro/E和ANSYS的齿轮接触应力的有限元分析[J].沈阳航空工业学院学报,2007, 24(4).[20] 杨会霞等.基于Pro/E和ANSYS的斜齿轮建模和应力分析[J].设计与研究,2008.[21] 邱宣怀等.机械设计[M].北京:高等教育出版社,1997年,第四版,204-232.[22] 董文俊等.精确建模条件下标准直齿轮啮合传动分析[J].机械设计与制造,2009,6.[23] 龚曙光等.ANSYS操作命令与参数化编程[M].第三版.北京:机械工业出版社,2004.[24] Handschuh RF, Lewicki DG,Bossler RB. Experimental testing of prototype facegears for helicopter transmissions [J]. Journal of Aerospace Engineering,1994, 208(2):129~136.[25] Litvin FL. Development of Face-Gear Technology for Industrial and AerospacePower Transmission [R]. NASA /CR220022211320.[26] Litvin FL, Wang JC, Bossler RB. Application of face-gear drives inhelicopter transmissions [J]. Journal of Mechanical Design, Transactions of the ASME, 1994,116(3):672~676.[27] Robert C B. Advanced rotorcraft transmission program[A].46th Annual Forum,Proceedings of the American Helicopter Society[C], Washington: Publish by American Helicopter Soc, 1990.[28] Litvin FL,Zhang Y, Wang JC, et al. Design and geometryofface-geardrives[J].Journal of Mechanical Design, Transactions of the ASME,1992(114):642~647.。

相关文档
最新文档