国内外分布式能源发展现状
国内外综合能源服务发展现状及商业模式研究
国内外综合能源服务发展现状及商业模式研究作者:封红丽来源:能源研究俱乐部发布时间:2017-5-11 9:19:30中国储能网讯:随着能源互联网技术,分布式发电供能技术,能源系统监视、控制和管理技术,以及新的能源交易方式的快速发展和广泛应用,综合能源服务(集成的供电/供气/供暖/供冷/供氢/电气化交通等能源系统)近年来在全球迅速发展,引发了能源系统的深刻变革,成为各国及各企业新的战略竞争和合作的焦点。
国内企业也纷纷掀起了向综合能源服务转型的热潮。
因此,国外综合能源服务的发展如何,又有哪些商业模式值得借鉴显得尤为重要。
原文首发于《能源情报研究》2017第4期能源情报研究中心封红丽国外综合能源服务发展现状综合能源服务有两层含义:一是综合能源,涵盖多种能源,包括电力、燃气和冷热等;二是综合服务,包括工程服务、投资服务和运营服务。
综合能源服务包含三要素:资金、资源和技术。
目前,在国内外尚无综合能源服务的统一定义。
国外使用较多的相关概念包括Multi-carrier Energy Systems,Multi-vector Energy Systems,Integrated Energy Systems和Energy Systems Integration。
传统能源产业(电力企业、电网企业、燃气企业、设备商、节能服务公司、系统集成商以及专业设计院等)都在策划综合能源服务转型,导致综合能源服务产业竞争激烈。
(一)国外典型国家综合能源服务发展现状传统能源服务产生于二十世纪七十年代中期的美国,主要针对已建项目的节能改造、节能设备推广等,合同能源管理是其主要商业模式。
基于分布式能源的能源服务,产生于二十世纪七十年代末期的美国,以新建项目居多,推广热电联供、光伏、热泵、生物质等可再生能源,其融资额度更大,商业模式更加灵活。
现如今,互联网、大数据、云计算等技术出现,融合清洁能源与可再生能源的区域微网技术的新型综合能源服务模式开始诞生。
我国分布式能源发展现状及展望
我国分布式能源发展现状及展望
尹昌洁;权楠;苏凯;郑漳华;张天慈
【期刊名称】《分布式能源》
【年(卷),期】2022(7)2
【摘要】分布式能源具有清洁、低碳、高效等优点,是以新能源为主体的新型电力系统的重要组成部分,是实现能源体系“碳达峰、碳中和”的有效方式。
为加快构
建新型电力系统、尽早实现“碳达峰、碳中和”,有必要研究和了解现阶段分布式
能源发展情况。
通过分析当前我国能源结构和清洁能源发展形势,以及分布式光伏、天然气分布式和分散式风电三大典型分布式能源的发展现状,归纳了分布式能源发
展五方面问题:发展有待协同、成本有待降低、消纳有待提升、技术有待创新、政
策有待完善。
在此基础上结合国家相关政策提出加大支持力度、做好科学论证、加强技术创新、推动市场交易和鼓励电网参与五方面建议,指出多能互补系统将是分
布式能源高效利用的发展方向。
【总页数】7页(P1-7)
【作者】尹昌洁;权楠;苏凯;郑漳华;张天慈
【作者单位】全球能源互联网集团有限公司
【正文语种】中文
【中图分类】TK01
【相关文献】
1.生物质分布式能源发展现状及展望
2.我国分布式能源喜与忧——国内外分布式能源发展概况
3.天然气分布式能源及其在我国的发展趋势rn——专访天然气分布式能源专家王新雷
4.我国天然气分布式能源的发展现状及趋势
5.我国新能源技术的发展现状及未来展望
因版权原因,仅展示原文概要,查看原文内容请购买。
冷热电三联供系统的发展现状和应用综述
冷热电三联供系统的发展现状和应用综述解鸣;任德财;濮晓宙;俞祥俊;徐俊君【摘要】冷热电三联供系统(CCHP)是分布式能源系统中非常重要的形式之一,因在能耗、经济和环境等方面的显著综合效益,近年受到国内外的广泛关注和应用.本文对冷热电三联供系统的现状、工作原理和性能、发展趋势和前景进行了综述,为我国冷热电三联供技术的发展提供参考.【期刊名称】《制冷》【年(卷),期】2019(038)001【总页数】7页(P63-69)【关键词】CCHP;工作原理;发展现状;应用【作者】解鸣;任德财;濮晓宙;俞祥俊;徐俊君【作者单位】国网上海市电力公司闸北发电厂, 上海210093;国网上海市电力公司闸北发电厂, 上海210093;国网上海市电力公司闸北发电厂, 上海210093;国网上海市电力公司闸北发电厂, 上海210093;国网上海市电力公司闸北发电厂, 上海210093【正文语种】中文【中图分类】TU8311 前言能源是影响人类生存和发展进步的关键因素之一,尤其是现阶段化石燃料开采和利用。
然而人们大量开采和使用化石燃料,不仅使化石能源面临紧缺状况,而且对地球环境也造成严重破坏。
因此,在当前能源结构没有发生根本性转变之前,如何提高能源利用率、节约能源和发展新能源等问题,成为现全球能源环境重要的发展趋势。
冷热电三联供系统(Combined Cooling Heating and Power,简称CCHP 系统)通过能量梯级利用,同时向用户提供电能、热能、冷能和生活热水等,有效提高能源的利用效率。
如果采用并网电力能源互补方式,还可增加系统整体的经济收益和利用效率。
因此冷热电三联供的发展和应用符合能源与环境的协调发展大趋势,世界范围内都在不断的探索和深化研究。
2 CCHP系统发展政策与发展历程2.1 国外CCHP系统的发展美国、日本、英国等发达国家是应用CCHP系统较早,且应用经验比较丰富的国家,由于CCHP系统不同于传统的集中供能系统,且一次能源主要是天然气,在节约能源、改善环境和增加电力供应上的综合效益更加明显,因此通过几十年的发展,这些国家的综合能源效率和空气质量均得到了空前的改善。
2023年天然气分布式能源行业市场环境分析
2023年天然气分布式能源行业市场环境分析随着全球能源和环境形势逐渐严峻,以及政府对碳排放的限制和环境保护的要求的日益强烈,分布式能源的发展速度越来越快。
天然气分布式能源作为一种新兴的能源形式,目前在国内市场仍处于起步阶段,但在国际市场已经得到了广泛的应用和推广。
本文将从市场环境和趋势两个方面对天然气分布式能源行业进行分析。
一、市场环境分析1.政策环境当前,国内能源政策从传统化石燃料向清洁能源的转变已经成为趋势,政府对清洁能源的政策支持力度也越来越大。
近年来,天然气产业作为清洁能源行业的重要组成部分,也得到了政策的大力支持。
《天然气产业发展规划》提出要推进“天然气和电力的联合供应,实现区域中心城市的供应,并建设天然气分布式能源系统”,这为天然气分布式能源的发展提供了政策保障和发展前景。
2.市场需求目前,国内市场对天然气分布式能源的需求主要来自于工矿企业、居民小区、商业综合体和公共设施等领域。
工矿企业主要通过引进天然气分布式能源系统,改造传统的热力发电设备,降低企业能源成本;居民小区则通过利用天然气分布式能源系统,实现取暖和燃气的供应,提高居民生活品质;商业综合体和公共设施主要通过利用天然气分布式能源系统,降低设施能耗,并减少企业污染排放的量。
3.市场竞争当前,天然气分布式能源行业处于起步阶段,市场竞争程度较为适中。
目前,国内天然气分布式能源行业的市场主要由国内外几大巨头企业主导,百度、京东、阿里巴巴等互联网巨头也在逐步涉足该市场。
另外,一些小型行业企业也在抓住机遇,以自主知识产权和本地化的优势,争取一席之地。
二、市场趋势分析1.技术进步随着科技的进步,天然气分布式能源技术的研发和改良也将日益完善。
目前,在技术上涉及到的主要领域有传感器、通信技术、控制技术等。
未来随着技术的不断成熟和应用,天然气分布式能源的可靠性和经济性将不断提高。
2.投资规模未来天然气分布式能源的市场规模将随着国家政策的推进和市场需求的增加而不断扩大。
天然气分布式能源介绍
山东建筑大学
一
当前能源形势
存在严重能源危机 我国一次能源可开采期限约为: 煤炭 90年 石油 天然气 可燃冰 22年,对外依存度56% 52年,到2020年对外依存度将超过50% 500年以上
能源利用效率低下 我国每公斤标准煤能源产生的国内生产总值仅为世界 平均值的40%左右,能耗高。 能源形势严峻 我国2011年实际能耗约39亿吨,计划2020年末使用40亿
以软件园CCHP项目为例
项目 燃气锅炉+ 电制冷 冬季天然气 耗量 夏季天然气 耗量 总耗量
万m3
峰谷差
142.2
0
142.2
冷热电联产
204.3
130.5
334.8
1.57:1
目前峰谷差超过8:1,管网利用率约为35%,广泛采用三 联供系统可将管网利用率提高到75%
分布能源技术
内燃机 蓄能装置 冷热电联产
燃烧室 电 供冷或供热 发电机 燃气轮机 排气 燃料 压气机 烟气型吸收 式制冷机 排气
直接通过烟气型 溴化锂吸收式机组回 收利用,没有余热锅 炉这一中间环节。 排烟温度多为 350~550℃, 发电效 率为24~34% ,冷电 比(热电比)通常为 1.5~2.5.
②简单循环燃气轮机-烟气吸收式分布式联产系统
光电
燃料电池 风能
微燃机
分布式能源发展趋势
以分布式多联供技术为核心,结合可再生能源构建区域“小型化区域 能源网络”,形成多能互补的智能电网(微电网)与智能冷热气网相融 合;
区域型能源系统的优势在于可以引进高效热电机组,实现燃气、电、 热、冷的最优匹配,提高能源利用率;
3)回热循环燃气轮机—烟气吸收式分布式联产
2024全新电力系统ppt课件
储能装置
根据微电网规模及运行需求,选择适当的储 能技术,如电池储能、飞轮储能等。
负荷监控与保护装置
采用先进的负荷监控技术和保护装置,确保 微电网安全稳定运行。
政策支持与市场前景分析
政策支持
国家出台一系列政策鼓励微电网建设和发展,包括补贴、 税收优惠等。
市场前景
随着可再生能源的快速发展和电力体制改革的深入推进, 微电网市场将迎来广阔的发展空间。特别是在偏远地区、 海岛等场景,微电网具有巨大的应用潜力。
提高供电可靠性
当大电网出现故障时,分布式发电系统可以继续供电,提 高供电可靠性。
降低能源损耗
分布式发电靠近用户侧,能够减少长距离输电带来的能源 损耗。
促进可再生能源利用
分布式发电可以充分利用可再生能源,减少对化石能源的 依赖。
智能电网概念及关键技术
智能电网概念
传感测量技术
通讯技术
信息技术
控制技术
以物理电网为基础,将 现代先进的传感测量技 术、通讯技术、信息技 术、计算机技术和控制 技术与物理电网高度集 成而形成的新型电网。
其他可再生能源
水能、生物质能、地热能等,各具特 色和应用前景。
风能发电技术
通过风力驱动风轮机转动,进而带动 发电机发电,风能是一种永不枯竭的 绿色能源。
分布式发电技术及其优势
分布式发电技术
指在用户现场或靠近用电现场配置较小的发电机组,以满 足特定用户的需求,支持现存配电网的经济运行,或者同 时满足这两个方面的要求。
实现对电网的准确感知 ,为智能电网提供数据 支持。
实现电网各环节之间的 实时、双向、互动通信 ,保证智能电网的高效 运行。
对海量数据进行处理和 分析,提取有价值的信 息,为智能电网的决策 提供支持。
智能电网技术论文
智能电网技术摘要:信息化与智能化高速发展的时代,电脑,通讯似乎都能满足人们的日常需求,但日渐老化的传统电网结构并没有跟上技术变革的步伐,用户对电力供应提出了越来越高的要求,国家安全、环保等各方面政策都对电网的建设和管理提出了更高的标准。
智能电网就是电网的智能化,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标。
智能电网的主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。
本文通过分布式能源的智能管理系统以及高级的智能仪表体系和需求侧管理的两方面来着重介绍智能电网的主要应用和功能特征,和在国内外发展的现状,在科技引领社会变革的时代,智能电网必将展现出其特有的强劲的生命力。
关键字:电网系统;分布式能源;智能化智能电网(smart power grids),就是电网的智能化,智能电网就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。
智能电网包含了一个智能型电表基础建设,用于记录系统所有电能的流动。
通过智能电表,它会随时监测电力使用的状况。
智能电网包括超导传输线以减少电能的传输损耗,还具有集成新能源,如风能,太阳能等的能力。
现代化的电能网络被许多政府认为是一种能够有效减少能源依赖,减缓全球温室效应的措施。
智能计量作为智能电网的一部分,但它本身本不能称为一个智能电网。
智能电网系统优化与电力调度方案
智能电网系统优化与电力调度方案第1章引言 (3)1.1 背景与意义 (3)1.2 国内外研究现状 (3)1.3 研究内容与目标 (3)第2章智能电网概述 (4)2.1 智能电网的定义与特征 (4)2.2 智能电网的关键技术 (4)2.3 智能电网的发展趋势 (5)第3章电力系统优化方法 (5)3.1 优化算法概述 (5)3.2 线性规划方法 (5)3.3 非线性规划方法 (6)3.4 智能优化算法 (6)第4章电力系统负荷预测 (6)4.1 负荷预测概述 (6)4.2 传统负荷预测方法 (6)4.2.1 时间序列法 (6)4.2.2 回归分析法 (7)4.2.3 周期性分析法 (7)4.2.4 人工神经网络法 (7)4.3 人工智能在负荷预测中的应用 (7)4.3.1 支持向量机 (7)4.3.2 粒子群优化算法 (7)4.3.3 深度学习 (7)4.4 负荷预测误差分析 (7)4.4.1 误差来源 (7)4.4.2 误差评估指标 (7)4.4.3 误差改进策略 (7)第5章电力系统可靠性评估 (8)5.1 可靠性评估的基本概念 (8)5.2 电力系统可靠性评估指标 (8)5.3 电力系统可靠性评估方法 (8)5.4 基于可靠性的优化调度 (8)第6章电力市场环境下的电力调度 (9)6.1 电力市场概述 (9)6.2 电力市场交易模式 (9)6.3 电力市场环境下的调度策略 (9)6.3.1 市场报价策略 (9)6.3.2 负荷预测与资源分配 (9)6.3.3 风险管理与应急预案 (10)6.4 考虑市场因素的优化调度 (10)6.4.1 目标函数构建 (10)6.4.2 约束条件设置 (10)6.4.3 求解方法与算法 (10)第7章分布式发电与微电网 (10)7.1 分布式发电概述 (10)7.1.1 分布式发电的概念与分类 (10)7.1.2 分布式发电的技术特点 (10)7.1.3 国内外分布式发电发展现状及趋势 (10)7.2 分布式发电接入电网的影响 (10)7.2.1 分布式发电对电网的影响 (10)7.2.2 分布式发电并网技术要求 (10)7.2.3 分布式发电并网对电力系统的影响分析 (10)7.3 微电网概述与运行控制 (10)7.3.1 微电网的概念与组成 (10)7.3.2 微电网运行模式与控制策略 (10)7.3.3 微电网的经济效益与社会效益 (10)7.4 分布式发电与微电网的优化调度 (10)7.4.1 分布式发电与微电网优化调度的意义 (10)7.4.2 分布式发电与微电网优化调度的目标与约束条件 (11)7.4.3 分布式发电与微电网优化调度方法 (11)7.4.3.1 传统优化调度方法 (11)7.4.3.2 现代优化调度方法 (11)7.4.3.3 智能优化调度方法 (11)7.4.4 分布式发电与微电网优化调度案例分析 (11)7.4.5 分布式发电与微电网优化调度的政策建议与展望 (11)第8章电力系统无功优化 (11)8.1 无功优化概述 (11)8.2 无功优化数学模型 (11)8.3 无功优化算法 (11)8.4 无功优化在电力系统中的应用 (11)第9章电力系统经济调度 (11)9.1 经济调度概述 (12)9.2 经济调度数学模型 (12)9.3 经济调度算法 (12)9.4 考虑新能源并网的经济调度 (12)第10章智能电网系统优化与电力调度应用案例 (13)10.1 案例一:某地区电网优化调度 (13)10.1.1 背景介绍 (13)10.1.2 优化调度方法 (13)10.1.3 应用效果 (13)10.2 案例二:含分布式发电的电网调度 (13)10.2.1 背景介绍 (13)10.2.2 调度策略 (13)10.2.3 应用效果 (13)10.3 案例三:微电网优化调度 (13)10.3.1 背景介绍 (13)10.3.2 优化调度方法 (14)10.3.3 应用效果 (14)10.4 案例四:考虑电力市场的电网调度优化 (14)10.4.1 背景介绍 (14)10.4.2 调度策略 (14)10.4.3 应用效果 (14)第1章引言1.1 背景与意义全球能源需求的不断增长和环境保护的日益重视,智能电网作为新一代电力系统应运而生。
数据中心多能互补分布式能源系统设计与运行优化研究
数据中心多能互补分布式能源系统设计与运行优化研究目录一、内容综述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状 (4)1.3 研究内容与方法 (6)二、数据中心多能互补分布式能源系统理论基础 (7)2.1 数据中心能耗特点分析 (8)2.2 多能互补原理及能源类型 (10)2.3 分布式能源系统概念及优势 (11)2.4 多能互补分布式能源系统架构 (12)三、数据中心多能互补分布式能源系统设计 (13)3.1 能源输入与输出模块设计 (14)3.2 能量转换与存储系统设计 (16)3.3 控制系统设计与优化 (17)3.4 系统安全与可靠性保障措施 (19)四、数据中心多能互补分布式能源系统运行优化 (20)4.1 基于智能算法的能源调度策略研究 (21)4.2 能量平衡与调度优化方法 (23)4.3 分布式能源系统经济性评估指标体系构建 (24)4.4 实际运行案例分析与优化建议提出 (25)五、结论与展望 (27)5.1 研究成果总结 (28)5.2 存在问题与不足之处分析 (29)5.3 未来研究方向与展望 (30)一、内容综述随着全球能源结构的转型和低碳经济的发展,数据中心作为信息社会的重要基础设施,其能源消耗和环境影响问题日益受到关注。
多能互补分布式能源系统作为一种新型的能源系统模式,旨在通过整合多种能源资源,实现能源的高效利用和环境的可持续发展。
本文将对数据中心多能互补分布式能源系统的设计与运行优化进行综述,以期为相关领域的研究和应用提供参考。
在数据中心多能互补分布式能源系统的设计方面,主要涉及能源的综合利用、能源系统的集成与优化、可再生能源的接入与转换等技术。
通过合理规划能源系统布局,提高能源利用效率,降低碳排放,是实现数据中心绿色化发展的重要途径。
针对数据中心的特性,需要设计适合其运行的能源系统,包括能源存储、能量调度、负荷调节等方面,以确保系统的高效稳定运行。
在运行优化方面,数据中心多能互补分布式能源系统需要解决的关键问题包括:如何实现能源的最优分配和调度,以提高系统的整体能效;如何应对可再生能源的波动性和不确定性,保障系统的稳定供电;如何降低系统的运行维护成本,提高经济效益等。
全视角解读分布式储能全球发展现状,研判未来趋势
一、全球分布式储能发展现状分布式储能的应用场景多样,主要包含用户侧、分布式电源侧和配网经过国内两轮电价下降,分布式储能已然面临着前所未有的困境。
纵观国内外,占据着半壁江山的分布式储能到底是如何发展,如何获得收益?未来又该何去何从?本文将梳理与分析国内外分布式储能的市场主体和盈利模式,并针对未来分布式储能的发展趋势与方向进行展望,以期给国内分布式储能未来的发展提供借鉴。
全视角解读分布式储能全球发展现状,研判未来趋势应用场地、不同用户类型和应用目的等进行分类,如图1所示。
不同国家,由于市场环境、政策机制、可再生能源以及分布式能源的渗透程度,发展目标等不同,对于储能的定位、储能发展路径、支持力度和方式也不同,也就造成分布式储能的应用重点、收益来源、模式以及经济性等存在差异。
部分国家分布式储能项目主要应用分布详见图2,各地分布式储能的主要应用领域及收益流见表1。
根据CNESA全球储能项目数据库的不完全统计,截止到2018年底,全侧,且多以独立的储能系统、储能与分布式电源相结合(如光储系统)或微网等方式呈现。
中关村储能产业技术联盟(CNESA)根据目前全球分布式储能的实际应用,将各个场景按照2019.12.DQGY38行业展望/INDUSTRY OBSERVATIONMARKET PERSPECTIVE‖市场透视/中关村储能产业技术联盟 岳芬/图1 全球分布式储能各应用领域规模分布(截止到2018年底)图2 主要国家分布式储能装机规模(截止到2018年底)方面可以自发自用降低电网购电量进而降低电费支出。
仅安装储能系统的用户,在“储能电费折扣计划”的支持下,利用储能系统削峰可以获得多倍的补偿。
在政策的支持下,部分大型用户侧储能项目的投资回收期能够缩短至3~4年。
(三)美国在美国,加州是分布式储能应用的代表。
加州工商业用户的需量电价高、屋顶光伏渗透率超过20%,以及当地政府为储能项目提供的初装补贴等成为推动用户侧电池储能安装和模式成型的关键因素[3-4]。
2024年环网柜市场前景分析
2024年环网柜市场前景分析简介环网柜是电力系统中的关键设备,用于分配和控制电能,是电力传输和配电系统的核心组件。
随着电力需求的增长和电网规模的扩大,环网柜市场正呈现出良好的发展前景。
本文将对环网柜市场的现状和未来发展趋势进行分析。
环网柜市场现状目前,环网柜市场呈现出以下几个特点: 1. 市场规模不断扩大,呈现稳定增长的趋势。
电力需求的增长和电网建设的扩大,推动了环网柜市场的发展。
据市场研究数据显示,环网柜市场的年复合增长率达到了10%以上。
2. 技术创新不断推动市场发展。
随着智能电网和分布式能源的兴起,环网柜在功能和性能上得到了不断提升,实现了自动化控制、远程监测等新功能,满足了电力系统的需求。
3. 市场竞争激烈,企业竞争力不断提升。
国内外环网柜制造商纷纷加大研发投入,提升产品质量和技术水平。
同时,市场上还存在一些中小型企业,它们通过价格竞争和差异化战略来谋求市场份额。
环网柜市场的机遇和挑战1.机遇:–电力需求的增长:随着经济的快速发展和城市化进程的加速推进,对电力的需求将持续增长,为环网柜市场提供了巨大的机遇。
–智能电网建设:随着智能电网建设的推进,环网柜将在智能化方面发挥更大的作用,提供智能的配电解决方案。
–分布式能源的发展:分布式能源的快速发展将对环网柜市场产生积极影响,环网柜需要提供更好的接入和管理分布式能源的能力。
2.挑战:–技术要求的提升:随着电力系统的复杂性增加,对环网柜的技术要求也越来越高,需要发展更先进的控制和通信技术。
–市场竞争的加剧:随着市场的不断发展,竞争也在加剧,企业需要提升产品质量和服务水平,增强竞争力。
–环境保护意识的提高:环境保护日益受到广泛的关注,环网柜制造商需要注重环境友好型产品的研发和推广。
环网柜市场的发展趋势未来环网柜市场将呈现以下几个发展趋势: 1. 产品智能化:随着智能电网的普及和应用,环网柜将朝着智能化、自动化方向发展,具备远程监测、故障诊断、自动调节等功能。
2024年增量配电网市场分析现状
2024年增量配电网市场分析现状引言随着能源产业的快速发展和城市化进程的加速推进,增量配电网市场成为当前能源行业的热门话题之一。
增量配电网作为一种分布式能源系统,具有灵活性、可靠性和适应性等显著优势,已经成为解决能源供需矛盾和推动能源转型的重要途径之一。
本文将对增量配电网市场的现状进行分析,并展望未来的发展趋势。
增量配电网市场概况增量配电网市场是指以分布式能源为核心的电力系统市场。
近年来,随着分布式能源技术的成熟和政策的支持,增量配电网市场迅速崛起。
根据国家能源局的统计数据,我国增量配电网市场在过去五年内平均增长率超过30%,预计未来几年市场规模将继续扩大。
增量配电网市场涉及的主要参与方包括能源供应商、设备制造商、工程施工商和运营商等。
目前,国内外一些大型能源公司已经积极布局增量配电网市场,以抢占市场份额。
增量配电网的发展趋势1.技术发展趋势随着电力电子技术、通信技术和自动化技术的进步,增量配电网技术将更加成熟和可靠。
未来,增量配电网将向大规模、高效率、低碳排放的方向发展,实现能源的高质量供应和多能源的互联互通。
2.政策支持趋势为了促进增量配电网市场的发展,各级政府将进一步加大政策和经济支持力度。
此外,政府还将加强对增量配电网的管理和监管,以确保市场的健康发展。
3.市场竞争趋势随着市场规模的扩大,增量配电网市场竞争将进一步激烈。
未来,市场格局将逐渐形成,优势企业将占据市场主导地位,而中小企业将面临更大的竞争压力。
增量配电网市场存在的问题1.技术风险增量配电网技术的快速发展也带来了一定的技术风险。
由于技术不成熟,增量配电网系统可能存在可靠性和安全性方面的问题,这对市场的发展带来一定的不确定性。
2.投资回报周期较长由于增量配电网项目的规模较大,建设和运营的投资回报周期较长,这对投资者来说是一个挑战。
需要制定相应的政策和措施,以吸引更多的资本进入市场。
增量配电网市场未来发展前景未来几年,我国增量配电网市场有望继续保持高速增长,主要得益于以下几个方面的因素:•国家政策的不断支持和鼓励;•技术的不断创新和进步;•市场需求的不断增长和扩大。
2024年微电网技术市场前景分析
微电网技术市场前景分析引言微电网是一种基于分布式能源资源的电力系统,可以形成一个能够独立运行的小型电力网络,能够提供可靠、清洁和高效的电力供应。
随着能源危机和环境问题的日益加剧,微电网技术受到了广泛关注。
本文将对微电网技术市场前景进行分析。
微电网技术市场现状国内微电网技术市场现状近年来,中国政府对微电网技术的支持力度不断增加。
国家能源局发布了《关于加快推进微电网建设的指导意见》,鼓励利用分布式能源资源开展微电网建设。
目前,国内微电网技术市场呈现出快速发展的态势。
国际微电网技术市场现状在国际上,微电网技术的应用也越来越广泛。
美国、欧洲等发达国家已经建立了完善的微电网技术体系,并且形成了相对成熟的市场。
微电网技术不仅被应用于城市、农村和工业园区等领域,还在重要基础设施和军事设施中得到广泛应用。
微电网技术市场前景政策扶持推动微电网技术市场发展政府的政策扶持是推动微电网技术市场发展的重要因素。
中国政府通过出台一系列政策文件,鼓励企业进行微电网项目建设。
此外,政府还提供了多样化的补贴和奖励政策,吸引了更多企业和投资者的参与。
能源转型推动微电网技术市场需求增长随着全球能源转型的深入推进,对清洁能源的需求不断增加。
微电网技术作为一种能够更好利用分布式能源资源的技术,受到了广泛关注。
未来,随着清洁能源的进一步普及,微电网技术市场的需求将会进一步增长。
科技创新提升微电网技术市场竞争力科技创新对于微电网技术市场的发展至关重要。
随着技术的不断进步,微电网技术的成本不断降低,效率和可靠性不断提升。
目前,微电网技术已经进入了第三代,包括了智能化管理系统、储能技术等创新。
这些创新将进一步提升微电网技术市场的竞争力。
市场竞争愈发激烈随着微电网技术市场的不断发展,市场竞争也变得日益激烈。
国内外各类企业纷纷涉足微电网技术市场,竞争日益激烈。
对于企业来说,要想在市场中占据一席之地,需要具备实力与创新能力,并寻找合适的市场定位和竞争策略。
分布式能源规模化发展前景及关键问题
分布式能源规模化发展前景及关键问题摘要:分布式能源具有安全环保、高效清洁等优点,符合节能减排政策,已成为我国能源产业发展重点。
我国分布式能源具有较高发展价值、广阔的能源市场前景和巨大的发展潜力,分布式能源符合可持续发展的战略需求,对我国经济社会发展具有重要意义。
关键词:分布式能源;发展趋势;关键问题分布式能源是一种布置在用户侧的能源供应模式,它将能源生产消费融为一体,能为用户提供冷热电多种能源供应,具有就地利用、清洁低碳、多元互动、灵活高效等特征,是现代能源系统不可或缺的一部分。
一、分布式能源利用方式1、热冷电联产。
分布式能源的利用方式之一是热冷电联产,其最常见形式是燃气-蒸汽系统。
天然气(或煤层气等)燃烧产生1100℃以上的高温气体,进入燃气轮机作功发电。
用余热锅炉收集从燃气轮机排出的高温烟气余热,产生中压蒸汽推动蒸汽轮机发电或直接供暖(冬季)。
在夏季,采用溴化锂吸收式制冷技术,充分利用原用于冬季采暖的蒸汽进行供冷,即构成热电冷多联产系统。
2、可再生能源利用。
分布式能源的另一典型应用是可再生能源,如近用户端的小水电、光伏发电、风力发电、生物质能发电等。
这些可再生能源具有较大分散性,且利用规模小、不适于集中供能,而分布式能源系统为其经济利用提供了可能。
3、电能储存。
由于分布式系统供能的波动性大,需一定储能系统以跟踪负荷变化,减少对电网的冲击。
储能系统作用包括:①平抑功率波动,提高供能稳定性;②在发电单元出现故障时起到备用电源的过渡作用;③可有效实现对可再生能源的调度。
储能技术包括:蓄电池储能、超导储能、飞轮储能、电解水制氢储能等。
二、分布式能源发展趋势1、从总规模来看,分布式电源在未来电源中的比例将显著增加。
分布式电源具有清洁、就地平衡、高效率优势。
随着多重驱动因素的快速发展,将成为大机组大电网的有益补充。
为满足大量分布式电源接入要求,未来传统电力系统需加快向新一代电力系统升级换代。
2、在技术类型上,分布式电源将继续以分布式新能源为主,以燃气多联供为辅。
分布式燃气能源系统的设计与应用
分布式燃气能源系统的设计与应用摘要:本文简要阐述了燃气分布式能源的重要性,提出了燃气分布式能源系统的评估方法,并从系统容量、运行方式和设备应用等方面分析了燃气分布式能源系统的优化策略。
为相关人员予以参考,从而有效提升燃气分布式发电系统的运行效果。
关键词:气体;分布式能源系统;运营优化引言随着信息化发展水平不断提高,分布式能源在当今具备很高的应用价值,得以更好地满足人们日益增长的供热、供电需求。
但从目前来看,分布式能源系统在实际应用过程中仍面临一定争议和不利因素,根据此有必要对其进行探索,进而为其高能应用创造良好条件。
质量。
1分布式燃气能源系统概述1.1 分布式燃气能源系统的定义和分类分布式燃气能源系统根据其功能和应用场景的不同,可以分为多种类型。
其中,常见的包括分布式燃气发电系统、分布式燃气供热系统、分布式燃气制冷系统等。
分布式燃气发电系统主要通过内燃机、燃气轮机等设备将燃气转化为电能,为建筑、工业园区等提供电力供应;分布式燃气供热系统则利用燃气热水锅炉、燃气热泵等设备,将燃气能源转化为热能,为建筑供应取暖、热水等需求;而分布式燃气制冷系统则利用吸收式制冷机、燃气驱动式制冷机等设备,将燃气能源转化为冷能,为建筑或特定场所提供制冷服务。
1.2 分布式燃气能源系统的功能和特点分布式燃气能源系统具有灵活性、高效性和环保性等特点。
首先,能够根据具体需求进行灵活配置和布置,满足不同用户的能源需求;其次,这些系统在能源转换过程中能够实现高效利用,提高能源利用率,减少能源浪费;再次,分布式燃气能源系统通常采用清洁能源作为燃料,如天然气、生物气等,减少了对传统能源的依赖,具有较好的环保性。
1.3 国内外分布式燃气能源系统的发展现状在国内外,分布式燃气能源系统的发展呈现出良好的态势。
国外一些发达国家在能源转型和清洁能源利用方面处于领先地位,已经广泛应用分布式燃气能源系统,为建筑、工业园区等提供稳定可靠的能源供应。
电力行业智能电网与分布式能源管控方案
电力行业智能电网与分布式能源管控方案第1章绪论 (3)1.1 背景与意义 (3)1.2 国内外研究现状 (3)1.3 研究内容与目标 (3)第2章智能电网技术概述 (4)2.1 智能电网的定义与特征 (4)2.2 智能电网的关键技术 (4)2.3 智能电网的发展趋势 (5)第3章分布式能源概述 (5)3.1 分布式能源的概念与分类 (5)3.2 分布式能源的优势与挑战 (6)3.2.1 优势 (6)3.2.2 挑战 (6)3.3 分布式能源在我国的发展现状 (6)第4章智能电网与分布式能源的融合 (7)4.1 融合的必要性与意义 (7)4.1.1 必要性 (7)4.1.2 意义 (7)4.2 融合的关键技术 (8)4.2.1 信息通信技术 (8)4.2.2 储能技术 (8)4.2.3 新能源技术 (8)4.2.4 能源管理系统 (8)4.3 融合的发展趋势 (8)第5章分布式能源接入技术 (9)5.1 分布式能源接入方式 (9)5.1.1 低压接入方式 (9)5.1.2 中压接入方式 (9)5.1.3 高压接入方式 (9)5.2 分布式能源并网控制策略 (9)5.2.1 电压控制策略 (9)5.2.2 频率控制策略 (9)5.2.3 功率和功率因数控制策略 (9)5.3 分布式能源接入对电网的影响 (9)5.3.1 电压水平影响 (10)5.3.2 系统频率影响 (10)5.3.3 电网损耗影响 (10)5.3.4 电网可靠性影响 (10)5.3.5 电网运行与管理影响 (10)第6章智能电网调度与优化 (10)6.1 智能电网调度技术 (10)6.1.2 关键技术 (10)6.2 分布式能源调度策略 (11)6.2.1 分布式能源概述 (11)6.2.2 调度策略 (11)6.3 智能电网优化方法 (11)6.3.1 优化目标 (11)6.3.2 优化方法 (12)第7章分布式能源管控平台设计 (12)7.1 管控平台架构设计 (12)7.1.1 硬件层 (12)7.1.2 数据处理层 (12)7.1.3 应用层 (13)7.1.4 用户界面层 (13)7.2 数据采集与处理技术 (13)7.2.1 数据采集技术 (13)7.2.2 数据处理技术 (13)7.3 分布式能源调度与控制策略 (13)7.3.1 能源调度策略 (13)7.3.2 控制策略 (13)第8章系统稳定性与可靠性分析 (14)8.1 系统稳定性分析 (14)8.1.1 静态稳定性分析 (14)8.1.2 暂态稳定性分析 (14)8.2 系统可靠性评估 (14)8.2.1 供电可靠性评估 (14)8.2.2 电压稳定性评估 (14)8.2.3 频率稳定性评估 (15)8.3 提高系统稳定性和可靠性的措施 (15)8.3.1 优化电力系统结构 (15)8.3.2 完善调控策略 (15)8.3.3 强化设备管理 (15)8.3.4 引入先进技术 (15)8.3.5 加强人才培养和培训 (15)第9章案例分析与应用示范 (15)9.1 案例一:某地区智能电网与分布式能源融合项目 (15)9.1.1 项目背景 (15)9.1.2 项目实施 (16)9.1.3 项目效果 (16)9.2 案例二:某城市分布式能源管控平台应用 (16)9.2.1 项目背景 (16)9.2.2 项目实施 (16)9.2.3 项目效果 (16)9.3 应用示范与效果评价 (17)9.3.2 效果评价 (17)第10章未来展望与政策建议 (17)10.1 智能电网与分布式能源的发展趋势 (17)10.2 面临的挑战与问题 (17)10.3 政策建议与产业推动策略 (18)第1章绪论1.1 背景与意义全球能源需求的不断增长,电力行业正面临着巨大的挑战。
世界各国能源消费结构
世界各国能源消费结构随着全球气候变化和能源需求的日益迫切,世界各国的能源消费结构调整已成为当下的焦点。
本文将概述全球能源消费结构的现状,并针对几个主要国家探讨其能源消费构成、调整措施及成效,最后总结世界各国能源消费结构调整的重要性和挑战,并提出未来可能的解决方案和前景。
一、全球能源消费结构现状全球能源消费结构呈现出以化石能源为主,核能与可再生能源为辅的格局。
其中,煤炭、石油和天然气占据了全球能源消费的绝大部分。
然而,随着全球气候变化和环境问题的日益严重,这种以化石能源为主的消费结构面临严峻挑战。
二、世界各国能源消费结构调整措施及成效1、美国美国的能源消费结构以煤炭、石油为主,近年来逐渐向天然气、核能和可再生能源转型。
2019年,美国能源消费结构中煤炭占比仍高达25%,但天然气和可再生能源的消费占比正逐年上升。
此外,美国还通过大力推进能源技术创新和立法等手段,加速能源消费结构的调整和优化。
2、中国中国的能源消费结构以煤炭为主,石油、天然气、核能和可再生能源为辅。
近年来,中国政府已开始大力推进能源结构调整,通过实施煤电改造、发展清洁能源等措施,降低煤炭消费占比,提高清洁能源消费比重。
3、印度印度的能源消费结构以煤炭为主,石油、天然气和核能紧随其后。
近年来,印度政府已着手调整能源消费结构,大力发展清洁能源和可再生能源。
例如,印度计划在2030年前实现可再生能源发电能力达到50%的目标。
4、其他国家日本、韩国和欧洲等国家也在积极调整能源消费结构。
这些国家主要是通过提高核能、天然气和可再生能源的消费占比,降低对化石能源的依赖。
例如,欧洲联盟已制定目标,到2030年实现可再生能源占比达到32%。
三、世界各国能源消费结构调整的重要性和挑战世界各国能源消费结构的调整对于应对全球气候变化、减少环境污染、促进可持续发展具有重要意义。
然而,这一调整也面临着许多挑战,如技术突破、政策支持、经济成本等。
此外,各国的能源消费结构调整还受到资源禀赋、发展阶段等多种因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内外分布式能源系统发展现状研究【摘要】分布式能源系统是能源系统发展的重要趋势,不同机构对于分布式能源系统概念有着不同的侧重点和界定。
美国、日本、欧盟是分布式能源系统发展最为迅速、市场推广最成功的国家和地区。
我国分布式能源的发展与国外发达国家相比有着较大的差距,但现有的分布式能源政策表明了我国将大力支持并推动这一领域的发展。
【关键词】分布式能源系统;发展现状;国内外【作者简介】冉娜,同济大学经济与管理学院硕士研究生,研究方向:低碳经济。
分布式能源系统从20世纪70年代末开始兴起于西方发达国家,并迅速发展,也受到了发展中国家的广泛重视。
全球能源危机与气候变化问题是发展分布式能源的宏观背景,分布式能源系统可利用多种能源,并将发电的气体余热用于制冷、供热,实现了能量的梯级利用,提高系统的能源利用率,起到调峰作用且减少了对环境的污染。
因为建设靠近用户,系统无需建设输变电设施和制冷、供热管道,减少投资和线损,具有良好的经济效益。
这些突出的特点让分布式能源系统成为重要的供能模式转变方向。
一、分布式能源的概念分布式能源系统在技术类别、应用场合、容量大小等诸多因素上都存在多样性,不同的国家或机构所采用的名词也有所差异。
以下总结了欧美一些机构对于不同范畴分布式能源系统的定义。
分布式供能(DistributedGeneration,DG):存在于传统公共电网以外任何能发电的系统,原动机包括了以各种能源类型为动力的发电系统。
分布式电力(DistributedPower,DP):在DG的技术基础上,能将电能通过蓄电池、飞轮、再生型燃料电池等将电能储存下来的系统。
分布式能源资源(DistributedEnergyResourc es,DER):在DG的概念上,包含了与公共电网相连接的系统,用户可将本地多余电能通过联网出售给公共电力公司,是更加广泛的概念。
国际能源署(IEA)(2002)将分布式能源系统定义为给客户就地提供产电或支持配电网连接到分布电压水平的服务。
全球分布式能源协会(WADE,前身是新能源联盟)在2004年的统计报告中指出分布式能源系统是在用户消费地点或附近产生电能和热能,其由三个主要部分构成:一是高效率的热电联产;二是可再生能源系统;三是能源的循环系统。
在各种含义理解中,站点靠近用户、能源梯级使用、提供多种形式能源是分布式能源系统含义中不可缺失的一部分,因而我们可将分布式能源系统(DistributedEnergySystem,DES)的定义总结为:建在用户附近,可使用多种能源并按用户需求提供电、热、冷等多种形式能源的系统。
二、发达国家分布式能源发展的现状分布式能源系统的概念是从1978年《美国公共事业管理政策法》公布后在美国开始推行的,后被其他发达国家所接受。
近年来,一些发达国家正大力开发、推广以天然气等气体燃料以及可再生能源为动力的、分布在用户端的供能系统,特别是以热电联产(CHP)或冷热电三联产(CCHP)为主要技术的分布式供能系统,实现直接满足用户需求的能源梯级利用。
(一)美国自开发分布式能源系统以来,美国的DES站点已有6000多座,总装机超过9000万千瓦,政府计划至2020年将有50%以上的新建办公或商用建筑采用CCHP供能模式,15%的现有建筑供能转型完成。
美国DES发电量占国内总发电量的14%左右,以天然气CCHP为主(占总发电量的4.1%),其他包括中小水能、太阳能、风能等。
美国能源部认为,美国分布式能源发展潜力在11~15百万千瓦,其中工业领域7~9百万千瓦,商业领域4~6百万千瓦。
全球大多数商用DES 设备由美国制造。
在支持分布式发电的相关政策上,美国在2001年颁布了IEEE-P1547/D08“关于分布式电源与电力系统互联的标准草案”,并通过了有关的法令让分布式发电系统并网运行和向电网售电。
美国能源部在2005年制订了国内微电网技术发展路线图,以2005~2015年为基础研究与示范应用期,2015~2020为微电网技术的应用发展期。
2009年,美国大力推行发展智能电网和可再生能源的发展,并对分布式发电制定了相应的优惠政策:减免分布式发电项目部分投资税;缩短分布式发电项目资产的折旧年限;简化分布式发电项目经营许可证审批程序。
除此,美国在分布式能源上还采用了可再生能源配额机制(RPS)等体系,为分布式能源提供了公平、公开的市场条件,在保证分布式能源的经济效益上起到了重要的作用。
美国DES的快速发展,与其本身的电力供应格局和采取的措施都息息相关。
美国电力供需以小范围平衡为主,跨区电力交换少,而城市工业、商业、居住功能区域分割的空间布局决定了大多数DES项目的规模偏小。
其先进的发电技术更是DES发展中不可缺少的一环,近年来美国加大了推动可再生能源的分布式发电模式力度。
(二)日本由于日本的天然气价格很高,所以燃气发电很不经济,其分布式发电以CHP和太阳能光伏发电为主。
日本DES总装机容量约3600万千瓦,占全国的13.4%,至2000年底已建立分布式CHP系统1400多个。
光伏分布式发电不仅用于公用设施,还开展了居民住宅屋顶光电应用示范项目工程。
至2006年底,用户光伏系统安装累积容量达到125.4万千瓦,为全球第一。
日本计划在2030年前DES 发电量将占总电力供应的20%。
日本制定了相关的法令和优惠政策保证该项事业的发展,有条件、有限度地允许这些分布式发电系统上网,通过优惠的环保资金支持分布式发电系统的建设,包括对城市分布式发电单位进行减税或免税;鼓励银行、财团对分布式发电系统出资、融资;修订《电力事业法》在内的一系列放宽管制的办法出台。
(三)欧盟欧洲各国积极推行分布式能源系统,并采用可再生能源为主体的技术应用。
丹麦、荷兰、德国的分布式能源发电量分别占到国内总发电量的53%、38%和38%,欧盟分布式能源平均占电市场比例达10%,以天然气为主,并与可再生能源发展紧密结合。
1.丹麦。
丹麦政府从1999年开始进行电力改革,是目前世界上DES推广力度最大的国家,其占有率在整个能源系统中接近40%,占电力市场的比例已达到53%,2010年丹麦政府宣布铺设全球最长的智能化电网基础设施。
丹麦的CHP技术的发展方向主要是规模化和传统煤燃料的转型。
全丹麦8个互联的CHP大区的煤/电转化效率超过50%,总效率高达90%。
丹麦政府先后出台一些鼓励DES的法律法规如《供热法》和《电力供应法》,分别对DES明确提出予以鼓励、保护和支持,并制定补偿政策和优惠贷款。
2.英国。
英国与丹麦相同,1999年开始逐步开放电力市场,分布式发电政策的制定更多地着眼于环保,特别是气候的变化影响。
除了支持可再生能源的政策,还有许多支持CHP发展的政策。
英国对CHP所用燃料免收气候变化税,免收企业的商业税,对现代化的供热系统提供支持。
为调动各发电厂平衡自身发电量的积极性,其《新电力交易规则》对明确发电量做出了规定。
3.德国。
德国在2000年颁布了《可再生能源法》,并已经多次修订,利用“灵活的电价调整机制”引导DES有序发展。
2002年,德国通过了新的《热电法》,鼓励、支持发展CHP,对光伏装机进行大规模财政补贴。
德国计划在2020年可再生能源发电量要占总电耗的35%,并确定了光伏发电的总装机新增计划。
截止2011年,德国光伏发电装机容量达到2470万千瓦,其中分布式光伏发电系统容量占比近80%,主要应用形式为屋顶光伏发电系统。
另外,德国拥有300多个1万千瓦以下的沼气和其他生物质能发电站。
德国还先后制定发布接入中、低压配电网的分布式电源并网技术标准,从法律上明确严格的并网技术标准,确保公共电网安全稳定,为分布式能源系统的市场推广扫除了技术障碍。
4.荷兰。
荷兰的大多数分布式发电厂是配电方和工业联合投资的,电力市场自由化加强了竞争。
通过一些早期的激励政策,荷兰的CHP发电量迅速上升,包括政府投资津贴、发电公司购电义务、天然气优惠价等。
2000年,采取新一轮的措施来解决CHP机组面临的财政困难问题,包括增加能源投资补贴、免收管制能源税和相应的财政支持等。
欧盟DES的发展有赖于政策支持,集中在有计划的市场定价、发展目标、标准规范三个方面。
此外,组织、成员国合作开展微电网计划,建立不同规模的微电网实验平台,进一步推进DES的发展和应用。
三、我国分布式能源的发展的趋势和政策支持(一)发展趋势分布式能源系统在我国的发展主要集中在北京、上海和广东地区,且多依靠CCHP技术,天然气是我国分布式能源系统的战略资源。
现今,DES已由理论探讨进入到工程开发阶段,政府也已采取了相应的政策措施,但相关政策尚不完善,存在很大的改进空间,处于试点推广阶段。
很多投入运行的DES项目体现出良好的节能、经济和环境效益,如上海的浦东国际机场、黄埔中心医院、闵行区中心医院和北京的首都国际机场等。
目前我国天然气分布式能源装机总容量500万千瓦左右,不到全国总装机容量的1%,还处于起步阶段。
2010年4月,国家能源局就提出,到2011年拟建设1000个天然气分布式能源项目;到2020年,在大城市推广使用分布式能源系统,装机容量达到5000万千瓦,并拟建设10个左右各类典型特征的分布式能源示范区域。
按照国家发改委规划,中国2020年总电力装机容量将达到17亿千瓦,天然气分布式能源项目装机容量将占3%。
这表明,我国即将进入分布式能源的大规模发展阶段。
(二)现有推广政策早在2000年,我国四部委出台《关于发展热点联产的规定》,这是我国发展分布式能源体系的标志性文件,明确了“统一规划、分步实施、以热定电和适度规模”的发展原则,鼓励使用清洁能源,发展CCHP技术以提高热能综合利用率。
分布式能源系统是我国“十二五”规划的重点。
《国民经济和社会发展第十二个五年规划纲要》明确指出,“十二五”期间加强并网配套工程建设,有效发展风电,积极发展太阳能、生物质能能等其他新能源,促进分布式能源系统的推广应用。
“十二五”发展规划中提出要促进天然气产量快速增长,推进煤层气、页岩气等非常规油气资源开发利用,促进分布式能源系统的推广应用。
2011年8月,国家发改委等公布的《“十二五”节能减排综合性工作方案》提出,2015年我国节能减排压力较大,发展热电联产、推广分布式能源是加强工业节能减排的重要举措。
分布式能源系统的发展是我国经济可持续发展的重要战略之一。
2011年,国家能源局下发《关于发展天然气分布式能源的指导意见》,计划“十二五”期间将建设1000个左右天然气分布式能源项目,到2020年在全国规模以上城市推广使用分布式能源系统,装机容量达到5000万千瓦。
在未来5~10年内,在分布式能源装备核心能力和产品研制应用方面取得实质性突破,以初步形成具有自主知识产权的分布式能源装备产业体系。