光纤调制技术之频率调制的原理及其在实际应用中的优缺点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤频率调制技术的原理及其在实际应用中的优缺点
一、前言
光调制技术在光纤传感器中是极为重要的技术, 各种光纤传感器,都是从不同的方面利用了这些调制技术。

按照调制方式分类, 光调制可分为: 强度调制、相位调制、偏振调制、频率调制和波长调制等。

所有这些调制过程都可以归结为是将一个携带信息的信号叠加到载波光波上。

完成这一过程的器件叫做调制器。

调制器能使载波光波参数随外加信号变化而改变, 这些参数包括光波的强度(振幅)、相位、频率、偏振、波长等。

这种承载信息的调制光波在光纤中传输, 再由光探测系统解调, 然后检测出所需要的信息[1]。

本为将以光纤频率调制技术为主,通过查阅大量资料和文献,来阐述它的原理及其在实际应用中的优缺点。

二、频率调制技术
1. 光纤频率调制技术的概述
利用外界作用改变光纤中光的频率,通过检测光纤中光的频率的变化来测量各种物理量,这种调制方式称为频率调制。

2.光纤频率调制技术的原理——多普勒效应
目前频率调制技术主要利用多普勒效应来实现。

光纤常采用传光型光纤。

光学多普勒效应告诉我们:当光源S 发射出的光,经运动的物体散射后,观察者所见到的光波频率f l 相对于原频率f 0发生了变化,如图所示。

图1 多普勒效应图
S 为光源,N 为运动物体,M 为观察者所处的位置,若物体N 的运动速度为υ,其运动方向与NS 和MN 的夹角分别为φ1和φ2,则从S 发出的光频率f 0经运动物体N 散射后,观察者在M 处观察到的运动物体反射的频率为f l ,根据多普勒效应,它们之问有如下关系:
()
⎥⎦⎤⎢⎣⎡++≈2101cos cos 1ϕϕυc f f (式中c 为光速) 根据上述的近似公式,可以设计出激光多普勒光纤流速测量系统,如下图所示。

υυc
设激光光源频率为f 0,经半反射镜和聚焦透镜进入光纤射入到被测物流体,当流体以速度υ运动时,根据多普勒效应,其向后散射光的频率为f 0+Δf或f 0-Δf(视流向而定),向后散射光与光纤端面反射光(参考光)经聚焦透镜和半反射镜,由检偏器检出相同振动方向的光,探测器检测出端面反射光f 0与向后散射光f 0+Δf或f 0-Δf的差拍的拍频Δf,由此可知流体的的流速。

三、光纤的频率调制技术的应用及其优缺点
脉冲频率调制传输方式是目前模拟视频光纤传输方式中传输质量最高的方式之一,其原理是调制脉冲重复频率随信号幅度大小呈线性变化,而脉宽保持不变。

PFM (脉冲频率调制)是信号光强度调制前的一种预处理过程,信号经过脉冲调制后,频谱会变宽,并以此可以换取传输质量的提高。

而PFM 处理带来的传输带宽的增加,对于带宽极宽的光纤来说并不存在什么问题,而且由于光源的非线性对系统的影响不大,故光调制深度可以增加,进一步提高系统的信噪比。

通过脉冲频率调制可实现单路视频传输,多路视频传输,视频/数据传输。

下面对几种方案做简要描述
1 单路视频传输
单路视频传输系统工作原理如图1,在发射端基带视频信号经过预加重,进行PFM 调制,然后去调制激光器。

而在接收端通过PIN 管将光信号转化成电信号,经过PFM 解调恢复出视频信号。

视频信号经过PFM 后,频谱呈第一类贝塞尔函数分布,频谱中含有无穷多个频率分量,但功率谱主要集中在载波和低次谐波分量上,高次边频分量可略去不计,因此PFM 信号可近似认为具有有限频谱。

基带视频信号的带宽为8MHz,经过PFM 调制后,信号带宽可限定在30 MHz以上而不会明显影响PFM 性能。

不同于基带视频信号直接光强度调制方式,该系统对发光器件没有特殊要求,可以根据实际工程需要选用不同的发光器件。

如多模850nm 波长LED 满足4 公里以内应用,单模1310nm波长LD 满足30 公里以内应用,单模1550nm 波长DFB 激光器满足100 公里以内应用。

无论是多模LED,还是单模LD,系统都具有良好的性能。

批量测试结果表明,系统经过光纤传输后,系统主要指标为:加权信噪比为60dB,
微分增益为3%,微分相位为3°。

由于PFM 信号解调输出噪声功率谱密度和调频信号解调输出噪声功率谱密度一样,呈三角形噪声特性,造成高频端噪声大而低频端噪声小的现象。

为了克服这种现象,在设计中往往采用预加重和去加重电路。

预加重使视频信号在频率上人为地加以预倾斜,使高频端升高,低频端压低。

在接收端解调时,由于信号高频端电平提升而使解调信噪比有所提高,而低频端则有所降低,从而均衡了带内信噪比的分布。

另外,预加重对低频成分起着压缩作用,也压缩了亮度信号的动态范围,从而降低了微分增益和微分相位的失真。

2 多路视频传输
通过将多路视频分别调制于不同的频率范围,然后进行频分复用,可以在单根光纤中实现多路视频传输。

其发射部分原理框图如图2,接收部分原理是发射部分的逆过程。

从理论上讲,光纤和光器件的带宽极大,完全满足8 路以上多路视频频分复用的带宽要求。

但实际上由于目前采用的分立元件,特别是高频电容和电感的精密度和稳定性不够,使得PFM中心频率的稳定性不好,中心频率会随时间和温度漂移,加上带通滤波器的特性也会随温度变化,给多路视频复用带来很多不稳定因素。

所以目前较为成熟的也只是四路图象的频分复用。

3 视频/数据传输
通过PFM 方式不仅可以完成较高质量的视频传输,而且可以完成一路甚至多路双向数据传输。

正向数据工作原理是在发射端首先将数据信号进行FSK 调制,再将FSK 信号和视频基带信号混合,然后将混合信号进行PFM 调制。

在接收端首先进行PFM 解调,通过带通滤波器分离出视频信号和FSK 信号,最后进行FSK 解调,还原出数据信号。

反向数据则直接对发光器件进行强度调制。

原理框图如图3。

视频、数据混合传输存在两个问题:
(1)视频和正向数据间相互干扰。

由于数据信号经过FSK 调制和带通滤波后仍存在较丰富的谐波成分,这些谐波成分会影响视频信号,使视频信号受到干扰。

为了降低这种干扰,可以通过降低FSK 幅度的方法来实现,但FSK 幅度过低会造成数据解调不出来或数据误码过高。

(2)数据速率不高。

目前比较成熟的FSK 技术适合于速率为1Mbps 的数据信号的调制解调,在异步数据通信中往往采用8 倍的过采样,所以这种FSK 技术可以传输一路速率为115.2Kbps 的高速异步数据。

但如果要传输多路异步数据,异步数据的速率则远低于115.2Kbps。

模拟光纤传输系统可采用基带视频信号直接光强度调制和脉冲频率调制方式。

基带视频信号直接光强度调制方式设备简单、价格便宜,适合于单路视频传输。

脉冲频率调制方式得到的视频质量高,满足0~100 公里不同距离视频传输要求。

该方式虽然可以完成多路视频传输及视频和数据的混合传输,但由于模拟技术的局限,这种应用不久将会被数字方案所取代。

相关文档
最新文档