自动控制原理典型习题(含答案)
自动控制原理课后习题答案.docx
(西安电子科技大学出版社)习题2-1试列写题2-1图所示各无源网络的微分方程.M 0= 2.39VJ 11= 2.19X 10∙A ,试求在工作点(w 0, i 0}附近方=/(〃,的 规性化方程。
2-7设晶网管三相桥式全控整漉电路的怆入房为控制角α,输出r 为空战整流电压口,它们之间的 关系为 式中,U ⑷是整流电压的理想空竣(«•试推导其线性化方程式.2-8 ∙系统由如下方程祖组成,其中Xr(S)为输入,XKS)为输出,试绘制系统构造图,并求出闭 环传递函数。
2-9系统的微分方程组如下其中r 、K l . K- K 、、/、K 、、T 均为正常数,试建设系统构造图,并求系统的传递函数C(S)/R(s).图2-2图有双M 冷 ⑵(W <»U.之间的关系为i* =l0P(e""∕0.026-l),假设系统工作点在 2-6如题2∙6图所示电路,.极耳啦J4非钻盛曲F ,其电流L 和电压2-10试化简即2-10图所示的系统构造图.并求传递函数C(S)11R(S), K(S) C(S)/ C(S) R(S) 筑书规图所材 Gl C(S) G,卡G 5佛与函数 国S) C(S) G) 5 “七; Hl 弟统 £(S) M(S)2-16零初 设某 2-17 g (t) = 7-5e 6f . 咫2∙ 15图求系统 的传速函数, 始条件下的输出响试求该系统的传递 2-18系统的 W'> I 控制系统构造t f 1*1 2-16 W 系统构造图 R(S) ΛU) 2-15 E(S) C (Λ I I - L_rτ∏J ∙13图 系统G:" r ,(5) E(S)凤 F) R ⑸M ⑸松) ⅛4和脉冲响应函数, 单位脉冲响应为。
自动控制原理试题库20套和答案及解析详解
专业知识整理分享一、填空(每空1分,共18分)1.自动控制系统的数学模型有 、 、 、共4种。
2.连续控制系统稳定的充分必要条件是 。
离散控制系统稳定的充分必要条件是 。
3.某统控制系统的微分方程为:dtt dc )(+0.5C(t)=2r(t)。
则该系统的闭环传递函数 Φ(s)= ;该系统超调σ%= ;调节时间t s (Δ=2%)= 。
4.某单位反馈系统G(s)=)402.0)(21.0()5(1002+++s s s s ,则该系统是 阶 型系统;其开环放大系数K= 。
5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC = 。
6.相位滞后校正装置又称为 调节器,其校正作用是 。
7.采样器的作用是 ,某离散控制系统)()1()1()(10210T T e Z Z e Z G -----=(单位反馈T=0.1)当输入r(t)=t 时.该系统稳态误差为 。
二求:)()(S R S C (10分)R(s)2.求图示系统输出C(Z)的表达式。
(4分)四.反馈校正系统如图所示(12分)求:(1)K f=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差e ss.(2)若使系统ξ=0.707,k f应取何值?单位斜坡输入下e ss.=?专业知识整理分享五.已知某系统L(ω)曲线,(12分)(1)写出系统开环传递函数G(s)(2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax=?六、已知控制系统开环频率特性曲线如图示。
P为开环右极点个数。
г为积分环节个数。
判别系统闭环后的稳定性。
(1)(2)(3)专业知识整理分享七、已知控制系统的传递函数为)1005.0)(105.0(10)(0++=s s s G 将其教正为二阶最佳系统,求校正装置的传递函数G 0(S )。
(12分)一.填空题。
(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为 型系统。
自动控制原理试题及答案
自动控制原理试题及答案一、单项选择题(每题2分,共20分)1. 自动控制系统中,开环系统与闭环系统的主要区别在于()。
A. 是否有反馈B. 控制器的类型C. 系统是否稳定D. 系统的响应速度答案:A2. 在控制系统中,若系统输出与期望输出之间存在偏差,则该系统()。
A. 是闭环系统B. 是开环系统C. 没有反馈D. 是线性系统答案:B3. 下列哪个是控制系统的稳定性条件?()A. 所有闭环极点都位于复平面的左半部分B. 所有开环极点都位于复平面的左半部分C. 所有闭环极点都位于复平面的右半部分D. 所有开环极点都位于复平面的右半部分答案:A4. PID控制器中的“P”代表()。
A. 比例B. 积分C. 微分D. 前馈答案:A5. 在控制系统中,超调量通常用来衡量()。
A. 系统的稳定性B. 系统的快速性C. 系统的准确性D. 系统的鲁棒性答案:C6. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则闭环传递函数T(s)是()。
A. G(s)H(s)B. G(s)H(s)/[1+G(s)H(s)]C. 1/[1+G(s)H(s)]D. 1/G(s)H(s)答案:B7. 根轨迹法是一种用于()的方法。
A. 系统稳定性分析B. 系统性能分析C. 系统设计D. 系统故障诊断答案:B8. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则T(s)的零点是()。
A. G(s)的零点B. H(s)的零点C. G(s)和H(s)的零点D. G(s)和H(s)的极点答案:A9. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则T(s)的极点是()。
A. G(s)的零点B. H(s)的零点C. 1+G(s)H(s)的零点D. G(s)和H(s)的极点答案:C10. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则系统的稳态误差与()有关。
自动控制原理八套习题集(含答案)
自动控制原理1一、单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为( )A.系统综合B.系统辨识C.系统分析D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。
A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( )A.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为( )A.1B.2C.5D.10 7. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s ks G ,当k =( )时,闭环系统临界稳定。
自动控制原理考试试卷及答案
自动控制原理考试试卷及答案一、选择题(每题2分,共20分)1. 下列哪项不是自动控制系统的基本组成部分?A. 控制器B. 被控对象C. 执行机构D. 操作人员答案:D2. 在自动控制系统中,下列哪项属于反馈环节?A. 控制器B. 执行机构C. 被控对象D. 反馈元件答案:D3. 下列哪种控制方式属于闭环控制?A. 比例控制B. 积分控制C. 微分控制答案:D4. 下列哪种控制方式属于开环控制?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分控制答案:A5. 在自动控制系统中,下列哪种控制规律不会产生稳态误差?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分-微分控制答案:B6. 下列哪种控制方式适用于一阶惯性环节?A. 比例控制B. 积分控制C. 微分控制答案:A7. 在自动控制系统中,下列哪种环节不会产生相位滞后?A. 比例环节B. 积分环节C. 微分环节D. 比例-积分环节答案:A8. 下列哪种控制方式可以使系统具有较好的稳定性和快速性?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分-微分控制答案:D9. 在自动控制系统中,下列哪种环节可以使系统具有较好的阻尼效果?A. 比例环节B. 积分环节C. 微分环节D. 比例-积分环节答案:C10. 下列哪种控制方式可以使系统具有较好的跟踪性能?A. 比例控制B. 积分控制C. 微分控制D. 比例-积分-微分控制答案:D二、填空题(每题2分,共20分)1. 自动控制系统的基本组成部分有:控制器、被控对象、执行机构、________。
答案:反馈元件2. 在自动控制系统中,反馈环节的作用是________。
答案:减小系统的稳态误差3. 闭环控制系统的特点有:________、________、________。
答案:稳定性好、快速性好、准确性高4. 开环控制系统的缺点有:________、________、________。
自动控制原理试卷及答案20套
D.抛物线响应函数 答 ( )
3、(本小题 3 分) 如图所示是某系统的单位阶跃响应曲线,下面关于性能指标正确的是――
h (t )
1 .3
1.02
1
0
t
2
B.
4
C.
6
8
10
12
14
A.
t r 6s
t s 4s
t p 14s
D.
% 30%
答
( ) 4、(本小题 5 分)
W (s)
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
第 7 页 共 42 页
QQ753326843
考研直通车
6.已知非线性控制系统的结构图如图 7-38 所示。为使系统不产生自振,是利用 描述函数法确定继电特性参数 a,b 的数值。 (15 分)
答案参见我的新浪博客:/s/blog_3fb788630100muda.html 第 1 页 共 42 页
QQ753326843
考研直通车
r _
e
2 0 1
u
1 s2
c
六、采样控制系统如图所示,已知 K 10, T 0.2s : 1.求出系统的开环脉冲传递函数。 1 2 2.当输入为 r (t ) 1(t ) t * 1(t ) 2 t * 1(t ) 时,求稳态误差 e ss 。
第 5 页 共 42 页
QQ753326843
3.当输入为
1 2 2
考研直通车
r (t ) 1(t ) t * 1(t ) t * 1(t ) 时,求稳态误差 e ss 。
R(s)
E (s)
1 e sT s
自动控制原理习题及答案
一、简答题1. 被控对象、被控量、干扰各是什么?答:对象:需进行控制的设备或装置的工作进程。
被控量:被控对此昂输出需按控制要求变化的物理量。
干扰:对生产过程产生扰动,使被控量偏离给定值的变量。
2. 按给定信号分类,控制系统可分为哪些类型?答:恒值控制系统、随动控制系统、程序控制系统。
3. 什么是系统的静态?答:被控量不随时间改变的平衡状态。
4. 什么是系统的动态?答:被控量随时间变化的不平衡状态。
5. 什么是系统的静态特性?答:系统再平衡状态下输出信号与输入信号的关系。
6. 什么是系统的动态特性?答:以时间为自变量,动态系统中各变量变化的大小、趋势以及相互依赖的关系。
7. 控制系统分析中,常用的输入信号有哪些?答:阶跃、斜坡、抛物线、脉冲。
8. (3次)传递函数是如何定义的?答:线性定常系统在零初始条件下输出响应量的拉氏变换与输入激励量的拉氏变换之比。
9. 系统稳定的基本条件是什么?答:系统的所有特征根必须具有负的实部的实部小于零。
10. 以过渡过程形式表示的质量指标有哪些?答:峰值时间t p 、超调量δ%、衰减比n d 、调节时间t s 、稳态误差e ss 。
11. 简述典型输入信号的选用原因。
答:①易于产生;②方便利用线性叠加原理;③形式简单。
12. 什么是系统的数学模型?答:系统的输出参数对输入参数的响应的数学表达式。
13. 信号流图中,支路、闭通路各是什么?答:支路:连接两节点的定向线段,其中的箭头表示信号的传送方向。
闭通路:通路的终点就是通路的起点,且与其他节点相交不多于一次。
14. 误差性能指标有哪些?答:IAE ,ITAE ,ISE ,ITSE二、填空题1. 反馈系统又称偏差控制,起控制作用是通过给定值与反馈量的差值进行的。
2. 复合控制有两种基本形式,即按参考输入的前馈复合控制和按扰动输入的前馈复合控制。
3. 某系统的单位脉冲响应为g(t)=10e -0.2t +5e -0.5t ,则该系统的传递函数G(s)为ss s s 5.052.010+++。
自动控制原理试题库20套和答案详解
第 1 页一、填空(每空1分,共18分)1.自动控制系统的数学模型有 、 、 、共4种。
2.连续控制系统稳定的充分必要条件是 。
离散控制系统稳定的充分必要条件是 。
3.某统控制系统的微分方程为:dtt dc )(+0.5C(t)=2r(t)。
则该系统的闭环传递函数 Φ(s)= ;该系统超调σ%= ;调节时间t s (Δ=2%)= 。
4.某单位反馈系统G(s)=)402.0)(21.0()5(1002+++s s s s ,则该系统是 阶 型系统;其开环放大系数K= 。
5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC = 。
6.相位滞后校正装置又称为 调节器,其校正作用是 。
7.采样器的作用是 ,某离散控制系统)()1()1()(10210TT e Z Z e Z G -----=(单位反馈T=0.1)当输入r(t)=t 时.该系统稳态误差为 。
二. 1.求:)()(S R S C (10分)R(s)第2页2.求图示系统输出C(Z)的表达式。
(4分)四.反馈校正系统如图所示(12分)求:(1)K f=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差e ss.(2)若使系统ξ=0.707,k f应取何值?单位斜坡输入下e ss.=?第 3 页(1) (2) (3)五.已知某系统L (ω)曲线,(12分)(1)写出系统开环传递函数G (s ) (2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax =?六、已知控制系统开环频率特性曲线如图示。
P 为开环右极点个数。
г为积分环节个数。
判别系统闭环后的稳定性。
第 4 页七、已知控制系统的传递函数为)1005.0)(105.0(10)(0++=s s s G 将其教正为二阶最佳系统,求校正装置的传递函数G 0(S )。
(12分)一.填空题。
(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为 型系统。
(完整版)自动控制原理习题及答案.doc
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
自动控制原理试题及答案
自动控制原理试题及答案一、选择题(每题2分,共20分)1. 自动控制系统中,开环系统与闭环系统的主要区别在于:A. 是否有反馈回路B. 控制器的类型C. 系统的稳定性D. 系统的响应速度2. 一个典型的PID控制器由以下哪三个部分组成:A. 比例、积分、微分B. 比例、微分、前馈C. 比例、积分、前馈D. 比例、微分、滞后3. 系统稳定性分析中,根轨迹法的基本原理是:A. 通过改变系统参数来观察系统性能的变化B. 通过改变系统增益来观察闭环极点的变化C. 通过改变系统结构来观察开环极点的变化D. 通过改变系统输入来观察系统输出的变化4. 在控制系统中,超调量是指:A. 系统达到稳态值之前的最大偏差B. 系统达到稳态值之后的最大偏差C. 系统达到稳态值之前的最大超调D. 系统达到稳态值之后的最大超调5. 以下哪个不是控制系统的性能指标:A. 稳态误差B. 响应时间C. 稳态速度D. 阻尼比6. 一个系统的时间常数τ是指:A. 系统从0%到100%响应所需的时间B. 系统从0%到63.2%响应所需的时间C. 系统从100%到0%响应所需的时间D. 系统从63.2%到100%响应所需的时间7. 以下哪个是控制系统中的非线性元件:A. 电阻B. 电容C. 电感D. 二极管8. 系统频率响应的幅频特性图通常用来分析:A. 系统的稳定性B. 系统的快速性C. 系统的准确性D. 系统的抗干扰能力9. 在控制系统中,零点是指:A. 系统输出为零的点B. 系统输入为零的点C. 系统增益为零的点D. 系统极点为零的点10. 一个系统的开环增益K越大,其稳态误差:A. 越大B. 越小C. 不变D. 无法确定二、填空题(每题2分,共20分)1. 自动控制系统按照_______可以分为开环控制系统和闭环控制系统。
2. PID控制器中的“P”代表_______,而“D”代表_______。
3. 根轨迹法中,闭环极点的起始点是开环系统的_______。
自动控制原理试题及答案解析
自动控制原理一、简答题:(合计20分, 共4个小题,每题5分)1. 如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面说明该系统会有什么样的表现?并解释原因。
2. 大多数情况下,为保证系统的稳定性,通常要求开环对数幅频特性曲线在穿越频率处的斜率为多少?为什么?3. 简要画出二阶系统特征根的位置与响应曲线之间的关系。
4. 用根轨迹分别说明,对于典型的二阶系统增加一个开环零点和增加一个开环极点对系统根轨迹走向的影响。
二、已知质量-弹簧-阻尼器系统如图(a)所示,其中质量为m 公斤,弹簧系数为k 牛顿//米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)(合计20分)图(a) 图(b)三、已知一控制系统的结构图如下,(合计20分, 共2个小题,每题10分)1)2)个交接频率的几何中心。
1) 计算系统对阶跃信号、斜坡信号和加速度信号的稳态精度。
2) (合计20分, 共2个小题,每题10分) [,最大输出速度为2 r/min1) 确定满足上述指标的最小K 值,计算该K 值下的相位裕量和幅值裕量;(rad/s)(合计20分, 共2个小题,每题10分)自动控制原理模拟试题3答案答案一、简答题1.如果二阶控制系统阻尼比小,会影响时域指标中的超调量和频域指标中的相位裕量。
根据超调量和相位裕量的计算公式可以得出结论。
2.之间。
3.二、系统的微分方程为 ()()y t y t ky μ++因此所以由系统得响应曲线可知,由二阶系统性能指标的计算公式解得由响应曲线得,峰值时间为3s ,所以由解得由系统特征方城可知所以三、1比较2)由题意知,该系统是个线性系统,满足叠加原理,故可以分别AB四、解:1因为是“II ”型系统所以对阶跃信号、斜坡信号的稳态误差为0;2180(180ϕω+-五、解:1)系统为I 360/602=可以求得3.5 3.5arctanarctan 25-得2)加入串联校正后,开环传递函数为4.8 4.8 4.8 4.8arctan arctan arctan arctan---=2.52512.5单项选择题(16分)(扣分标准 >标准:一空一分)1.根据控制系统元件的特性,控制系统可分为( B )反馈控制系统和前馈控制系统线性控制系统和非线性控制系统定值控制系统和随动控制系统连续控制系统和离散控制系统2.系统的动态性能包括( C )A. 稳定性、平稳性 B.快速性、稳定性C.平稳性、快速性 D.稳定性、准确性3.系统的传递函数( C )A.与输入信号有关B.与输出信号有关C.完全由系统的结构和参数决定4.传递函数反映了系统的动态性能,它与下列哪项因素有关?( C )A. 输入信号 B.初始条件 C.系统的结构参数 D.输入信号和初始条件D.既由系统的结构和参数决定,也与输入信号有关5.设系统的传递函数为G(S)=,则系统的阻尼比为( A )A. B.1 C. D.6.一阶系统的阶跃响应( D )A.当时间常数T较大时有超调 B.当时间常数T较小时有超调C.有超调 D.无超调7.根轨迹上的点应满足的幅角条件为 G(S)H(S) =( D )A.-1 B.1C.(k=0,1,2…) D.(k=0,1,2,…).8.欲改善系统动态性能,一般采用( A )A.增加附加零点 B.增加附加极点C.同时增加附加零、极点 D.A、B、C均不行而用其它方法9.伯德图中的低频段反映了系统的( A )A.稳态性能 B.动态性能 C.抗高频干扰能力 D..以上都不是10.放大环节的频率特性相位移为( B )A. -180 B.0 C.90 D.-9011.Ⅱ型系统对数幅频特性的低频段渐近线斜率为( B )A. -60(dB/dec) B. -40(dB/dec)C. -20(dB/dec) D.0(dB/dec)12. 常用的比例、积分与微分控制规律的另一种表示方法是( D )A. PI B. PD C.ID D. PID13.设有一单位反馈控制系统,其开环传递函数为,若要求相位裕量 , 最为合适的选择是采用( B )A.滞后校正 B.超前校正 C.滞后—超前校正 D.超前—滞后校正14. 已知离散控制系统结构图如下图1所示,则其输出采样信号的Z变换的表达式C(z)为( D )来自 www.3 7 2 中国最大的资料库下载图系统结构图A. B C. D.15. 零阶保持器是采样系统的基本元件之一,其传递函数,由其频率特性可知,它是一个(B)A.高通滤波器 B.低通滤波器 C.带通滤波器 D.带阻滤波器16. 非线型系统的稳定性和动态性能与下列哪项因素有关?( D )A.输入信号 B.初始条件C.系统的结构、参数 D.系统的结构参数和初始条件二、填空题(16分)(扣分标准:一空一分)1. 线性控制系统有两个重要特性:叠加性和____齐次性(或均匀性)__________。
自动控制原理典型习题(含答案)
自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。
(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。
66.06503366101234s s s s s -三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ; (3)若要求σ%=16%,当T 不变时K 应当取何值? 解:(1)求出系统的闭环传递函数为:TK s T s T K Ks TsK s /1/)(22++=++=Φ因此有:25.0212/1),(825.0161======-KT T s T K n n ωζω(2) %44%100e %2-1-=⨯=ζζπσ%)2)((2825.044=∆=⨯=≈s t n s ζω(3)为了使σ%=16%,由式%16%100e %2-1-=⨯=ζζπσ可得5.0=ζ,当T 不变时,有:)(425.04)(425.05.021212/11221--=⨯===⨯⨯===s T K s T T n n ωζζω四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。
2.求使系统稳定的K 值范围,及临界状态下的振荡频率。
解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -= ②渐进线1条π ③入射角1ϕ()18013513513590360135135=︒+︒+︒+︒-︒=︒+︒=︒同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入X rX cK S 3S 2+2S +2222K K-0=1K ⇒=,2s j =± 所以当1K >时系统稳定,临界状态下的震荡频率为2ω=。
自动控制原理课后习题及答案
第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定;用于系统输入信号及扰动作用能预先知道时,可得到满意的效果;(2) 缺点:不能自动调节被控量的偏差;因此系统元器件参数变化,外来未知扰动存在时,控制精度差;2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高;它是一种按偏差调节的控制系统;在实际中应用广泛;⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作;1-2 什么叫反馈为什么闭环控制系统常采用负反馈试举例说明之;解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈;闭环控制系统常采用负反馈;由1-1中的描述的闭环系统的优点所证明;例如,一个温度控制系统通过热电阻或热电偶检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值;1-3 试判断下列微分方程所描述的系统属于何种类型线性,非线性,定常,时变122()()()234()56()d y t dy t du t y t u t dt dt dt ++=+ 2()2()y t u t =+3()()2()4()dy t du t ty t u t dt dt +=+ 4()2()()sin dy t y t u t t dt ω+= 522()()()2()3()d y t dy t y t y t u t dt dt ++=62()()2()dy t y t u t dt +=7()()2()35()du t y t u t u t dtdt =++⎰解答: 1线性定常 2非线性定常 3线性时变 4线性时变 5非线性定常 6非线性定常7线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量;控制的目的是保持水位为一定的高度;试说明该系统的工作原理并画出其方框图;题1-4图 水位自动控制系统解答:1 方框图如下:⑵工作原理:系统的控制是保持水箱水位高度不变;水箱是被控对象,水箱的水位是被控量,出水流量Q2的大小对应的水位高度是给定量;当水箱水位高于给定水位,通过浮子连杆机构使阀门关小,进入流量减小,水位降低,当水箱水位低于给定水位时,通过浮子连杆机构使流入管道中的阀门开大,进入流量增加,水位升高到给定水位;1-5 图1-5是液位系统的控制任务是保持液位高度不变;水箱是被控对象,水箱液位是被控量,电位器设定电压时表征液位的希望值Cr 是给定量;题1-5图 液位自动控制系统解答:1 液位自动控制系统方框图:2当电位器电刷位于中点位置对应Ur 时,电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等;从而液面保持在希望高度上;一旦流入水量或流出水量发生变化,例如当液面升高时,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一事实上的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的液位流量减少;此时,水箱液面下降,浮子位置相应下降,直到电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度;反之,若水箱液位下降,则系统会自动增大阀门开度,加大流入量,使液位升到给定的高度;1-6题图1-6是仓库大门自动控制系统的示意图,试说明该系统的工作原理,并画出其方框图;题1-6图仓库大门自动控制系统示意图解答:(1)仓库大门自动控制系统方框图:2工作原理:控制系统的控制任务是通过开门开关控制仓库大门的开启与关闭;开门开关或关门开关合上时,对应电位器上的电压,为给定电压,即给定量;仓库大门处于开启或关闭位置与检测电位器上的电压相对应,门的位置是被控量;当大门所处的位置对应电位器上的电压与开门或关门开关合上时对应电位器上的电压相同时,电动机不动,控制绞盘处于一定的位置,大门保持在希望的位置上,如果仓库大门原来处于关门位置,当开门开关合上时,关门开关对应打开,两个电位器的电位差通过放大器放大后控制电动机转动,电动机带动绞盘转动将仓库大门提升,直到仓库大门处于希望的开门位置,此时放大器的输入为0,放大器的输出也可能为0;电动机绞盘不动,大门保持在希望的开门位置不变;反之,则关闭仓库大门;1-7题图1-7是温湿度控制系统示意图;试说明该系统的工作原理,并画出其方框图;题1-7图温湿度控制系统示意图解答:1方框图:2被控对象为温度和湿度设定,控制任务是控制喷淋量的大小来控制湿度,通过控制蒸汽量的大小来控制温度;被控量为温度和湿度,设定温度和设定湿度为给定量;第二章 控制系统的数学模型2-2 试求图示两极RC 网络的传递函数U c S /U r S;该网络是否等效于两个RC 网络的串联解答:故所给网络与两个RC 网络的串联不等效;2-4 某可控硅整流器的输出电压U d =KU 2Φcos α式中K 为常数,U 2Φ为整流变压器副边相电压有效值,α为可控硅的控制角,设在α在α0附近作微小变化,试将U d 与α的线性化;解答:.202002020cos (sin )()...sin sin )d u ku ku ku ku φφφφαααααααα=--+∆=-⋅∆=-d d 线性化方程:u 即u (2-9系统的微分方程组为式中1T 、2T 、1K 、2K 、3K 均为正的常数,系统地输入量为()r t ,输出量为()c t ,试画出动态结构图,并求出传递函数()()C s R s ; 解答:2-12 简化图示的动态结构图,并求传递函数()()C s R s ; 解答:ab c d e2-13 简化图示动态结构图,并求传递函数()()C s R s ;解答: a bcde(d)f第三章 时域分析法3-1 已知一阶系统的传递函数今欲采用负方馈的方法将过渡过程时间s t 减小为原来的倍,并保证总的放大倍数不变,试选择H K 和0K 的值;题3-1图解答:闭环传递函数:10()0.2110s s θ=+由结构图知:00010()10110()0.21()0.21101110HHh HK k G S k K s K G S s k S K θ+===+++++由00101011011010100.910H H H k k k k k ⎧⎪⎪⎨⎪⎪⎩⎧⎪⎨⎪⎩=++===3-2已知系统如题3-2图所示,试分析参数b 对输出阶跃过渡过程的影响;题3-2 图解答:系统的闭环传递函数为:由此可以得出:b 的大小影响一阶系统的时间常数,它越大,系统的时间常数越大,系统的调节时间,上升时间都会增大;3-3 设温度计可用1(1)Ts +描述其特性;现用温度计测量盛在容器内的水温,发现1分钟可指示98%的实际水温值;如果容器水温依10℃/min 的速度线性变化,问温度计的稳态指示误差是多少解答:本系统是个开环传递函数 系统的闭环传递函数为:系统的传递函数:1()1G s Ts =+则题目的误差传递函数为:3-4 设一单位反馈系统的开环传递函数试分别求110K s -=和120K s -=时系统的阻尼比ζ、无阻尼自振频率n w 、单位阶跃响应的超调量p σ%和峰值时间p t ,并讨论K 的大小对动态性能的影响;解答:开环传递函数为3-8 设控制系统闭环传递函数试在s 平面上给出满足下列各要求的闭环特征根可能位于的区域: 1. 10.707,2n ζω>≥≥ 2. 0.50,42n ζω≥>≥≥ 3. 0.7070.5,2n ζω≥≥≤解答:欠阻尼二阶系统的特征根:1. 由0.7071,arccos ζβζ<<=,得045β︒︒<≤,由于对称关系,在实轴的下半部还有;2. 由00.5,arccos ζβζ<≤=,得6090β︒︒≤<,由于对称关系,在实轴的下半部还有;3. 由0.50.707,arccos ζβζ≤≤=,得出4560β︒︒≤≤,由于对称关系,在实轴的下半部还有;则闭环特征根可能位于的区域表示如下:1. 2. 3.3-10 设单位反馈系统开环传递函数分别为: 1.[]()(1)(0.21)G s K s s s =-+2. ()(1)[(1)(0.21)]G s K s s s s =+-+ 试确定使系统稳定的K 值;解答:1.系统的特征多项式为:()D s 中存在特征多项式中存在负项,所以K 无论取什么值,系统都不会稳定;2.系统的特征多项式为:32()0.20.8(1)D s s s k s k =++-+ 劳斯阵列为:3s k-12s k 0s k系统要稳定 则有 0.60.800.80k k ⎧⎪⎨⎪⎩->>所以系统稳定的K 的范围为43k >3-14 已知单位反馈系统开环传递函数如下: 1.]()10(0.11)(0.51)G s s s =++2.2()7(1)(4)(22)G s s s s s s ⎡⎤=++++⎣⎦ 3.2()8(0.51)(0.11)G s s s s ⎡⎤=++⎣⎦ 解答:1.系统的闭环特征多项式为: 可以判定系统是稳定的.则对于零型系统来说,其静态误差系数为:那么当()1()r t t =时, 11111ss p e k ==+当()1()r t t t =⋅时, 1ss ve k ==∞当2()1()r t t t =⋅时, 2ss ae k ==∞2.系统的闭环特征多项式为: 可以用劳斯判据判定系统是稳定的. 则对于一型系统来说,其静态误差系数为:那么当()1()r t t =时, 11ss p e k ==∞+ 当()1()r t t t =⋅时,187ss v e k ==当2()1()r t t t =⋅时, 20ss ae k ==3.系统的闭环特征多项式为: 可以用劳斯判据判定系统是稳定的. 则对于零型系统来说,其静态误差系数为:那么当()1()r t t =时, 11ss p e k ==+ 当()1()r t t t =⋅时, 10ss v e k ==当2()1()r t t t =⋅时, 214ss a e k ==第四章 根轨迹法4-2 已知单位反馈系统的开环传递函数,绘出当开环增益1K 变化时系统的根轨迹图,并加以简要说明;1.1()(1)(3)K G s s s s =++2.12()(4)(420)K G s s s s s =+++解答:1 开环极点: p1=0,p2=-1,p3=-3实轴上的根轨迹区间: -∞,-3,-1,0 渐进线:分离点:111013d d d ++=++解得d1、2=-,;d2=-不在根轨迹上,舍去; 与虚轴交点:特征方程321()430D s s s s K =+++= 将s =j ω代入后得解之得 ω= 112K =当 ∞<≤10K 时,按180相角条件绘制根轨迹如图4-21所示;2 开环极点:p1=0,p2=-4,p3、4=-2±j4实轴上的根轨迹区间:-4,0 渐进线:分离点:)8018368(2341++++-=s s s s K 由01=ds dK解得 s1、2=-2,624,3j s ±-= 分离点可由a 、b 、c 条件之一进行判定:a .∠Gs 3=-129o+51o -90o+90o=-180o,满足相角条件;b .100)80368()(62234313>=+++-=+-=j s s s s s s KK 1在变化范围 )0[∞→ 内;c .由于开环极点对于σ=-2直线左右对称,就有闭环根轨迹必定也是对于σ=-2直线左右对称,故s3在根轨迹上;与虚轴交点: 特征方程Routh 表s 4 1 36 K 1 s 3 8 80 s 2 26 K 1 s 80-8K1/26 s 0 K 1由 80-8k1/26=0和26s2+ k1=0,解得k1=260,102,1j s ±= ;当 ∞<≤10K 时,按180相角条件绘制根轨迹如图4-22所示;4-3 设单位反馈系统的开环传递函数为(1) 试绘制系统根轨迹的大致图形,并对系统的稳定性进行分析;、(2) 若增加一个零点1z =-,试问根轨迹有何变化,对系统的稳定性有何影响解答1 K 1>0时,根轨迹中的两个分支始终位于s 右半平面,系统不稳定;2 增加一个零点z=-1之后,根轨迹左移,根轨迹中的三个分支始终位于s 左半平面,系统稳定;4-4 设系统的开环传递函数为12(2)()()(2)K s G s H s s s s a +=++,绘制下列条件下的常规根轨迹;11a =; 2 1.185a = 33a =解答: 11=a实轴上的根轨迹区间: -∞,-1,-1,0 渐进线:分离点:22231+++-=s as s s K解得01=ds dK只取253+-=d ;与虚轴交点:特征方程022)(1123=++++=K s K as s s s D 令jw s =代入上式:得出与虚轴的交点系统的根轨迹如下图: 2185.1=a 零点为2-=z极点为0,43.01j p ±-=实轴上的根轨迹区间: -∞,-1,-1,0 渐进线:分离点:22231+++-=s as s s K解得01=ds dK特征方程022)(1123=++++=K s K as s s s D 令jw s =代入上式:得出与虚轴的交点系统的根轨迹如下图: 33=a 零点为2-=z极点为0,41.11j p ±-=实轴上的根轨迹区间: -∞,-1,-1,0 渐进线:分离点:22231+++-=s as s s K解得01=ds dK特征方程022)(1123=++++=K s K as s s s D 令jw s =代入上式:得出与虚轴的交点系统的根轨迹如下图:4-8 根据下列正反馈回路的开环传递函数,绘出其根轨迹的大致形状;1()()1()()12K G s H s s s =++ 2()()1()()12K G s H s s s s =++3()()()12()()13(4)K s G s H s s s s s +=+++解答:1 2 34-15 设单位反馈系统的开环传递函数为确定a 值,使根轨迹图分别具有:0、1、2个分离点,画出这三种情况的根轨迹;解答:首先求出分离点:分离点:321s s K s a +=-+ 解得2122(31)20()dK s a s as ds s a +++=-=+得出分离点1,2d =当119a <<时,上面的方程有一对共轭的复根当911<>a a 或时,上面的方程有两个不等的负实根当119a a ==或时,上面的方程有两个相等的实根1当1=a 时 系统的根轨迹为:可以看出无分离点 ,故排除2当91=a 时 系统的根轨迹为:可以看出系统由一个分离点 3当1>a 时 比如3=a 时系统的根轨迹为:可以看出系统由无分离点 4当91<a 时 比如201=a 时系统的根轨迹为: 可以看出系统由两个分离点 5当191<<a 时 比如21=a 时系统的根轨迹为:可以看出系统由无分离点 第五章 频域分析法5-1设单位反馈控制系统开环传递函4()1G s s =+,当将()sin(260)2cos(45)r t t t =+--作用于闭环系统时,求其稳态输出;解答:开环传递函数14)(+=s s G 闭环传递函数54)(+=Φs s闭环频率特性54)()()(+==Φωωωωαj e M j j当ω=2时,M2=,α2=; 当ω=1时,M1=,α1=; 则闭环系统的稳态输出:5-2 试求110()4G s s =+24()(21)G s s s =+3(1)()(1,)1K s G s K T Ts ττ+=>>+的实频特性()X ω、虚频特性()Y ω、幅频特性()A ω、相频特性()ϕω;解答:⑴4arctan 222216101610164016)4(10410)(wj e w w w j w w jw jw jw G -+=+-+=+-=+=则21640)(w w X +=,21610)(w ww Y +-=⑵)21arctan 180(2331444448)12(4)(wj ew w w w j w w w jw jw jw G ++=+-+-=+=则 w w w w X +-=348)( , w w w Y +-=344)(⑶)]arctan()[arctan(222222222111)(1)1(1)1()(wT w j e w T w k w T w T k j w T Tw k jTw w j k jw G -++=+-+++=++=τττττ则2221)1()(w T Tw k w X ++=τ,221)()(w T wT k w Y +-=τ 5-4 绘制下列传递函数的对数幅频渐近线和相频特性曲线;14()(21)(81)G s s s =++ 2()242()(0.4)(40)s G s s s +=++ 3228(0.1)()(1)(425)s G s s s s s s +=++++ 4210(0.4)()(0.1)s G s s s +=+解答:1转折频率为21,8121==w w2 3 45-10 设单位负反馈系统开环传递函数; 110()(0.51)(0.021)G s s s s =++,21()as G s s +=试确定使相角裕量等于45的α值; 2 3()(0.011)KG s s =+,试确定使相角裕量等于45的K 值;32()(100)KG s s s s =++,,试确定使幅值裕量为20dB 的开环增益K 值;解答:1由题意可得:解得: ⎩⎨⎧==84.019.1αc w2由题意可得:解得: ⎩⎨⎧==83.2100k w c3由题意可得:解得: ⎩⎨⎧==1010k w g5-13 设单位反馈系统开环传递函数 试计算系统的相角裕量和幅值裕量;解答:由18002.0arctan 5.0arctan 90)(-=---=g g g w w w γ所以幅值裕量)(14dB h =故16102.0arctan 5.0arctan 90)(-=---=c c c w w w ϕ所以相角裕量19161180)(=-=c w γ系统的幅频特性曲线的渐近线: 系统的幅相特性曲线:第六章 控制系统的综合与校正6-1 试回答下列问题:1 进行校正的目的是什么为什么不能用改变系统开环增益的办法来实现答:进行校正的目的是达到性能指标;增大系统的开环增益在某些情况下可以改善系统的稳态性能,但是系统的动态性能将变坏,甚至有可能不稳定;2 什么情况下采用串联超前校正它为什么能改善系统的性能答:串联超前校正主要用于系统的稳态性能已符合要求,而动态性能有待改善的场合;串联超前校正是利用校正装置的相位超前特性来增加系统的橡胶稳定裕量,利用校正装置幅频特性曲线的正斜率段来增加系统的穿越频率,从而改善系统的平稳性和快速性;(3)什么情况下采用串联滞后校正它主要能改善系统哪方面的性能答:串联滞后校正主要是用于改善系统的稳态精度的场合,也可以用来提高系统的稳定性,但要以牺牲快速性为代价;滞后校正是利用其在高频段造成的幅值衰减,使系统的相位裕量增加,由于相位裕量的增加,使系统有裕量允许增加开环增益,从而改善稳态精度,同时高频幅值的衰减,使得系统的抗干扰能力得到提高;思考题:1. 串联校正装置为什么一般都安装在误差信号的后面,而不是系统股有部分的后面2. 如果1型系统在校正后希望成为2型系统,但又不影响其稳定性,应采用哪种校正规律6-3 设系统结构如图6-3图所示,其开环传递函数0()(1)KG s s s =+;若要求系统开环截至频率 4.4c ω≥rad/s,相角裕量045γ≥,在单位斜坡函数输入信号作用下,稳态误差0.1ss e ≤,试求无源超前网络参数;解答:1由10.1ss e K =≤可得:10K ≥,取10K =2原系统 3.16c ω= rad/s,017.6γ=,不能满足动态性能指标;3选' 4.4c ω=rad/s,由'0()10lg c L ωα=-即'21020lg10lg cαω=-可得:3.75α=那么0.12T == 无源超前校正网络:10.531()10.121c Ts s G s Ts s α++==++(4) 可以得校正后系统的'51.8γ=,满足性能指标的要求;6-4 设单位反馈系统开环传递函数()()()010.51KG s s s s =++;要求采用串联滞后校正网络,使校正后系统的速度误差系数5(1)v K s =,相角裕量40γ≥;解答: ⑴由00lim ()v s K sG s K→==可得:5K =2 原系统 2.15c ω=,22.2γ=-不满足动态要求3 确定新的'c ω由''1804012(90arctan arctan 0.5)c c ωω-++=---可解得:'0.46c ω=⑷由020lg 20lg (')c b G j ω=-得:0.092b =取'111510cbT ω⎛⎫= ⎪⎝⎭='15c ω得:118T =校正网络为:1111()11181c Tbs s G s Ts s ++=≈++校正后系统的相角裕量'42γ=,故校正后的系统满足性能指标的要求;第七章 非线性控制系统7-1 三个非线性系统的非线性环节一样,线性部分分别为1.2()(0.11)G s s s =+ 2.2()(1)G s s s =+ 3. 2(1.51)()(1)(0.11)s G s s s s +=++ 解答:用描述函数法分析非线性系统时,要求线性部分具有较好的低通滤波性能即是说低频信号容易通过,高频信号不容易通过; 从上图可以看出:系统2的分析准确度高;7-2 一个非线性系统,非线性环节是一个斜率1N -的饱和特性;当不考虑饱和因素时,闭环系统是稳定的;问该系统有没有可能产生自振荡解答:饱和特性的负倒描述函数如下:当1k =时,1()N A -曲线的起点为复平面上的(1,0)j -点; 对于最小相位系统有:闭环系统稳定说明系统的奈氏曲线在实轴(,1)-∞-段没有交点,因此,当存在1k =的饱和特性时,该系统不可能产生自激振荡7-4 判断图中各系统是否稳定,1()N A -与()G j ω的交点是否为自振点;图中P为()G s的右极点个数;解答:首先标出各图的稳定区用阴影部分表示abc da1N-曲线由稳定区穿入不稳定区,交点a是自激振荡点;b1N-曲线由稳定区穿入不稳定区,交点a是自激振荡点;c 交点,a c为自激振荡点,交点b不时自激振荡点;d 闭环系统不稳定;e 交点a不是自激振荡点;f 交点a是自激振荡点7-5 非线性系统如图所示,试确定其自振振幅和频率;题7-5图解答:由题可得下图:由1()()G j N A ω-=得1()()N A G j ω-=即:()()10*412j j j A ωωωπ++=- 320ωω-=得:ω=2403A ωπ-=-得:24020 2.1233A ππω===振幅为203π7-6非线性系统如图所示,试用描述函数法分析当10K =时,系统地稳定性,并求K 的临界稳定值;题7-6图解答:由题可得下图:K 的临界稳定值为:010653K == 所以,当06K <<时,()G j ω曲线不包围1()N A -曲线,系统闭环稳定;第八章 线性离散系统8-1 求函数()x t 的Z 变换;1.()1at x t e -=- 2. ()sin x t t t ω=3. ()sin x t t t ω=4. 2()atx t t e -=解答:1. (1)()1(1)()aT aT aT z e z z X z z z e z z e ----=-=----2.2222(1)sin sin ()()2cos 1(2cos 1)Tz z T d z T X z Tz dz z z T z z T ωωωω-=-=-+-+Z 域微分定理3.22222(cos )cos ()2cos 12cos aT aT aT aT aT aT aTze ze T z ze T X z z e ze T z ze T e ωωωω-----==-+-+复数位移定理4.23(1)()4(1)aT aT aT Tze ze X z ze +=-复数位移定理8-2 已知()X s ,试求对应的()X z ;1.3()(1)(2)s X z s s +=++ 2.2()(1)s X z s s =+3.21()s X z s += 4. 21()(1)s e X z s s --=+解答:1. ()321()12(1)2s X s s s s s +==-++++ 2. 2111()1(1)(1)s X s s s s s s s ===-+++ 3. 22111()s X s s s s +==+4. ()()221111()111s s e X s e s s s s s --⎡⎤⎢⎥⎢⎥⎣⎦-==--+++()1211(1)T T Tzz z X z z z z e z --⎛⎫⎡⎤⎪⎢⎥⎪⎢⎥⎣⎦⎝⎭=--+---()121(1)1(1)1()T T T T z z z e T T e z z e ----⎛⎫⎡⎤⎪⎢⎥ ⎪⎣⎦⎝⎭-+++-+=--负偏移定理8-3 已知()X z ,试求()X nT ;1. ()()()1012zX z z z =--2. ()()()20.80.1z X z z z =--3. ()2(1)1.250.25z z X z z z -=-+解答:1. ()()()1012zX z z z =--=10()21zz z z ---2. ()()()20.80.1z X z z z =--81770.80.1z zz z =---3.()2(1)1.250.25z zX zz z-=-+(1)(0.25)(1)z zz z-=--(0.25)zz=-8-6 已知系统的结构如图所示,1T s=,试求系统的闭环脉冲传递函数()zφ;解答:211111 ()*(1)1(1)TsTseG s es s ss s s--⎛⎫⎪⎪⎝⎭-==--+++思考题:1. 在单位阶跃输入作用下,试求上题所给系统的输出()c t;2. 系统结构如上题,试求当输入为()1()r t t=、t、2t时的稳态误差;。
《自动控制原理》习题及解答
自动控制原理习题及解答1. 引言自动控制原理是控制工程中最基础的一门课程,是研究系统的建模、分析和设计的基础。
通过习题的练习和解答,可以加深对自动控制原理的理解和掌握。
本文档将提供一些常见的自动控制原理习题及其解答,希望对学习者有所帮助。
2. 习题2.1 系统建模习题1:一个质量为m的弹簧振子的运动方程可以表示为:$$m\\frac{d^2x(t)}{dt^2} + c\\frac{dx(t)}{dt} + kx(t) = 0$$其中,m(m)为振子的位移,m为阻尼系数,m为弹性系数。
请利用拉普拉斯变换求解该系统的传递函数。
解答:对原方程两边进行拉普拉斯变换得:mm2m(m)+mmm(m)+mm(m)=0整理后可得传递函数:$$\\frac{X(s)}{F(s)} = \\frac{1}{ms^2 + cs + k}$$其中,m(m)为输出的拉普拉斯变换,m(m)为输入的拉普拉斯变换。
2.2 系统分析习题2:有一个开环传递函数为$G(s) =\\frac{3}{s(s+2)(s+5)}$的系统,求该系统的阻尼比和自然频率。
解答:该系统的传递函数可以表示为:$$G(s) = \\frac{3}{s(s+2)(s+5)}$$根据传递函数的形式可以得知,该系统是一个三阶系统,有三个极点。
通过对传递函数进行因式分解可以得到:$$G(s) = \\frac{A}{s} + \\frac{B}{s+2} + \\frac{C}{s+5}$$将上述表达式通分并整理后可得:$$G(s) = \\frac{3s^2 + 16s + 5}{s(s+2)(s+5)}$$通过对比系数可以得到:$$A = 1, B = -\\frac{2}{3}, C = \\frac{5}{3}$$根据阻尼比和自然频率的定义,可以得到:$$\\zeta = \\frac{c}{2\\sqrt{mk}}, \\omega_n =\\sqrt{\\frac{k}{m}}$$其中,m为系统的阻尼系数,m为系统的弹性系数,m为系统的质量。
自动控制原理习题及答案
1. 采样系统结构如图所示,求该系统的脉冲传递函数。
答案:该系统可用简便计算方法求出脉冲传递函数。
去掉采样开关后的连续系统输出表达式为对闭环系统的输出信号加脉冲采样得再对上式进行变量替换得2. 已知采样系统的结构如图所示,,采样周期=0.1s。
试求系统稳定时K的取值范围。
答案:首先求出系统的闭环传递函数。
由求得,已知T=0.1s,e-1=0.368,故系统闭环传递函数为,特征方程为D(z)=1+G(z)=z2+(0.632K-1.368)z+0.368=0将双线性变换代入上式得+1 4 +( 7 -0.632K)=0要使二阶系统稳定,则有K>0,2.736-0.632K>0故得到K的取值范围为0<K<4.32。
3. 求下列函数的z变换。
(1). e(t)=te-at答案:e(t)=te-at该函数采样后所得的脉冲序列为e(nT)=nTe-anT n=0,1,2,…代入z变换的定义式可得E(z)=e(0)+P(T)z-1+e(2T)z-2+…+e(n )z-n+…= + e-aT z-1+2Te-2aT z-2+…+n e-naT z-n+…= (e-aT z-1+2e -2aT z-2+…+ne-naT z-n+…)两边同时乘以e-aT z-1,得e-aT z-1E(z)=T(e-2aT z-2+2e-3aT z-3+…+ne-a(n+1)T z-(n+1)+…)两式相减,若|e-aT z-1|<1,该级数收敛,同样利用等比级数求和公式,可得最后该z变换的闭合形式为(2). e( )=答案 e( )=对e( )= 取拉普拉斯变换.得展开为部分分式,即可以得到化简后得(3).答案:将上式展开为部分分式,得查表可得(4).答案:对上式两边进行z变换可得得4. 求下列函数的z反变换(1).答案:由于所以得所以可得(z)的z反变换为e(nT)=10(2n-1)(2).答案:由于所以得所以E(z)的z反变换为e(nT)=-n-1n+2n=2n-n-1(3).答案:由长除法可得E(z)=2z-1-6z-3+10z-5-14z-7+…所以其反变换为e*( )= δ( -T)- δ( - )+1 δ( -5T)-14δ( -7 )+18δ( -9 )+…(4).答案:解法1:由反演积分法,得解法2:由于所以得最后可得z 反变换为5. 分析下列两种推导过程:(1). 令x(k)=k1(k),其中1(k)为单位阶跃响应,有答案:(2). 对于和(1)中相同的(k),有x(k)-x(k-1)=k-(k-1)=1试找出(2)与(1)中的结果为何不同,找出(1)或(2)推导错误的地方。
《自动控制原理》练习题及参考答案
《自动控制原理》练习题及参考答案一、填空题1.线性连续控制系统常用的数学模型有 、 、 。
2.自动控制系统按照控制方式可分为 控制系统、 控制系统和 控制系统。
3.自动控制系统按照有无反馈可分为 控制系统和 控制系统。
4.在典型输入信号作用下,任何一个控制系统的时间响应都由 过程和 过程两部分组成。
二、简答题1.什么是系统的开环传递函数?什么是系统的闭环传递函数?当给定量和扰动量同时作用于线性控2. 什么是传递函数?传递函数有哪些特点?三、计算题1.某单位负反馈系统的开环传递函数为()()()12111G s s T s T s =++,其中,10T >,20T >。
回答下列问题: (1)画出开环频率特性Nyquist 曲线的概略图形;(2)根据Nyquist 判据确定使闭环系统稳定的参数T1、T2应该满足的条件。
2. 已知反馈系统的开环传递函数为()()()1K G s H s s s =+,试求: (1)用奈氏判据判断系统的稳定性;(2)若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,问开环增益K 应取何值。
参考答案一、填空题1.微分方程、传递函数、频率特性2.开环、闭环、复合3.闭环、开环4.瞬态、稳态 二、简答题1.答:系统的开环传递函数为前向通路传递函数与反馈通路传递函数之积;系统的闭环传递函数为输出的拉氏变换与输入拉氏变换之比。
当给定量和扰动量同时作用于系统时,通过叠加原理计算系统的输出量。
2.答:解答:定义:在零初始条件下,系统输出的Laplace 变换与引起该输出的输入量的Laplace 变换之比。
传递函数具有以下特点(1)传递函数的分母反映了由系统的结构与参数所决定的系统的固有特性,而其分子则反映了系统与外界之间的联系。
(2)当系统在初始状态为零时,对于给定的输入,系统输出的Laplace 变换完全取决于其传递函数。
但是,一旦系统的初始状态不为零,则传递函数不能完全反映系统的动态历程。
自动控制原理八套习题集_(含答案),科
自动控制原理1一、单项选择题(每小题1分,共20分)9. 一阶微分环节Ts s G +=1)(,当频率T=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s ks G ,当k =( )时,闭环系统临界稳定。
A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( ) A.0 B.1 C.2 D.3 14.单位反馈系统开环传递函数为()ss s s G ++=652,当输入为单位阶跃时,则其位置误差为( ) A.2 B.0.2 C.0.5 D.0.05 15.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种( )A.反馈校正B.相位超前校正C.相位滞后—超前校正D.相位滞后校正 16.稳态误差e ss 与误差信号E (s )的函数关系为( )A.)(lim 0s E e s ss →= B.)(lim 0s sE e s ss →=C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→=17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( ) A.减小增益 B.超前校正 C.滞后校正 D.滞后-超前 18.相位超前校正装置的奈氏曲线为( )A.圆B.上半圆C.下半圆D.45°弧线 19.开环传递函数为G (s )H (s )=)3(3s s K,则实轴上的根轨迹为( )三、名词解释(每小题3分,共15分) 31.稳定性32.理想微分环节 33.调整时间 34.正穿越 35.根轨迹四、简答题(每小题5分,共25分)36.为什么说物理性质不同的系统,其传递函数可能相同 ? 举例说明。
(完整)自动控制原理复习题20套答案
自动控制原理试卷1答案一.填空 1. 微分方程、传递函数、频率特性、结构图。
2. 闭环极点都位于S 平面左侧;系统的特性方程的根都在Z 平面上以原点为圆心的单位圆内.3. 5.02+S ;0;8。
4. 4,Ⅱ;62.5.5. 110100+S ;10。
6. P-I;利用G(s )的负斜率使ωC 减小,改善静态性能。
7. 将连续信号变为离散信号;0。
二.(14分) 解:(1)(2)C (Z)=)()(1)()(1232321Z H Z H G G Z G G Z RG •+•三.(20分)解:(1)F (s)=[]T s st f 111)(+-=(2)F (s )=525125151)5(122++-=+s s ss s(3)G 1(s )=s s s s s s s s s s 321030)2(10)2(3101)2(102+=++=+⨯++G 2(s )=ss s a s )32(10)(2+⨯+sa s s a s s s s a s a s s R s C 1010321010)32(10)(10)()()(232++++=++⨯+⨯+=∴ a s s s s A 101032)(23+++=∴ 要使系统稳定,则必须满足{{032010101032><>>⨯⇒a a a a320<<∴a (两内项系数乘积>两外项系数乘积)521634432125152125143321521251243213211352126346321251132122111)1()()(1001)()(G G G G G G G G G G G G G G G G G G G G G G G G s R s C G G G G G G G G P G G G P L G G G L G G G G G G G G G G L L L L P P s R s C +-+++++++=∴+++=∆==∆==∑=∑+---=∑∑-∑+∑-=∆∆∆+∆= t e t s F 5125125151)]([f(t)--+-== (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分)(1分)(4分) (4分)(3分) (3分)(3分)(1分)(2分) (1分)(1分) (2分)(每空1分。
自动控制理论课后题答案及试题
自动控制理论课后题答案及试题一、填空题1. 自动控制系统的被控对象是指系统的____________,它是系统进行控制的对象。
答案:输入输出对象2. 开环控制系统是指系统的输出____________系统的输入。
答案:不直接3. 闭环控制系统又称为________控制系统。
答案:反馈4. 系统的稳定性是指系统在受到____________后,能否迅速恢复到原来的稳定状态。
答案:干扰5. 系统的稳态是指系统在长时间运行后,其____________和____________趋于稳定。
答案:输出,输入6. 系统的动态性能是指系统在受到____________时,系统输出信号的变化情况。
答案:输入7. 系统的性能指标主要包括:稳态性能、动态性能和____________性能。
答案:鲁棒性8. 常用的数学工具主要有:微分方程、____________和____________。
答案:差分方程,传递函数9. 拉普拉斯变换是一种________变换,它将时域信号变换为________域信号。
答案:线性,复10. 控制系统的性能可以通过____________、____________和____________等指标来衡量。
答案:稳态误差,上升时间,调整时间二、选择题1. 下列哪种系统是闭环控制系统?()A. 开环控制系统B. 闭环控制系统C. 半开环控制系统D. 半闭环控制系统答案:B2. 下列哪种方法可以提高系统的稳定性?()A. 增加系统的开环增益B. 减小系统的反馈增益C. 增加系统的相位裕度D. 减小系统的截止频率答案:C3. 下列哪种情况会导致系统产生稳态误差?()A. 系统的输入为常数B. 系统的输入为正弦信号C. 系统的反馈环节存在纯滞后D. 系统的开环增益为无穷大答案:C三、简答题1. 请简述自动控制系统的稳定性、动态性能和稳态性能的概念及它们之间的关系。
答案:稳定性是指系统在受到干扰后,能否迅速恢复到原来的稳定状态;动态性能是指系统在受到输入信号时,系统输出信号的变化情况;稳态性能是指系统在长时间运行后,其输出和输入趋于稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以:
321)
(G G G s C =
图2
A 、稳定;
B 、单位阶跃响应曲线为单调指数上升;
C 、临界稳定;
D 、右半平面闭环极点数。
2=Z 4、系统在作用下的稳态误差,说明 ( A )
2)(t t r =∞=ss e A 、 型别;
B 、系统不稳定;
2<v C 、 输入幅值过大; D 、闭环传递函数中有一个积分环节。
5、对于以下情况应绘制0°根轨迹的是( D )A 、主反馈口符号为“-” ; B 、除外的其他参数变化时;r K C 、非单位反馈系统; D 、根轨迹方程(标准形式)为。
1)()(+=s H s G 6、开环频域性能指标中的相角裕度对应时域性能指标γ( A ) 。
A 、超调
B 、稳态误差
C 、调整时间 %σss e s t
D 、峰值时间p
t 7、已知开环幅频特性如图2所示, 则图中不稳定的系统是( B
)。
系统① 系统②
函数表达式;(4分)()
()C s s Φ=
图4
、-3、-3,无开环零点(有限终);(1分)
(2分)
(2分)
d
1-
=
=
r
无交点。
(1分)所示。
则,
P=
起始斜率:-20dB/dec(一个积分环节) (1分)
转折频率:(惯性环节), (一阶微分11/1000.01ω==21/3.1250.32ω==环节),
(惯性环节), (惯性环节) (4分)
31/0.110ω==41/0.0520ω==。