八年级数学下册知识点总结(全)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下知识点总结

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。 2、一次函数的图像

所有一次函数的图像都是一条直线。 3、一次函数、正比例函数图像的主要特征:

一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。(如下图) 4. 正比例函数的性质

一般地,正比例函数kx y =有下列性质:

(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。 5、一次函数的性质

一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。解这类问题的一般方法是待定系数法。

四边形

一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四

边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理

※1.关于中心对称的两个图形是全等形.

※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.

※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于

这一点对称. 三 公式:

1.S 菱形 =2

1

ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2

1

(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:

※1.若n 是多边形的边数,则对角线条数公式是:2

)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”.

3.如图:平行四边形、矩形、菱形、正方形的从属关系.

4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.

平行四边形

矩形

菱形正

※5.梯形中常见的辅助线:

一元二次方程

1、一元二次方程:

① 概念:只含有一个未知数,且可以化为02

=++c bx ax (a ,b ,c 为常数,且0≠a )的整式方程叫做一元二次方程。

02=++c bx ax 是一元二次方程的一般形式。其中,2ax 、bx 、c 分别叫做一元二次方程

的二次项、一次项、常数项;a 、b 分别叫做一元二次方程的二次项、一次项的系数。 (强调:项和系数要包括前面的符号) 构成一元二次方程的条件:(1)整式方程;(2)只含有一个未知数;(3)二次项系数不能为0;(4)未知数的最高次数为2. ② 注意事项:

(1)二次项系数0≠a 是一般形式的重要组成部分。

(2)二次项、一次项和常数项都是在一般形式下定义的,判断各项系数时,必须先将方程方程化为一般形式。

(3)任何一个一元二次方程均可经过整理(去括号、移项、合并同类项)均可化为一般形式。

2、一元二次方程的解法

⑴直接开平方法解一元二次方程:

①如)0(2

≥=m m x 的方程都可以用开平方的方法求出它的解,这种解法叫做直接开平方法 ②利用直接开平方法所解的一元二次方程的结构特点:经过整理、变形后得到等号左边是一个完全平方式,右边是一个非负数;

③理解直接开平方法的理论依据是平方根的定义。

⑵用配方解一元二次方程:

①把一个二次三项式组成完全平方式的变形过程,叫做配方,用配方法求一元二次方程的解的方法叫做配方法。

②配方法解一元二次方程是以配方为手段,以直接开平方为基础的一种解一元二次方程的基本方法。

③用配方法解一元二次方程的步骤:

㈠二次项系数化为1:方程两边都除以二次项系数; ㈡移项:方程左边为二次项和一次项,右边为常数项;

㈢配方:方成左右两边同时加上一次项系数一半的平方,使方程左边变成一个完全平方式,右边是一个常数;

㈣求解:如果右边常数是非负数,就用直接开平方法解一元二次方程。

相关文档
最新文档