肿瘤遗传学

合集下载

肿瘤遗传知识点总结

肿瘤遗传知识点总结

肿瘤遗传知识点总结一、肿瘤的遗传基础肿瘤的遗传基础主要包括三个层面的遗传变异:基因型、表观基因型和全基因组。

1. 基因型:即细胞核内基因组的遗传信息。

基因型的遗传变异包括基因突变、基因重排、基因扩增和基因缺失等。

这些遗传变异可能导致染色体异常、蛋白质功能失调、细胞增殖异常等,最终导致肿瘤的发生。

2. 表观基因型:即影响基因表达的遗传修饰。

表观基因型的遗传变异包括DNA甲基化、组蛋白修饰、非编码RNA调控等。

这些遗传变异可能导致基因的表达异常,改变细胞的生物学功能,从而促进肿瘤的发生。

3. 全基因组:即细胞内全部基因组的遗传信息。

全基因组的遗传变异包括染色体数目异常、染色体结构异常和整个基因组的遗传异常等。

这些遗传变异可能导致基因组稳定性的失调,促进肿瘤的发生。

以上三个层面的遗传变异共同构成了肿瘤的遗传基础。

理解和揭示这些遗传变异的发生和发展机制,对于预防和治疗肿瘤具有重要意义。

二、遗传突变的发生和发展机制遗传突变是指在细胞分裂和增殖过程中,细胞的遗传信息发生变异,导致基因型、表观基因型和全基因组的遗传异常。

遗传突变的发生和发展机制主要包括以下几个方面。

1. DNA复制错误:DNA的复制是细胞增殖的必要过程,但在复制过程中会产生错误。

这些错误可能导致基因组的遗传变异,促进肿瘤的发生。

2. DNA修复失调:细胞内有多种DNA修复机制,可以帮助细胞修复DNA损伤。

但当这些修复机制出现失调时,会导致DNA的遗传变异,从而促进肿瘤的发生。

3. 病毒、化学物质和辐射的影响:病毒的侵染、化学物质的暴露和辐射的作用,都可能导致细胞的遗传信息发生变异,从而促进肿瘤的发生。

4. 遗传易感性:个体的遗传易感性是影响遗传突变发生和发展的重要因素。

一些基因型和表观基因型的遗传变异,会增加个体对于遗传突变的易感性,从而促进肿瘤的发生。

以上几个方面共同影响了遗传突变的发生和发展。

对于这些机制的深入了解,有助于找到抑制肿瘤遗传突变的方法,从而预防和治疗肿瘤。

肿瘤遗传学的理论与应用

肿瘤遗传学的理论与应用

肿瘤遗传学的理论与应用引言肿瘤遗传学是研究肿瘤发生、发展过程中的基因变异和遗传机制的学科。

它揭示了肿瘤起源、进化和抗药性等重要问题,为肿瘤的预防、诊断和治疗提供了重要依据。

本文将介绍肿瘤遗传学的理论基础、技术手段以及在临床实践中的应用。

一、肿瘤遗传学理论基础1. 基因突变与癌症发生基因突变是导致癌症产生的重要原因之一。

通过分子遗传学和生物信息学方法,科学家可以鉴定癌细胞中具有突变功能的关键基因,从而推测其对恶性转化具有重要作用。

例如,BRCA1/2基因突变与乳腺癌和卵巢癌风险高度相关。

此外,其他许多重要基因如TP53、EGFR等也被证实在特定类型的癌症中具有突变。

2. 肿瘤抑制基因与促癌基因肿瘤抑制基因和促癌基因是肿瘤遗传学中的两个重要概念。

肿瘤抑制基因主要通过阻止细胞增殖、促进细胞凋亡等机制来控制肿瘤的发生。

而促癌基因则具有增加细胞增殖、抑制凋亡等功能,从而推动肿瘤发展。

在某些特定情况下,这两类基因突变或异常表达都可能导致肿瘤形成。

3. 癌症的遗传倾向性个体对于癌症的敏感性往往受到其遗传背景的影响。

例如,BRCA1/2突变使得个体更容易患乳腺癌和卵巢癌;而Lynch综合征患者由于MLH1、MSH2等DNA修复基因异常,导致其患结直肠癌和子宫内膜癌的风险显著提高。

了解这些遗传倾向性有助于早期诊断和预防策略的制定。

二、肿瘤遗传学技术手段1. 肿瘤基因组测序随着高通量测序技术的发展,全基因组测序、全外显子测序和靶向测序等技术已经广泛应用于肿瘤遗传学研究。

通过比较癌细胞和正常细胞的基因组序列,可以发现肿瘤中存在的突变位点、基因重排、拷贝数变异等信息,从而揭示肿瘤发生演化的模式。

此外,个体化治疗也可以通过测序结果来预测恶性肿瘤对药物的敏感性。

2. 肿瘤遗传学标志物检测某些特定的基因突变或异常表达已被确认与特定类型肿瘤密切相关。

通过检测这些标志物在患者样本中的存在与表达水平改变,可以进行早期诊断、预后判断和治疗效果监控。

肿瘤表观遗传学

肿瘤表观遗传学

组蛋白修饰在肿瘤中的研究主要包括:探究 组蛋白修饰在肿瘤中的特征和规律,探究组 蛋白修饰与肿瘤发生、发展、转移和耐药等 过程的关系,以及寻找可作为肿瘤诊断和疗
效评估的组蛋白修饰标志物。
03
肿瘤表观遗传学与肿瘤发 生发展的关系
表观遗传学变化与肿瘤细胞增殖
表观遗传学变化是指基因表达的改变,而非基因序列 的改变。这些变化可以通过甲基化、乙酰化、磷酸化 等修饰方式影响基因的表达,进而影响细胞的功能。 在肿瘤发生发展过程中,表观遗传学变化可以调控肿 瘤细胞的增殖过程。例如,某些基因的甲基化状态改 变可以影响其表达水平,进而影响细胞增殖的速度和 程度。
VS
基因组印记在肿瘤中的研究主要包括: 探究基因组印记与肿瘤发生、发展、 转移和耐药等过程的关系,以及寻找 可作为肿瘤诊断和疗效评估的印记标 志物。
非编码RNA
非编码RNA是指不编码蛋白质的RNA分子,包括miRNA、lncRNA等。非编码RNA在表观遗传学中扮演重要角色,参与基因 表达的调控,并与肿瘤的发生和发展密切相关。
04
肿瘤表观遗传学的治疗策 略与药物研发
表观遗传学治疗策略
靶向DNA甲基化
通过抑制DNA甲基转移酶或激活 去甲基化酶,调节基因表达,抑 制肿瘤生长。
靶向组蛋白修饰
通过抑制组蛋白乙酰化酶或组蛋 白甲基化酶,改变染色质构象, 抑制肿瘤细胞增殖。
靶向非编码RNA
通过调控miRNA、lncRNA等非 编码RNA的表达,调节基因表达, 抑制肿瘤进展。
非编码RNA在肿瘤中的研究主要包括:探究非编码RNA在肿瘤中的表达特征和规律,探究非编码RNA与肿瘤发生、发展、转 移和耐药等过程的关系,以及寻找可作为肿瘤诊断、预后和疗效评估的非编码RNA标志物。

肿瘤遗传学

肿瘤遗传学
20世纪70年代初,美国生化遗传学家A·G·克努森提出了恶性肿瘤发生的两次突变假说,认为恶性肿瘤必须 经过两次突变才能形成。在此基础上,1976年H·L·林奇系统地总结了前人的研究结果并发表了《肿瘤遗传学》 专著。
20世纪80年代初,遗传工程和哺乳动物细胞体外转化技术的应用,导致细胞癌基因的发现及其功能的逐渐阐 明,使肿瘤遗传学的研究有了突破性的发展。
ቤተ መጻሕፍቲ ባይዱ
遗传背景
单基因遗传的肿瘤
人类恶性肿瘤中只有少数种类是按单基因方式遗传的,这些单基因遗传的肿瘤的特点是发病年龄轻而且是双 侧发生或多发性的,例如遗传性的视膜母细胞瘤、神经母细胞瘤、Wilm瘤和嗜铬细胞瘤等肿瘤是以常染色体显性 方式遗传的。动物实验中发现在同一外界致瘤因素刺激下,不同基因型的动物发病率不同。人类某些肿瘤有明显 家族遗传倾向。如结肠多发性息肉、视膜母细胞瘤、神经纤维瘤、肾母细胞瘤等。也有一些患者有肿瘤家族史, 父母兄妹中易患肿瘤,但肿瘤类型可各不相同。肿瘤家族史或遗传因素在肿瘤发病中仅是一种“易感性”,作为 环境致癌因素作用的基础。
双生儿法
双生儿肿瘤发病情况的研究对识别遗传因素和环境因素在肿瘤病因中的作用有重要意义。但进行这一研究也 有一定困难,因为双生儿在人群中为数不多,而双生儿患癌者更少,但是双生儿法的研究可以提供宝贵的资料。 例如77对患白血病的双生儿中,单合子双生儿(MZ)患病的一致率很高,而胃癌和乳腺癌的发病一致率在单合子 双生儿(MZ)和双合子双生儿(DZ)之间却无统计学上的差异。双生儿法在肿瘤遗传学研究中的重要性在于:① 可以利用单合子双生儿发生肿瘤的一致性来判断遗传因素在各种肿瘤中的重要性;②可以利用双生儿肿瘤发生的 不一致性来判断环境因素在肿瘤发生中的作用。
简史
1866年,法国外科医生皮埃尔·保尔·布罗卡报道了他妻子家系中的24名女性成员中有10例乳腺癌患者及其 他癌症患者多人,这种癌症在一个家系中的聚集现象可以一直延续几个世代。此后的一系列癌家族的报道引起了 人们对恶性肿瘤的遗传背景的注意。

肿瘤遗传学

肿瘤遗传学
在散发性病例中,两次突变均发生在同一体细胞(如 视网膜母细胞)内,使两份正常的等位基因均突变而 失活,这种机会一般较少。故散发性病例在临床上具 有单发性和单侧性的特点。(图10-5)
二、单克隆起源假说
肿瘤是由单个突变细胞增殖而成的,即肿瘤是突变 细胞单克隆增殖群,称为肿瘤的单克隆起源假说。
神经纤维瘤基因NF1定位于17q11.2,是一种抑癌基
因,呈常染色体显性遗传。
二、多基因遗传的肿瘤
大多数肿瘤的发生是遗传因素和环境因素共同作 用的结果,属于多基因遗传的肿瘤。
易感基因:在特定的环境条件下某些基因的编码产物 能够导致遗传性疾病或获得疾病易感性,这类基因称 为易感基因。
已发现乳腺癌、肺癌、胃癌、肝癌、鼻咽癌、宫颈癌 等肿瘤具有其特定的易感基因。这类疾病在人群中的 发病率大于0.1%,患者一级亲属的发病风险高于一 般群体。
影响鼻咽癌的发病风险。
易感基因导致肿瘤发生的可能机制
一些证据表明易感基因与环境因素相互作用,可 能通过生化的、免疫的和细胞分裂的机制促进肿 瘤发生。
例如肺癌患者芳烃羟化酶(AHH)的活性显著高于 正常人群;而着色性干皮病DNA修复酶缺陷导致细 胞恶变;免疫缺陷使得突变细胞得以逃脱免疫监视而 发展成为恶性肿瘤,如Bruton低丙种球蛋白血症患者 易患白血病和淋巴系统肿瘤。
2.染色体易位与基因重排
例如人Burkitt淋巴瘤中 8q24的C-MYC易位至14q32 免疫球蛋白重链的基因位点上,后者是人类非常活跃 的基因,这种易位使细胞癌基因C-MYC过度表达而成 为癌基因(图10-3)。
3.启动子或增强子插入
如逆转录酶病毒基因组含有长末端重复序列(long terminal repeat sequence,LTR),具有启动子、增 强子等调控成分,当逆转录酶病毒感染细胞时,LTR 插入c-onc的上游,使c-onc过度表达,导致细胞癌变。

肿瘤遗传学ppt(共55张PPT)

肿瘤遗传学ppt(共55张PPT)

生长 因子
生长因 子受体
配转 催
体膜 化 区区 区
域域 域
SRC ABL
BCL2
NF-1
阻止细胞凋亡的蛋白质
TRK ROS
RET
MET KIT FMS ERBB1
ERBB2
RAS
RAF MOS
MAP
激酶系
BCL-1 细胞 因子
D1
MYC
MYB ERBA
EST
E,A,B
细胞因子
FOS
JUN
RB
DNA病毒
2、基因融合----通过易位同其他基因形成融合基因
慢性髓细胞白血病
t(9;22)(q34;q11)
9q34 —— abl (原癌基因),编码酪氨酸激酶
22q11 —— bcr (break point cluster region)
145KD
210KD
19
酪氨酸
激酶
11
融合
基因
强力
启动子
34
24
32
亚四倍体(hypotetraploid) — 数目 < 4n= 92
2、肿瘤的染色体结构异常
易位、缺失、重复、倒位、环状染色体和双着丝粒染色体。
非特异性标记染色体——不具代表性
标记染色体(marker chromosome)
特异性标记染色体——具代表性
稳定遗传
3
二、标记染色体的发现及其意义
1960年,Nowell,慢性髓细胞白血病(CML), Ph染色体(费城染色体,Philadelphia chromosome)< G组
癌变
慢性髓细胞白血病 t(9;22)(q34;q11) Burkitt淋巴瘤(非洲儿童恶性淋巴瘤) t(8;14)(q24;q32) 视网膜母细胞瘤 del(13)(q14)

肿瘤与遗传PPT演示课件

肿瘤与遗传PPT演示课件

肿瘤基因组学研究
全基因组测序
通过对肿瘤细胞全基因组进行测 序,发现肿瘤细胞中存在的基因
突变和染色体异常。
基因表达谱分析
通过对肿瘤细胞基因表达谱进行分 析,了解肿瘤细胞中基因表达的差 异和特点。
基因突变筛查
通过对特定基因进行突变筛查,发 现与肿瘤发生相关的突变基因,为 肿瘤的早期诊断和治疗提供依据。
遗传性肿瘤基因检测是通过检 测个体的基因突变,评估其患 肿瘤的风险。
基因检测可以帮助确定家族性 肿瘤综合征的基因突变类型, 为患者及家族成员提供针对性 的预防和治疗建议。
常见的遗传性肿瘤基因检测包 括BRCA1/2基因检测、结直肠 癌基因检测、乳腺癌基因检测 等。
遗传咨询与预防
遗传咨询是指专业医生为患者及家族成员提供关于遗传性肿瘤的知识、风险评估、 治疗方案和预防措施等方面的咨询。
未来研究方向与技术发展
未来肿瘤遗传学的研究方向包括深入了解肿瘤异质性、肿瘤进化与耐药性的机制,以及寻找 新的治疗靶点和策略。
技术发展方面,基因组学、蛋白质组学、表观遗传学等领域的新技术将为肿瘤遗传学研究提 供更多工具和方法,有助于更深入地揭示肿瘤的本质和发现新的治疗策略。
跨学科合作也是未来研究的重要方向,通过整合生物学、医学、化学等领域的知识和方法, 可以更全面地了解肿瘤的本质和开发更有效的治疗方法。
肿瘤进化与耐药性
肿瘤进化是指肿瘤在生长和扩散过程中, 不断适应环境变化,产生新的变异和进
化。
耐药性是指肿瘤细胞对治疗药物产生抵 抗,导致治疗失败。耐药性产生的原因 包括基因突变、细胞凋亡机制的改变、
药物代谢和排泄的改变等。
了解肿瘤进化和耐药性的机制,有助于 预测肿瘤的发展趋势和制定个性化的治

医学遗传学肿瘤遗传学ppt课件

医学遗传学肿瘤遗传学ppt课件

3、其他肿瘤抑制基因
*
WT1 11p13 Wilms瘤 MST1 (p16) 9p21 恶性黑色素瘤,肺癌、胰腺癌、 (CDKN2A) 膀胱癌、头颈部肿瘤、白血病 MST2 (p15) 9p21 儿童急性淋巴母细胞性白血病、 (CDKN2B) 非小细胞性肺癌 NF1 17q11.2 神经纤维瘤 CDKN1A(P21) 6p21.1 多种肿瘤 CDKN1B(P27) 12p13 多种肿瘤 BRCA1基因 17q21 乳腺癌 DCC基因 18q21.2 结直肠癌 APC 5q21 结直肠癌 Nm23基因 17q21.3 肿瘤转移抑制基因
原癌基因(proto-oncogene) 正常细胞内 存在的、 参与细胞生长分化并具有使细胞癌变潜能的基因。 在肿瘤细胞中原癌基因往往被激活,处于活跃表达的状态
依其编码产物的功能及生化特性的不同分类
二、癌基因、原癌基因及其功能
1、生长因子
RB与细胞周期
G1
S
G2
M
RB
E2F
Cyclin/cdk
E2F
磷酸化
P16、P21、P27等
Rb及其产物在 细胞周期的G1期 发挥调控
40%的癌症发生Rb的突变或缺失,RB蛋白质是细胞周期G1/S期的因子,起DNA复制阻断的作用,它能与失活的转录因子E2F结合,防止DNA复制。Rb的突变使其蛋白质失活,E2F被释放,诱导DNA不断复制,使细胞无休止地分裂。
肿瘤基因组计划
*
2008年6月国际癌症基因组计划成立。
浙江大学医学院附属第二医院肿瘤研究所对结直肠癌研究已经取得了初步的数据。
数目异常 结构异常
01
第一节 染色体异常与肿瘤
01
染色体异常是癌细胞遗传学的基本特征 细胞内染色体的不稳定是产生肿瘤的根本原因 ——Boveri 1914

肿瘤遗传学

肿瘤遗传学

致癌因子
体细胞
DNA损伤
修复 突变细胞
死亡 增殖 肿瘤
突变阶段
促癌阶段
两次击中假说
1971,Knudson 研究了视网膜母细胞瘤发生过程后提
出,它认为恶性肿瘤的发生必须经过 二次或二次以上的突变。 第一次突变发生在生殖细胞或由父母遗传得来,为合子 前突变,也可能发生在体细胞; 第二次突变则均发生在体细胞
末端缺失
中间缺失
p- 表示短臂缺失 q- 表示长臂缺失
杂合性丢失(loss of heterozygosity,LOH)
是一种特殊类型的染色体缺失,常指正常等 位基 因的丢失而保留异常的突变等位基因。
缺失的遗传学效应
破坏了生物长期适应的基因平衡,从而出现不 育或致死效应
缺失导致原癌基因的激活功能加强或肿瘤抑制 基因的失活
物理、化学和生物学因素 父亲年龄:
男性年龄对突变的影响远大于女性。 父亲的年龄越大,DNA复制的次数越多,精子出现
突变的概率也越高
性别:男性突变率高于女性 遗传背景
个体的易感性差异
癌家族综合征 家族性癌
种族的易感性差异
华人的鼻咽癌发生率较白人高34倍
2. DNA损伤和修复 单个细胞的DNA在24小时内约出现1万次损伤。 DNA损伤的产生
的这些DNA序列。
癌基因(oncogene)原癌基
突变
因的变异形式
原癌基因
癌基因
理解:
细胞癌基因是细胞正常生长、分化所必需 的,是生长发育过程中所不可缺少的。 在发育过程中的一定时间、一定组织中定 量的表达,产生生命活动中所必需的蛋白 质,促进某些生命过程的进行,使生长发 育得以实现。在机体生长发育过程完成后 多处于关闭状态,即不表达或低表达。 一 旦在错误的时间,不恰当地点,不适量表 达即可能导致细胞无限制的增长而趋于恶 性转化。

肿瘤遗传学知识点

肿瘤遗传学知识点

肿瘤遗传学知识点肿瘤遗传学是研究癌症发生机制与遗传变异相关的学科。

它通过对肿瘤细胞遗传学特点和突变基因的研究,揭示了肿瘤发生发展的分子机制,为癌症的早期诊断、预后判断和个体化治疗提供了理论基础。

下面,我们将介绍一些肿瘤遗传学的重要知识点。

1. 肿瘤发生的基因突变在肿瘤发生过程中,基因突变是一个非常重要的环节。

基因突变可以分为两类:感染性突变和获得性突变。

感染性突变是指通过病毒或其他病原体引起的突变,例如人类乳头瘤病毒(HPV)引发的宫颈癌。

获得性突变是指后天获得的基因突变,这类突变可以是单个基因的突变,也可以是多个基因的共同突变。

2. 肿瘤基因的突变类型肿瘤基因的突变类型多种多样,包括点突变、插入/缺失突变、染色体易位等。

其中,点突变是最常见的一种突变类型,它会导致基因的结构或功能的改变,从而促进肿瘤的发生发展。

插入/缺失突变是指DNA分子中插入或缺失一个或多个碱基对,这种突变会影响基因的读码能力,进而改变蛋白质的合成。

染色体易位是指两个染色体间的染色体片段交换,这种突变可以导致关键基因的改变,从而影响细胞的正常功能。

3. 肿瘤抑制基因和促癌基因在肿瘤遗传学中,有两类基因对肿瘤的发生发展起到重要作用,分别是肿瘤抑制基因和促癌基因。

肿瘤抑制基因是指能够抑制细胞癌变的基因,例如TP53基因,它被称为癌症的“守门人”,能够监控细胞的DNA损伤,并触发细胞凋亡。

促癌基因是指能够促使正常细胞癌变的基因,例如RAS基因,它能够促进细胞增殖和存活。

4. 肿瘤标志物肿瘤标志物是一些在癌症患者体内可以检测到的特定蛋白质或其他分子物质。

通过检测肿瘤标志物的水平变化,可以帮助医生进行癌症的诊断、预后判断和治疗效果评估。

例如,前列腺特异抗原(PSA)是前列腺癌的常见标志物,乳腺癌患者体内的HER2蛋白也是一个重要的肿瘤标志物。

5. 基因检测和个体化治疗肿瘤遗传学的研究为基因检测和个体化治疗提供了理论基础。

通过对肿瘤细胞中突变基因的检测,可以了解患者的基因变异情况,从而为患者提供更具针对性的治疗方案。

肿瘤遗传学的基本概念与研究进展

肿瘤遗传学的基本概念与研究进展

肿瘤遗传学的基本概念与研究进展肿瘤遗传学是研究肿瘤发生和发展过程中遗传变异的学科。

它通过分析肿瘤细胞和肿瘤患者的遗传信息,揭示了肿瘤的致病机制,为肿瘤的预防、诊断和治疗提供了重要依据。

本文将介绍肿瘤遗传学的基本概念和研究进展。

一、肿瘤遗传学的基本概念肿瘤遗传学研究的对象是肿瘤细胞的遗传变异,这些遗传变异包括染色体缺失、染色体重排、基因突变以及表观遗传变化等。

肿瘤细胞在遗传层面上与正常细胞存在明显差异,这些差异可以解释肿瘤发生、发展和转移的复杂过程。

不同类型的肿瘤在遗传变异的模式和程度上存在差异。

有的肿瘤具有明确的遗传易感性,例如BRCA1基因突变与乳腺癌的关联。

而另一些肿瘤则是多因素的结果,环境因素和基因变异共同作用引发疾病。

肿瘤遗传学的研究通过解析肿瘤细胞的遗传变异,有助于我们更好地理解肿瘤发生的机制。

二、肿瘤遗传学的研究进展肿瘤遗传学的研究进展主要体现在以下几个方面:1. 癌症基因组图谱随着高通量测序技术的发展,人类癌症基因组图谱项目逐渐完成,这为肿瘤遗传学的研究提供了重要的数据来源。

癌症基因组图谱项目通过对几千例肿瘤和正常组织样本的全基因组测序,鉴定了大量与肿瘤发生相关的基因变异,从而揭示了癌症的遗传特点和致病机制。

2. 肿瘤突变谱研究肿瘤细胞中的基因突变是肿瘤遗传学的重要研究内容之一。

通过对肿瘤患者样本进行全外显子测序和全基因组测序,研究人员可以绘制出不同类型肿瘤的突变谱,分析肿瘤基因变异的模式和频率。

这些数据对于肿瘤的个体化治疗选择具有重要指导意义。

3. 肿瘤致病基因研究肿瘤遗传学的研究还侧重于寻找和鉴定肿瘤的致病基因。

利用各种生物信息学工具和实验方法,研究人员可以筛查出与肿瘤发生和发展密切相关的致病基因。

这些基因的发现不仅可以用于肿瘤的早期诊断,还有望成为肿瘤治疗的新靶标。

4. 肿瘤遗传风险评估随着深入研究肿瘤遗传学,对肿瘤遗传风险的评估也越来越重要。

研究人员可以通过分析家族肿瘤史、遗传变异和环境因素等数据,预测个体患某种肿瘤的风险。

对于肿瘤遗传学的认识

对于肿瘤遗传学的认识

对于肿瘤遗传学的认识
肿瘤遗传学是研究肿瘤发生、发展和转移过程中遗传变异的学科。

它研究肿瘤细胞内基因的突变、染色体的异常、DNA甲基化等遗传变异,以及这些变异对肿瘤的发生和发展的影响。

肿瘤遗传学的认识主要包括以下几个方面:
1. 肿瘤是由遗传变异引起的:肿瘤的发生和发展与遗传变异密切相关。

遗传变异可以是基因的突变、染色体的异常、DNA甲基化等。

这些变异会导致正常细胞的恶性转化,形成肿瘤细胞。

2. 肿瘤是多基因遗传性疾病:肿瘤的发生和发展不仅与单个基因的变异有关,还与多个基因的相互作用和变异有关。

肿瘤遗传学研究揭示了肿瘤发生和发展的复杂基因网络。

3. 肿瘤遗传变异具有个体差异性:每个个体的遗传背景不同,因此对于同一种肿瘤,不同个体的遗传变异也会有所不同。

这种个体差异性对于肿瘤的治疗和预后有重要的影响。

4. 肿瘤遗传学为肿瘤治疗提供了新的方向:肿瘤遗传学的研究为肿瘤治疗提供了新的方向。

通过了解肿瘤的遗传变异特点,可以研发针对特定变异的靶向治疗药物,提高治疗的效果和个体化的治疗。

肿瘤遗传学的认识对于我们了解肿瘤的发生和发展机制,以及指导肿瘤的治疗具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激活的癌基因可以引起家族性肿瘤吗?
体细胞的遗传改变不能传递给后代。相反生殖 系突变可能传递给后代。那么,如果多数散发 性肿瘤是由于多个癌基因在体细胞内连续突变 所致,是否某些家族性肿瘤是由于生殖系的癌 基因激活所致的呢?
但研究发现,尽管原癌基因突变在散发性肿瘤 的体细胞突变中发挥重要作用,但在家族性肿 瘤的生殖系中一般没有该基因的突变。
RB
Cyclin/cdk
E2F
磷酸化 E2F
G1
S
M
G2
细胞周期蛋白依赖性激酶抑制蛋白 (cyclin-dependent kinase inhibitor, CKI)
对细胞同期调控机制的深入了解导致一类重要 的抑癌基因——CKI的发现,包括多种成员, 其中P21、P27、P57属广谱的CDK抑制特,而 P15、P16、P18、P19是CDK4/CDK6的特异性 抑制物。它们在细胞同期调控及肿瘤发生中的 作用已引起广泛的关注。
进一步分析表明,许多视网膜母细胞瘤中, 这个RB发生缺失,在另外一些RB瘤中,基因 虽完整,但在剪接点有一个点突变,从而产生 异常的RB蛋白,用表达载体把RB基因导入肿 瘤细胞,可使其生长特性恢复正常,说明这个 克隆的基因具有人们期待的肿瘤抑制基因的应 有特性,RB基因是人们克隆的第一个肿瘤抑 制基因。
胞进程
人类c-onc编码蛋白质的功能
癌基因的激活机制:
1、点突变 如RAS蛋白产物12位密码子突变阻止 Ras从活性形成向失活形成的转变,从而引起 细胞生长失控。
2、病毒诱导与启动子插入 细胞癌基因附近一旦 被插入一个强大启动子,如逆转录病毒的LTR, 也可被激活。
3、基因扩增 某些癌基因DNA片断有时可扩增 数十倍乃至数百倍
癌基因和肿瘤抑制基因之间在遗
传学上的重要区别是:对肿瘤表型的 形成而言,原癌基因是显性基因,一 个等位基因突变即可显示致癌效应; 而肿瘤抑制基因的突变,则是隐性的, 即只有一个肿瘤抑制等位基因发生突 变,不会发生致癌效应,因此,肿瘤 抑制基因又称为隐性癌基因。
细胞周期的调控:
细胞周期是指一次有丝分裂结束至下一次有丝 分裂完成所经历的整个连续过程,分为G1期、 S期(DNA合成期),G2期,M期(有丝分裂)。
即便是最简单的单细胞生物,为适应个体种族 的生存需要,也需要对细胞周期进行控制,从 而决定是否开始新的分裂。
细胞周期有两个最为基本的调控点,G1/S限制 点(restriction point)决定是否进入细胞周 期,G2/M限制点,决定细胞立即进入M期完成 有丝分裂或停滞一段时间,即决定细胞一分为 二的调控点。
病毒癌基因与细胞癌基因的关系
• 序列上高度同源 • c-onc有内含子,v-onc无内含子 • v-onc有致癌能力,而c-onc无,但突变后可
能致癌 • v-onc来源于c-onc
原癌基因的发现,说明我们自己的基 因组携带着具有杀死我们潜力的基因。目 前已发现了超过100余种原癌基因。不仅存 在于灵长类和人类,也存在于果蝇和酵母。 在如此漫长的进化过程中这些危险基因保 持下来,说明有其重要的生理功能。目前 已查明这些基因的产物主要参与细胞的增 殖,分裂周期,凋亡和其他相关的重要细
肿瘤研究历史上的几个具 有开创性意义的实验
1970年前后,B. Ames的实验证明:化合 物的突变性和致癌性之间有很大的相关性,
提示了致癌作用的最终靶分子是剂
致癌性诱变剂
89.7%
M-
10.3%
M+
13.0%
87.0%
非致癌性非诱变剂 非致癌性诱变剂 C-
这种观点的实质是:遗传物质的损
肿瘤抑制基因的发现:
20世纪70年代初,Alfrod Kundson为解 释家族性(遗传型)视网膜母细胞瘤首次提 出了肿瘤抑制基因模型,即2次打击学说, 至80年代中期,一系列精心设计的实验 证明Kundson假说非常精确。
视网膜母细胞瘤
1、多为1-5岁发病 2、瞳孔出现黄白色光反射
“猫眼” 3、眼底镜可见瘤体 4、双侧发病为遗传型 (90%)单侧发病多为非 遗传 5、恶性程度高
细胞周期主要的调控者——Cyclin,通过与CDK 结合并激活它们,发挥对细胞同期的调控作用。
cyclin-CDK的状态决定这时细胞应呆在什么周期时 相状态,可简单地表达为:D-CDK4或D- CDK6E-CDK2A-CDK2A-CDK1B-CDK1。
cyclin-CDK就是内在的细胞周期分子机制。
在逆转录病毒的病毒癌基因的研究领域同样 意外地发现了正常细胞内存在与病毒癌基因 同源的基因,称为细胞癌基因。
细胞癌基因在正常细胞中具有重要功能,它 们的产物与细胞的生长与分化有关,这些基 因又被称为原癌基因。
在肿瘤细胞中原癌基因往往被激活,处于活 跃表达的状态,因此,以后原癌基因概念扩 大为正常细胞中存在的,与细胞生长和分化 相关,激活后可促使癌变的基因(与病毒癌 基因同源或不同源)。
这个发现令人兴奋和惊讶之处在于:在受体细 胞千万个基因中只是一个基因发生一个核苷酸 的点突变,竟然是使之恶性转化为驱动力量。
上述转化实验所用的受体细胞并非真正正常细胞, 而是永生化的稳定细胞系,即是已经处于转化边 缘的细胞。
进一步利用直接来自动物的原代细胞如:大鼠胚 胎成纤维细胞进行这类实验发现,只用一个激活 的ras基因,并不足以把这类细胞转化为恶性表型, 只使其发生过量增殖,在此情况下,常需要植入 两个以上的癌基因,才能奏效。而且引人注意的 是,只有在癌基因的一定组合时才能成功,例如 ras和myc或ras与腺病毒E1A联合。
4、染色体断裂与重排:
原来无活性或低表达的癌基因 易位到一个强大启动子,增强子附 近,或由于易位而改变了癌基因的 结构,与其他高表达的基因形成融 合基因,使癌基因的正常调控作用 减弱,使其激活 Ph染色体 (费城1号染色体) t(9;22)(q34;q11)
肿瘤是一种体细胞遗传病:
在研究的最初阶段,认为单一的癌基因的激活,就足 以使正常细胞转变成肿瘤细胞。
研究思路为:如果细胞基因的特异突变 能够引起人类癌症的恶性表型,并且这 些突变能在细胞水平发挥显性作用,那 么将恶性细胞的DNA序列转移到正常细 胞,预期可导致其转化为恶性表型。
1981年这个实验在三个实验室同时获得 成功。
实验模型: 体外培养细胞的转化
1、原代细胞(primary cell):忠实表现体内表 型, 但经过几次分裂就进入衰老状态,随后 进入临界点,此时绝大部分细胞死亡,但有 时有极少数可以越过临界点。
生长因子通过其受体和多级信号转导,调控一系列基 因表达,最终导致其晚期应答基因cyclin D的表达, cyclin D导致细胞通过G1期限制点,启动了一轮分裂同 期,这时生长因子的作用已完成,可以不再被后续周 期需要,我们前面的讨论,多种癌基因的激活可以导 致该路增殖信号的异常活跃。
Rb基因的功能:肿瘤抑制基因P16、P21、P27等
第一次证明膀胱癌DNA确实含有显性作用的癌 症基因,实验者将其命名为癌基因。
这个基因与称为H-ras的反转录病毒癌基因序 列极其相似。
来自膀胱癌的ras癌基因可引起转化,但来自 正常细胞的ras基因不能引起转化。
在膀胱癌ras基因中,只发现了一个核苷酸的 改变,即第12位上编码甘氨酸的密码子GGC点 突变成了结负氨酸的密码子GTC。
随后认识到正常细胞的肿瘤转化通常要有两个或两个 以上癌基因的协同。
通过在适当靶组织中表达多种癌基因,已使转基因小 鼠产生肿瘤。
有理由推测在一个特定的体细胞内连续的遗传突变的 累积,导致单个体细胞转化为癌细胞。
观察到几乎所有的癌症都是单克隆起源的,即在大多 数情况下,某一患者的所有癌细胞都起源于单一的原 始前体细胞。因此肿瘤是一种体细胞遗传病。
2、稳定的细胞系和永生化(immortalization): 越过临界点存活,可无限制进行细胞分裂, 但仍具有贴壁依赖性、生长因子依赖性和接 触抑制作用。
3、转化的细胞(transformed cell):永生化细 胞受到致癌物质的诱导,逐渐产生肿瘤细胞 的特征。体内接种可以致瘤。
转化细胞的特性:
病毒癌基因(Virns oncogone, V-onc)
1970年,Martin等通过分析野生型RSV 和缺失转化能力的变异株病毒基因的差 别,发现细胞的恶性转化与RSV基因组 中的一个特定基因Src相关,此基因为第 一个命名的病毒癌基因,V-Src。
此后陆续发现与肿瘤发生密切相关的病 毒癌基因:V-fms,V-mos,V-erbB,Vkit,V-ros,V-yes,V-fps, V-fes, Vabl, V-sis, V-ras,V-myc。
肿瘤遗传学
肿瘤遗传学(cancer genetics): 研究肿瘤发生发展的遗传因素,研 究恶性变、发展、转移的遗传基础, 以阐明肿瘤的病因和发病机制,并 对肿瘤的诊断、预防和治疗提供依 据。
什么是肿瘤?
肿瘤泛指一群生长失去正常调控的细胞形成的 新生物(neoplasm)。
肿瘤85%为癌,起源于上皮细胞;2%为肉瘤, 来源于结缔组织、骨或肌肉组织;5%为淋巴 瘤,来源于免疫系统特别是脾及淋巴结的白细
无限生长特性 生长刺激因子非依赖性 无接触抑制性 无贴壁依赖性 形态发生恶性转化 体内接种可以致瘤
用人类肿瘤DNA使小鼠3T3细胞发 生恶性转化的转染实验
内源性癌基因的发现:
上述工作建立了一套测定DNA片段的恶性转化 活性的检测方法。在此基础上,人们可以利用 分子生物学手段分离人类肿瘤细胞中具有转化 活性的DNA片段。
视网膜母细胞瘤:
遗传型: 1、发病年龄低 2、 多双侧发病 3、具有明显的家族性
上一代父母常有此病
散发型: 发病晚 多单侧发病 不具有家族性
二次打击学说:
相关文档
最新文档