近空间目标探测技术的分析与展望

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近空间目标探测技术的分析与展望

解放军信息工程大学信息工程学院通信工程系 吴 江

[摘 要]近空间飞行器以其独特的优势成为当前军事通信与侦察研究的热点之一,对近空间目标的探测问题成为新的研究方向。文中介绍了近空间飞行目标的主要类型和目标探测的特殊性,讨论了可以利用的主要探测手段,指出基于电磁波辐射的无源探测是较有发展前景的近空间探测类型,并对其关键问题和重点研究方向进行了总结和展望。[关键词]近空间飞行器 目标探测 定位 无源探测

1.引言

近空间(near space)是指介于普通航空飞机的飞行空间和航天器轨道空间之间的区域,这一空间区域的高度处于目前绝大多数防空导弹杀伤区之外[1]。近空间飞行器具有可长时间执行任务、可保持在目标地域上空等优点,它们提供与卫星相似的功能,但与卫星相比部署快、造价低、机动性强、在对地观测时有距离优势,并且在执行情报搜集和通信中继任务时可实现广域覆盖[2]。在美军“2006年联合远征部队试验”作战演习中,作战气球Com bat SkySat为改善地面通信能力发挥了重要作用,验证了近空间的实战应用价值[3]。近空间飞行器系统成为一项新兴的增进通信、情报、监视、侦察能力的技术手段,它必将会在未来局部战场大显身手,因而近空间及相应的飞行器系统成为最新的军事技术研究热点之一。

新的空间作战领域的开发给目标探测带来了新的课题,即如何对近空间飞行目标进行探测的问题。近空间处于无管制空域,对目前的防空监视系统来说近乎盲区[4],未来越来越多的飞行器在该空域的活动将对其它主权国家的信息安全和国土防卫带来严重威胁。探索对近空间飞行目标的定位、跟踪和识别的技术方法势在必行。

2.近空间目标特征

2.1近空间飞行器的主要类型

目前已知的可用于近空间的飞行器系统的类型有高空气球、无人机、飞艇和一些新型飞行器。

自由漂浮式高空气球应用于气象和科学实验的实践由来已久,但对其军事价值的开发才刚刚开始,Com bat SkySat就是一种携带信号转发装置的高空气球,它完成了近空间应用的概念演示[3]。气球的主要缺点是它对天气过于敏感,用途受到了限制。然而高空气球毕竟是最为廉价的近空间飞行器,如果能解决快速部署、定向漂移、姿态控制等问题,它将是性价比极高的近空间飞行器类型。

典型的高空无人机是美国诺斯罗普・格鲁门公司的RQ-4“全球鹰”(Global H aw k),该机的使用高度为19.8~20千米,处于近空间最底层。它的翼展35.4米超过波音747飞机,长13.5米,最大飞行速度644千米 小时,最大起飞重量11622千克。美军方认为,与气球或飞艇相比,高空长航时无人机是美空军在近期内,利用“近空间”这一尚未全面、系统地开发和利用的空域,执行持久高空监视,情报搜集和通信中继等任务的最好选择[4]。到2010年之前,它在执行高空持久任务方面将成为低轨道侦察卫星可行的替代手段。

高空飞艇是悬浮式飞行,所需动力较小,利于长航时工作。姿态可控性使飞艇容易保持在某一固定地域上空。但目前还需要等待有关技术取得进步后才具备可行性。高空飞艇是一种很有前景的近空间飞行器选择。

2.2近空间目标的探测条件

(1)特殊的工作高度

近空间高度范围为19.8~100千米,包括大部分平流层,全部中间层和部分电离层。这一高度给针对航空目标进行探测的现有系统带来了新的困难。在近空间内除飞行器自身的电磁辐射外,还存在GPS等导航卫星信号、通信卫星信号、短波信号、对空雷达信号等电磁能量。对近空间电磁环境影响最大的是高度为50~1000千米以上的电离层。电离层含盖了近空间较高的大部分空域,它以多种方式影响电波传播,从而影响探测信号。对于陆基和空基探测平台,来自目标的电磁波还会受到对流层折射与散射的影响[5],给目标定位带来一定误差。

(2)大部分飞行器为低速运动目标

除无人机外,与传统的航空器相比近空间飞行器在工作时移动速度比较慢,甚至保持对地静止。这是因为气球、飞艇等利用空气浮力的飞行器难以达到较高飞行速度,而且在局部应用中往往需要保持对某一地域的持续照射。这使得定位跟踪问题可以得到一定程度的简化,但也限制了基于多普勒频率检测的目标探测方法的应用。

(3)空间径度较大

为在空气极其稀薄的高度获得满足实用的有效负荷,近空间飞行器的体积远超过了普通的航空器,这使目标对外部电磁辐射产生反射的机会增大,即其雷达散射截面(RCS)较大,这对目标探测来说是一个有利因素。

3.对近空间目标的探测手段

由于高度和天候因素影响,基于地面和空中光学系统的探测比较困难。近空间目标多采用太阳能供电,与飞机或导弹目标相比,也难以用红外探测系统达到较好效果。利用电磁波探测目标的技术具有作用距离远、受天候影响小、技术相对成熟、系统造价较低等优点。考虑到近空间飞行器的特征,电磁探测将是近空间目标探测的主流技术方向。

在现代雷达中,有源雷达占据了主导地位,近年来推广和应用了各种新技术。然而传统雷达的有源探测体制有其固有的弱点,首先,为了实现对近空间目标的观测,必须大幅度增加信号发射功率,势必需要巨大的能耗;其次,由于主动发射大功率探测信号,对于有侦察能力的近空间飞行器来说无异于自我暴露。现代电子对抗技术的发展要求军用探测系统应尽量采用无源(被动式)技术,以避免为敌方提供稳健的定位信息源,同时达到自身隐藏的目的。这种探测系统由于本身不向空间发射电磁波,故隐蔽性、抗干扰性好,可靠性、性价比高,有不少已形成装备,在防务体系中起到了重要的作用[6]。

近空间飞行器担负的重要任务是通信中继、实时侦察等,在工作过程中一般会向外界发射通信信号或探测信号。由于在近空间高度发射信号的广域覆盖性,探测平台可利用目标辐射的信号对其定位和跟踪。无源探测一般不能获得辐射源的距离信息,定位的实现方法通常可采用单个运动的平台对辐射源的参数进行连续测量,或用多站平台同时测量辐射源的角度或信号到达时间差来完成。当飞行器处于静默期、探测平台处于其通信覆盖区域之外或飞行器本身是无能量辐射的侦察类应用时,可利用近空间存在的其它电磁波作为照射源对其进行定位、跟踪和识别。这类技术所用的外辐射源主要有调频广播和电视信号、空间卫星下行信号和其它主动式雷达照射信号。目前利用外辐射源进行目标探测的研究方兴未艾,其主流技术有多种,如借鉴双基地雷达技术的探测法、无源相干定位法、基于阵列天线的定位法等[7]。考虑到反侦察的需求,近空间飞行器的通信方式将较多采用突发、短时信号,信号的发射也将具有指向性,甚至可能

6

1

相关文档
最新文档