极限的求法总结.ppt

合集下载

《极限的运算》课件

《极限的运算》课件
重要的作用。
无穷小量的运算包括无穷小量的加法、 减法、乘法和除法。在运算过程中,无 穷小量可以与其他量进行加减乘除运算
,但需要注意运算结果的极限状态。
无穷小量在极限运算中常常用于等价变 换和泰勒展开等技巧,可以帮助我们简
化复杂的极限问题。
极限运算的注意事项
01
02
03
04
在进行极限运算时,需要注意 一些关键的点,以确保结果的
极限存在定理的证明方法
极限存在定理可以通过多种方法证明,如数学归纳法、反证法、直接证明法等 。这些方法都基于实数完备性定理,通过排除不可能的情况来证明极限的存在 。
极限存在定理的应用
函数极限的求解
极限存在定理是求解函数极限的基础 ,通过判断函数在某点的极限是否存 在,可以进一步研究函数的性质和变 化趋势。
极限的性质
极限具有一些重要的性质,如 唯一性、局部有界性、局部保 号性等。
这些性质在研究函数的极限行 为时非常重要,可以帮助我们 推导一些重要的结论和定理。
了解和掌握这些性质对于深入 理解极限的概念和应用极限的 方法具有重要意义。
02
极限的四则运算
极限的四则运算法则
加法法则
如果lim(x→a) f(x) = M1 和 lim(x→a) g(x) = M2,那么 lim(x→a) [f(x) + g(x)] = M1 + M2。
这种定义方式具有高度的严谨性 和精确性,是数学分析中研究函
数的重要基础。
极限的直观理解
极限的直观理解可以描述为函数在某一点附近的变化趋势。
当x逐渐接近这一特定点时,函数值会逐渐接近其极限值,或者保持一定的距离,或 者趋近于无穷。
这种变化趋势可以通过图形或表格进行可视化,帮助我们更好地理解极限的概念。

高等数学极限求法总结

高等数学极限求法总结

04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限

极限的四则运算PPT教学课件

极限的四则运算PPT教学课件

• 孔子并不像后来我国封建社会的统治者所吹捧、所神化的那 样,是什么不食人间烟火的“文宣王”“大成至圣先师”等 等,他也是一个有血有肉的现实社会中的人。
• 他赞美颜回安于贫困,又汲汲于追求富贵,甚至奔走于权贵 之门,国君召唤他,他等不及驾好车马,就赶快跑了去。
• 孔子对他的学生很严厉,批评起来不讲情面,他批评“宰予 昼寝”说:“朽木不可雕也,粪土之墙不可圬也”(《论 语·公冶长》);而有时对他的学生也很亲切
方法——因式分解法(再转化为代入法)
[注]:函数在某一点的极限,考察的是函 数值的变化趋势,与函数在这一点是否有定 义,是否等于在这一点处的函数值无关.故 本例可约去公因式x-1.
例2:(1)求lim x 1 1
x 0
x
(2)求 lim x( x 3 x
x 2)
——方法: 分子(分母)有理化法(与分子 分母同除x的最高次幂相结合)
x x 0
xx0
lim [f(x) g(x)] lim f(x) lim g(x) a b
x x 0
x x 0
x x 0
lim [f(x)• g(x)] lim f(x)• lim g(x) a • b
x x 0
x x 0
x x 0
lim
f(x)
lim f(x)
x x 0
a (b 0)
xx0 g(x) lim g(x) b
点评对“0 型” 或“ 0 ” 的极限,应通过 0 分 解 因 式 约 去 “ 零 因 子” 或 根 式 有 理 化
例3:(1)

lim
x
x
x2 2
x
1
1
(2)

lim

《高等数学极限》课件

《高等数学极限》课件

THANK YOU
无穷级数与无穷积分的收敛性
总结词
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。收敛性的判 定是高等数学中的一个重要问题,需要用到多种数学 方法和技巧。
详细描述
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。如果一个无 穷级数或无穷积分是收敛的,那么它的和就是有限的 ,否则就是发散的。收敛性的判定是高等数学中的一 个重要问题,需要用到多种数学方法和技巧,如比较 判别法、柯西判别法、阿贝尔判别法等。对于不同的 级数和积分,需要采用不同的方法和技巧进行收敛性 的判定。
03
导数与连续性
导数的定义与性质
导数的定义
导数是函数在某一点的变化率的极限 ,表示函数在该点的切线斜率。
导数的性质
导数具有线性、可加性、可乘性和链 式法则等性质,这些性质在研究函数 的单调性、极值和曲线的几何特性等 方面具有重要应用。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、指数函数、三角函数和反三角函 数等基本初等函数,需要熟记其导数公式。
限的。
无穷积分的定义与性质
总结词
无穷积分是数学中另一个重要的概念,它是由无穷多个 定积分的和组成的积分。无穷积分具有一些重要的性质 ,如可加性、可乘性和可微性等。
详细描述
无穷积分是由无穷多个定积分的和组成的积分,这些定 积分可以是积分限不同的积分。无穷积分在数学中也有 着广泛的应用,如求解面积、体积和曲线长度等。无穷 积分具有一些重要的性质,如可加性、可乘性和可微性 等。其中,可加性表示无穷积分可以拆分成若干个部分 的和,可乘性和可微性则表示无穷积分可以与函数进行 运算和求导。

极限的常用求法及技巧.培训课件

极限的常用求法及技巧.培训课件

极限的常用求法及技巧引言极限是描述数列和函数在无限过程中的变化趋势的重要概念。

极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。

极限如此重要,但是运算题目多,而且技巧性强,灵活多变。

极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结,我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。

函数的极限等等。

本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通。

1数列极限的常用求法及技巧数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。

数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。

1.1利用定义求数列极限利用定义法即利用数列极限的定义 设{}n a 为数列。

若对任给的正数N ,使得n 大于N 时有ε<-a a n则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞→或)(,∞→∞→n a n读作当n 趋于无穷大时,{}n a 的极限等于a 或n a 趋于a 例证明2322n lim -∞→n n 解 由于)3n 93n 9323222≥≤-=--(nn n 因此,对于任给的ε>0,只要ε<n9,便有 ε<--33322n n即当n ε9>时,(2)试成立。

极限、数学归纳法课件课件

极限、数学归纳法课件课件

[例 3] 等比数列{an}的前 n 项和为 Sn.已知对任意的 n∈N*,点 (n,Sn)均在函数 y=bx+r(b>0 且 b≠1,b,r 均为常数)的图象 上. (1)求 r 的值; (2)当 b=2 时,记 bn=2(log2an+1)(n∈N*). 证明:对任意的 n∈N*,不等式b1b+1 1·b2b+2 1·…·bnb+n 1> n+1成 立.
=an2+bn,n∈N*,其中
a,b
为常数,则
lim
n
an-bn an+bn
的值为________.
(2)已知
a,b∈R,|a|>|b|,又
lim
n
an+1+bn an

lim
n
an-a1+n bn,则 a 的取值范围是(
)
A.a>1
B.-1<a<1
C.a<-1 或 a>1
D.-1<a<0 或 a>1
x1
f(x)=f(1),所以
x2+ax-3
必含有因式(x-1),
即 x=1 必为方程 x2+ax-3=0 的根,所以 a=2,则可得
b=3,所以
lim
x
3bbxx-+aaxx=
lim
x
33x+x-1+22x x=
lim
x
31+-2323xx=3.
[答案]
2 (1)3
(2)D
(2)中条件变为
要证当n=k+1时结论成立,
只需证22kk++31≥ k+2,
即证2k+ 2 3≥ k+1k+2,
由均值不等式
2k+3 2

k+1+k+2 2

k+1k+2 成立,故
22kk++31≥ k+2成立,
所以,当n=k+1时,结论成立.

2.4 极限的运算法则

2.4 极限的运算法则
上一页 下一页 主页
10
极限的运算法则
练习
x5 1 lim 7 x2 x 1 x3 x3 2 lim lim x3 x 2 9 x 3 x 3 x 3
高 等 数 直接代入法 学 经 1 济 6 消零因子法 类
8 x 3 8 x 3
x x
(2) lim[ f ( x ) g( x )] A B ;
f ( x) A (3) lim , 其中B 0. x g( x ) B
高 等 数 学 经 济 类
上一页 下一页 主页
2
极限的运算法则
推论1
如果 lim f ( x )存在, 而c为常数, 则 lim[cf ( x )] c lim f ( x ).
3 xlim 1
8 x 3 lim x 1 x 1

8 x 3
x 1
x 1


11

lim
x 1 8 x 3
x 1

1 6
上一页 下一页 主页
极限的运算法则
高 3x x 1 等 例6 求 lim 2 . ( 型) x 2 x 4 x 3 数 学 解 x 时, 分子, 分母的极限都是无穷大 .经 济 2 先用x 去除分子分母, 分出无穷小, 再求极限.类
则 lim( x 2 ax b ) 1 a b 0.
x 1
x +ax b ( x 1 a )( x 1) 于是 lim 2 lim x 1 x 2 x 3 x 1 ( x 3)( x 1)
2
Байду номын сангаас经 济 类
x 1 a 2 a lim 2. x 1 x3 4 故a 6, b 7.

极限运算法则课件

极限运算法则课件

减法法则
定义
若$lim_{x to a} f(x) = A$ 和 $lim_{x to a} g(x) = B$, 则 $lim_{x to a} (f(x) - g(x)) = A - B$
证明
由于当$x to a$时,$f(x) to A$和$g(x) to B$,对于任意 $epsilon > 0$,存在$delta_1 > 0$和$delta_2 > 0$, 使得当$0 < |x - a| < delta_1$时,有$|f(x) - A| < epsilon$,当$0 < |x - a| < delta_2$时,有$|g(x) - B| < epsilon$。取$delta = min(delta_1, delta_2)$,则当$0 < |x - a| < delta$时,有$|f(x) - g(x) - A + B| = |f(x) - A + g(x) + B| leq |f(x) - A| + |g(x) + B| < 2epsilon$,即 $lim_{x to a} (f(x) - g(x)) = A - B$
乘法法则
定义
若$lim_{x to a} f(x) = A$ 和 $lim_{x to a} g(x) = B$, 则 $lim_{x to a} (f(x) cdot g(x)) = A cdot B$
证明
由于当$x to a$时,$f(x) to A$和$g(x) to B$,对于任 意$epsilon > 0$,存在$delta_1 > 0$和$delta_2 > 0$, 使得当$0 < |x - a| < delta_1$时,有$|f(x) - A| < epsilon / |B|$,当$0 < |x - a| < delta_2$时,有$|g(x) - B| < epsilon / |A|$。取$delta = min(delta_1, delta_2)$,则当$0 < |x - a| < delta$时,有$|f(x) cdot g(x) - A cdot B| = |A cdot g(x) + f(x) cdot B| leq |A||g(x) - B| + |B||f(x) - A| < |A||epsilon / |B|| + |B||epsilon / |A|| = 2epsilon$,即$lim_{x to a} (f(x) cdot g(x)) = A cdot B$

极限的ppt

极限的ppt

高等数学 1.2.2 函数的极限
1.当 x 时,函数 f (x)的极限
例1
x1
y
1 2
x、y的变化趋势
2 3 4 ……
1 4
1 8
1 16
……
x: x趋向正无穷大(x→+∞)
y: y无限接近于常数0 (y→0)
1.2 极限的概念
高等数学
1.2.2 函数的极限
1.当 x 时,函数 f (x)的极限
x
x
x
1.2 极限的概念
高等数学 1.2.2 函数的极限
1.当 x 时,函数 f (x)的极限
例4 已知函数y=arctanx,试讨论当x→∞时,y=arctanx 是否有极限,为什么?
解:作图
x→+∞时,arctan x→
2
x→-∞时,arctan x→ -
2
因为 lim arct anx limarct anx
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。

高数极限运算法则课件

高数极限运算法则课件

极限四则运算法则
加法运算法则
若两函数在某点的极限存在,则它们的和在 该点的极限也存在,且等于两函数极限的和

减法运算法则
若两函数在某点的极限存在且不为零,则它 们的积在该点的极限也存在,且等于两函数
极限的积。
乘法运算法则
若两函数在某点的极限存在,则它们的差在 该点的极限也存在,且等于被减数函数极限 与减数函数极限的差。
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个函数表示为一个无穷级数。
泰勒公式性质
泰勒公式具有唯一性、收敛性和可微性等性质,其中收敛性是指当n趋近于无穷大时, 泰勒级数的和趋近于原函数。
泰勒公式在求极限中的应用举例
利用泰勒公式求极限
对于一些复杂的函数极限,可以通过泰勒公 式将其展开为多项式形式,从而简化求极限 的过程。
柯西收敛准则
数列 {xn} 收敛的充分必要条件是:对于任意给定的正数 ε,总存在正整数 N, 使得当 m>N 以及对于任意的正整数 p,都有 |xm+p−xm|<ε 成立。
应用举例
利用柯西收敛准则判断级数是否收敛,如判断 ∑n=1∞ann! 的收敛性,其中 {an} 是单调减少且趋于零的数列。
04
无穷小量与无穷大 量的关系
在同一变化过程中,如果函数 $f(x)$是无穷小量,且函数 $g(x)$是有界量,那么函数 $f(x)g(x)$也是无穷小量;如果 函数$f(x)$是无穷大量,且函 数$g(x)$是有界量但不为零, 那么函数$frac{1}{f(x)g(x)}$也 是无穷小量。
02
极限运算法则
03
无穷大量的性质与运算
无穷大量具有可加性、可乘性 、同阶无穷大等性质,可以通 过取对数等方法转化为无穷小 量进行计算。

极限的运算.ppt

极限的运算.ppt


5
8 3
目录 上页 下页 返回 结束
例3.
lim x1
x
x 1

1 x2
x


x2 1 lim
x1 x(x 1) lim x 1
x1 x
(消去零因子)
2
目录 上页 下页 返回 结束
例4. lim n2 2n n n
分子有理化
目录 上页 下页 返回 结束
定理:单调有界数列必有极限
lim
n
xn
a
(M
)
a
lim
n
xn
b
(m)
b
( 证明略 )
目录 上页 下页 返回 结束
证:

x

(
0
,
π 2
)
时,
BD
1
x O
C
A
△AOB 的面积< 圆扇形AOB的面积<△AOD的面积

1 2
sin
x


1 2
tan
x
亦故即有 显然有
lim
x0
2 sin 2 x2
x 2

1 2
lxim0
sin
x 2
x 2

2

1 2
12
例4. 已知圆内接正 n 边形面积为
π
An

n R2
sin
π n
cos
π n
n
证明:
R
证:
lim
n
An

lim π
n
R2
sin
π n
π
cos

极限的求法总结.ppt

极限的求法总结.ppt

lim 1 (1 1 ) 1 n 2 2n 1 2

lim(
x1
1 x 1

2
x2

) 1
lim( 1 2 ) lim( x 1 2 ) x1 x 1 x2 1 x1 x2 1 x2 1

lim
x1
x 1 x2 1

lim
x1
x
1 1

1 2
x0
x0
左右极限存在且相等,
故 lim f ( x) 1. x0
y y 1 x
1
o
y x2 1 x
8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
例 求极限 lim ( x2 3 x2 1) x
lim (
x
x2 3

0ab,00当,当n n
m, m,
,当n m,

无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
练习1 练习2
求 lim 2x 2 5x 1. x1 x 2 4x 8
求 lim 2n 1 . n n2 n
练习3 练习4
lim (2x 3)20 (3x 2)30
x
(2x 1)50
lim (2x 1)4 (x 1)78
x
(x 1)82
lim x
x4
(2

1 x
)4

x78
(1
1 x
)78
x82 (1
1 x
)82
24
16
5.先变形再求极限
(利用求和化简,拆项技巧,合并化简等)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

an
a0 x0n a1 x0n1 an Pn ( x0 ).
例3.
lim
x1
x
2 3x
5x 2
2
6
商的法则(代入法)
方法总结: 多项式函数与分式函数(分母不为0)用 代入法求极限;
2.由无穷大量和无穷小量的关系求极限


4x 1
lim
x1
x2
2x
. 3
解 lim(x2 2x 3) 0 商的法则不能用 x1 又 lim(4x 1) 3 0, x1 lim x2 2x 3 0 0. x1 4x 1 3
2005年数学三考研试题 (第三大题15小题8分)
(15)
1 x
lim( x0 1
e
x
1 ). x
6.利用无穷小运算性质求极限
例 求 lim sin x . x x
解 当x 时, 1 为无穷小,
x
而sin x是有界函数.
lim sin x 0. x x
y sin x x
练习1. 求lim x2 sin 1 .
极限的求法总结
简介:求极限方法举例,列举21种 求极限的方法和相关问题
1.代入法求极限
例1.lim(x2 x 2) x2
例2.设有多项式Pn (x) a0xn a1xn1 ... an ,

lim
xx0
Pn
(
x).
lim
xx0
Pn
(x)
a0
( lim xx0
x) n
a1
(
lim
xx0
x) n1
例 求极限 lim ( x2 3 x2 1) x
lim (
x
x2 3
x2 1) lim ( x2 3 x2 1)( x2 3
x
x2 3 x2 1
lim
2
0
x x2 3 x2 1
x2 1)
例 求lim x2 +4 2 . x0 x2 +9 3
(分子分母有理化消去零因子)
1 x
)82
1 x
)78
24
16
5.先变形再求极限
(利用求和化简,拆项技巧,合并化简等)


lim(
n
1 n2
2 n2
n n2
).
解 n 时,是无限多个无穷小之和.
先变形再求极限.
lim(
n
1 n2
2 n2
n n2
)
lim
n
1
2
n2
n
1
n(n 1)
lim 2
n
n2
lim 1 (1 n 2
x0
x
练习2. 求 lim 1 sin x. x x
练习3. 求lim x sin 1 .
x0
x
练习4. 求 lim x sin 1 .
x
x
练习5. 求lim sin x . x0 x
7.利用左右极限求分段函数极限


f (x)
1 x,
x
2
1,
x
0 ,

lim
f
(
x).
x 0 x0
解 x 0是函数的分段点,两个单侧极限为
1)( x 3)( x
1) 1)
lim x 1 1 . x1 x 3 2
(消去零因子法)
4.无穷小因子分出法求极限


lim
x
2x3 7x3
3x2 4x2
5 1
.

x
时,
分子,分母的极限都是无穷大.(

)
先用x 3去除分子分母, 分出无穷小, 再求极限.
lim
x
2x3 7x3
3x2 4x2
练习1 练习2
求 lim 2x 2 5x 1. x1 x 2 4x 8
求 lim 2n 1 . n n2 n
练习3 练习4
lim (2x 3)20 (3x 2)30
x
(2x 1)50
(2x 1)4 (x 1)78
lim
x
(x 1)82
lim x
x4
(2
1 x
)4
x78
(1
x82 (1
lim f ( x) lim (1 x) 1,
x0
x0
lim f ( x) lim ( x2 1) 1,
x0
x0
左右极限存在且相等,
故 lim f ( x) 1. x0
y y 1 x
1
o
y x2 1 x
8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
1) n
1. 2

lim( 1 n 1 3
1 3
5
. 1
(2n
1 1)(2n
1)
1 2
(1 2n 1
1) 2n 1
1 lim( n 1 3
1 3
5
...
1
4n2
) 1
lim 1 (1 1 1 1 ... 1 1 )
n 2 3 3 5
2n 1 2n 1
lim x2 +4 2 lim ( x2 +4 2)( x2 +4 2)( x2 +9 3) x0 x2 +9 3 x0 ( x2 +4 2)( x2 +9 3)( x2 +9 3)
lim x2 ( x2 +9 3) 3 x0 x2 ( x2 +4 2) 2
9.利用夹逼准则(两边夹法)则求极限
由无穷小与无穷大的关系,得
lim
x1
x
2
4x 1 2x
3
.
3.消去零因子法 ( 0 型 )
0
例4

lim
x 1
x
2
x2 1 2x
3
.
解 x 1时,分子,分母的极限都是零. ( 0 型 ) 0
先约去不为零的无穷小因子x 1后再求极限.
lim
x1
x
2
x2 1 2x
3
lim
x1
(x (x
n
lim n2 1 n
1
1 n2
1,
由夹逼定理得
lim( 1 1 1 ) 1.
n n2 1 n2 2
n2 n
说明:这种n项和的极限有时也可以转化为定积分来计算, 这道题是不可以的。
5 1
lim
x
2 7
3
x 4
x
5 x3 1 x3
2. 7
(无穷小因子分出法)
小结:当a0 0, b0 0, m和n为非负整数时有
lim a0 x n x b0 x m
a1 x n1 b1 x m1
an bm
0ab,00当,当n n
m, m,
,当n m,
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
说明:两边夹法则需要放大和缩小不等式,常用的方法 是都换成最大的和最小的。
例 求 lim( 1 1 1 ).
n n2 1 n2 2
n2 n
解 n 1 1 n ,
n2 n n2 1
n2 n n2 1
又 lim n
n lim
n2 n n
1 1 1 1,
n
n
1
lim
lim 1 (1 1 ) 1 n 2 2n 1 2

lim(
x1
1 x 1
2
x2
) 1
lim( 1 2 ) lim( x 1 2 ) x1 x 1 x2 1 x1 x2 1 x2 1
lim
x1
x 1 x2 1
lim
x1
1 x 1
1 2
方法总结:
对于求无穷多项的极限和不符合四则运 算的极限,先通过变形在求极限;
相关文档
最新文档