中考数学三模试卷I卷
2024年陕西师大附中中考数学三模试卷及答案解析
2024年陕西师大附中中考数学三模试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)下列各数中,是无理数的是()A.﹣2024B.0C.D.2.(3分)下列图形是几何体的展开图,其中是三棱柱的展开图的是()A.B.C.D.3.(3分)计算:=()A.B.C.D.4.(3分)如图,在△ABC中,∠ACB=90°,∠ABC=67.5°,D为AB中点,且DE⊥AB 交AC于点E,BC=2,则AC的长为()A.B.4C.D.5.(3分)若点A(3,y1),点B(﹣2,y2),点C(2,6)都在一次函数y=kx+7的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定6.(3分)如图,平行四边形ABCD的对角线AC、BD交于点O,若AB=10,BC=8,∠ACB=90°,则BD的长为()A.B.C.D.7.(3分)如图,四边形ABCD是⊙O的内接四边形,∠ADC=108°,,连接OA,OD,OC,则∠COD的度数为()A.24°B.48°C.72°D.96°8.(3分)已知抛物线y=ax2+bx+c(a≠0)上的部分点的横坐标x与纵坐标y的对应值如表:x…﹣10123…y…60﹣2m6…下列结论:①m=3;②抛物线y=ax2+bx+c有最大值;③当x<﹣2时,y随x增大而减少;④当y>0时,x的取值范围是x<0或x>2.其中正确的是()A.①④B.②④C.③④D.②③④二、填空题(共5小题,每小题3分,计15分)9.(3分)16的算术平方根是.10.(3分)一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,若点B表示的数为﹣4,则点A表示的数为.11.(3分)如图,正五边形的对角线AC、BD相交于点O,则∠AOD的度数为.12.(3分)如图,P是反比例函数图象上一点,过点P作PA⊥y轴于点A,点B在y轴负半轴上,且OB=2OA,连接BP,若△ABP的面积为,则k的值为.13.(3分)如图,在矩形ABCD中,AB=4,BC=5,点P在BA的延长线上,且AP=2,过点P作直线l分别交边AD、BC于点E、F.若直线l平分矩形ABCD的面积,则EF 的长为.三、解答题(共13小题,计81分,解答题应写出过程)14.(5分)计算:4.15.(5分)解不等式:.16.(5分)化简:.17.(5分)如图,AD是△ABC的角平分线,请用尺规作图法,求作菱形AEDF,使得点E、F分别在边AB、AC上.(保留作图痕迹,不写作法)BC=DE.求证:AC=BE.19.(5分)历史社团组织学生外出参观博物馆,计划将学生分若干小组管理,每个小组由一位教师带领.若每位教师带12名学生,则剩余5名学生;若每位教师带15名学生,则最后一位教师只需带8人.求此次带队的教师人数.20.(5分)某校一年一度的英语风采大赛总决赛即将举行,现需从七、八年级遴选2名主持人.七年级推荐了1名女生和2名男生,八年级推荐了2名女生和1名男生.(1)若从推荐的女生中,随机选一人,则来自七年级的概率是;(2)若从七、八年级分别随机选一位主持人,请用列表或画树状图的方法,求恰好是一男一女的概率.21.(6分)某企业生产甲、乙两款红茶,为了解两款红茶的质量,分别请消费者和专业机构进行测评.随机抽取25名消费者对两款红茶评分,并对数据进行整理、描述和分析,下面给出了部分信息:A.甲款红茶分数(百分制)的频数分布表如表:分数70≤x<7575≤x<8080≤x<8585≤x<9090≤x<9595≤x<100频数214 B.甲款红茶分数在85≤x<90这一组的是:86,86,86,86,86,87,87,88,88,89 C.甲、乙两款红茶分数的平均数、众数、中位数如表所示:品种平均数众数中位数甲86.6m n乙87.59086根据以上信息,回答下列问题:(1)补全甲款红茶分数的频数分布直方图:(2)表格中m的值为,n的值为;(3)专业机构对两款红茶的色泽、整碎、净度、内质、香气、滋味醇厚度、汤色、叶底来进行综合评分如下:甲款红茶93分,乙款红茶89分.若将这25名消费者评分的平均数和专业机构的评分按照6:4的比例确定最终成绩,那么哪款红茶最终成绩更高?并通过计算说明理由.22.(7分)张老师组织学生开展测量物体高度的实践活动,乐乐和亮亮的任务是测量公园古树的高度,由于有围栏保护,他们无法到达底部,经研究需要两次测量.于是他们先用平面镜进行测量,方法如下:如图,乐乐在古树前某一位置放置了一个平面镜,并在上面做了一个标记点C,然后亮亮看着镜子上的标记,沿古树底部B和点C所在的直线来回走动,当他走到点D时,恰好看到古树的顶端A在镜面中的像与镜面上的标记点C 重合,这时,乐乐测得亮亮眼睛与地面的高度ED=1.6米,亮亮所站位置D与标记点C 之间的距离为0.8米.接着他们利用测角仪进行了第二次测量,方法如下:亮亮从点D 处沿着直线BC方向后退了5米到达点F处,从点G望向古树的顶端A,此时测得仰角为37°.已知ED=GF,AB⊥BC,ED⊥BC,GF⊥BC,求古树AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈)23.(7分)某生物学习小组正在研究同一盆栽内两种植物的共同生长情况.当他们尝试施用某种药物时,发现会对A,B两种植物分别产生促进生长和抑制生长的作用.通过实验数据统计发现,药物施用量x(mg)与A,B植物的生长高度y A(cm),y B(cm)的关系如图所示.(1)请分别求植物A、植物B生长高度y A,y B(cm)与药物施用量x(mg)的函数关系式;(2)同学们研究发现,当两种植物高度差距不超过5cm时,两种植物的生长会处于一种良好的平衡状态,请求出满足平衡状态时,该药物施用量x(mg)至多不能超过多少毫克?25.(8分)在元旦来临之际,学校安排各班在教室进行联欢.八年级2班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立如图所示的平面直角坐标系,则此时彩带呈现出的抛物线表达式为y=ax2﹣0.6x+3.5.已知屋顶对角线AB长12m.(1)a=,该抛物线的顶点坐标为;(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状.要使两个新抛物线彩带最低点之间的水平距离为5m,且比之前的最低点提高0.3m.求这根绳子的下端D到地面的距高.26.(10分)已知四边形ABCD为一块板材,∠A=∠C=90°,∠B=30°,米,BC=41米,现需从中裁剪一个等腰三角形零件△EFG,EF=EG,其中顶点E、F、G分别在边BC、AB及AD上.(1)如图1,若剪裁要求∠FEG=90°,当点G与点D重合时,求CE的长;(2)如图2,若剪裁要求∠FEG=120°,为了节省材料,能否裁出一个面积最小的等腰△EFG?若能裁出,请求出面积的最小值;若不能裁出,请说明理由.2024年陕西师大附中中考数学三模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:﹣2024,0是整数,是分数,他们都不是无理数;是无限不循环小数,它是无理数;故选:D.【点评】本题考查无理数的识别,熟练掌握相关定义是解题的关键.2.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:A.是圆柱的展开图,故本选项不符合题意;B.是三棱柱的展开图,故本选项符合题意;C.是长方体的展开图,故本选项不符合题意;D.是圆锥的展开图,故本选项不符合题意.故选:B.【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.3.【分析】根据分式的乘法法则计算.【解答】解:3a2b•(﹣)2=3a2b•=b3,故选:C.【点评】本题考查的是分式的乘除法,掌握分式的乘除法法则是解题的关键.4.【分析】连接BE,根据三角形内角和定理求出∠A=22.5°,根据线段垂直平分线的判定与性质求出EB=EA,根据等腰三角形的性质及三角形外角性质求出∠BEC=45°,根据三角形内角和定理求出∠CBE=45°=∠BEC,解直角三角形求出BC=CE=2,BE=2=EA,再根据线段的和差求解即可.【解答】解:如图,连接BE,∵∠ACB=90°,∠ABC=67.5°,∴∠A=180°﹣90°﹣67.5°=22.5°,∵D为AB中点,且DE⊥AB交AC于点E,∴DE垂直平分AB,∴EB=EA,∴∠A=∠ABE=22.5°,∴∠BEC=∠A+∠ABE=45°,∴∠CBE=180°﹣90°﹣45°=45°=∠BEC,∴BC=CE=2,∴BE=BC=2=EA,∴AC=CE+EA=2+2,故选:C.【点评】此题考查了线段垂直平分线的性质,熟记线段垂直平分线的性质是解题的关键.5.【分析】由点C的坐标,利用一次函数图象上点的坐标特征,可求出k的值,由k=﹣<0,利用一次函数的性质,可得出y随x的增大而减小,再结合3>﹣2,即可得出y1<y2.【解答】解:∵点C(2,6)在一次函数y=kx+7的图象上,∴6=2k+7,解得:k=﹣.∵k=﹣<0,∴y随x的增大而减小,又∵点A(3,y1),点B(﹣2,y2)都在一次函数y=﹣x+7的图象上,且3>﹣2,∴y1<y2.故选:A.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y 随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.6.【分析】直接利用平行四边形的性质结合勾股定理得出BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=8,AO=CO,BO=DO,∵AB=10,∠ACB=90°,∴AC==6,∴CO=AO=3,∴BO===,∴BD=2BO=2.故选:A.【点评】此题主要考查了平行四边形的性质以及勾股定理,正确得出CO的长是解题的关键.7.【分析】根据圆内接四边形的性质得出∠B+∠ADC=180°,求出∠B的度数,再根据圆周角定理得出∠AOC=2∠B=144°,再根据,求出答案即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∵∠ADC=108°,∴∠B=72°,∴∠AOC=2∠B=144°,∵,∴∠COD=∠AOC=48°.故选:B.【点评】本题考查了圆内接四边形的性质,圆周角定理等知识点,能熟记圆内接四边形的对角互补是解此题的关键.8.【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:由表中数据知,抛物线对称轴为直线x==1,∴m=0,故①错误,不符合题意;抛物线的顶点坐标是(1,﹣2),有最小值,故②错误,不符合题意;∵抛物线开口向上,对称轴为直线x=1,∴当x<1时,y随x的增大而减小,故③正确,符合题意;∵抛物线与x轴交点坐标为(0,0)和(2,0),∴当y>0时,x的取值范围是x<0或x>2,故④正确,符合题意.故选:C.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(共5小题,每小题3分,计15分)9.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵(±4)2=16,∴16的算术平方根为4,故答案为:4.【点评】本题考查算术平方根的概念,属于基础题型.10.【分析】由题意可知,一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,点B表示的数为﹣4,可以判断点A在原点的左侧,且点A与点B的距离是2个单位长度,即可以求出点A表示的数.【解答】解:∵一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,点B表示的数为﹣4,∴可以判断点A在原点的左侧,且点A与点B的距离是2个单位长度,∴点A表示的数为:﹣4﹣2=﹣6,故答案为:﹣6.【点评】本题考查的是数轴,正确判断出点A和点B在原点的左侧是解题的关键.11.【分析】根据正五边形的各边相等,各角相等得出AB=BC=CD,∠ABC=∠BCD=108°,再根据等边对等角和三角形内角和定理即可求出∠BCA、∠CBD的度数,在△BOC中利用三角形内角和定理即可求出∠BOC的度数,最后根据对顶角相等即可得出∠AOD的度数.【解答】解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD==108°,∴∠BAC=∠BCA==36°,∠CBD=∠CDB==36°,在△BOC中,∠BOC=180°﹣∠BCA﹣∠CBD=180°﹣36°﹣36°=108°,∴∠AOD=∠BOC=108°,故答案为:108°.【点评】本题考查了多边形的内角和、外角和,正五边形的性质,三角形内角和定理,等腰三角形的性质,对顶角,熟练掌握这些知识点是解题的关键.12.【分析】根据反比例函数k值的几何意义,求出三角形AOP面积即可知道k值.【解答】解:∵OB=2OA,△ABP的面积为,=S△ABP==,∴S△AOP∴k==.故答案为:.【点评】本题考查了反比例函数k值的几何意义.熟练掌握反比例函数k值的几何意义是关键.13.【分析】根据直线l平分矩形ABCD的面积可得直线l过矩形的对称中心,进一步得AE =CF,DE=BF,再利用△PAE∽△PBF求出AE和BF,进而求出EF即可.【解答】解:直线l平分矩形ABCD的面积,∴直线l过矩形的对称中心,∴AE=CF,DE=BF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠BAE=90°,∴△PAE∽△PBF,∴=,∵AP=2,AB=4,∴PB=6,设AE=x,则DE=BF=5﹣x,∴,∴在Rt△PAE中,PE==,∴,解得EF=.故答案为:.【点评】本题相似三角形的判定和性质,中心对称以及矩形的性质,解题的关键是证明三角形相似并利用相似三角形的性质求出线段的长.三、解答题(共13小题,计81分,解答题应写出过程)14.【分析】利用平方差公式,绝对值的意义进行计算,即可解答.【解答】解:4=4×﹣(﹣1)+3﹣4=﹣+1+3﹣4=0.【点评】本题考查了二次根式的混合运算,平方差公式,准确熟练地进行计算是解题的关键.15.【分析】根据解一元一次不等式的步骤解答:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.【解答】解:,去分母得:3(x+3)﹣6≥2(1﹣x),去括号得:3x+9﹣6≥2﹣2x,移项合并得:5x≥﹣1,系数化为1得:x≥﹣.【点评】本题考查了解一元一次不等式,正确利用不等式的性质求出解集是解答本题的关键.16.【分析】先通分括号内的式子,再算括号外的除法即可.=•=•=﹣(a+3)=﹣a﹣3.【点评】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.17.【分析】作线段AD的垂直平分线,分别交AB,AC于点E,F,连接DE,DF,结合菱形的判定可知,四边形AEDF为菱形,即菱形AEDF为所求.【解答】解:如图,作线段AD的垂直平分线,分别交AB,AC,AD于点E,F,O,连接DE,DF,则∠AOE=∠AOF=90°,AE=DE,AF=DF,∵AD是△ABC的角平分线,∴∠EAO=∠FAO,∵AO=AO,∴△AEO≌△AFO(ASA),∴AE=AF,∴AE=DE=AF=DF,∴四边形AEDF为菱形,即菱形AEDF为所求.【点评】本题考查作图—复杂作图、线段垂直平分线的性质、菱形的判定,熟练掌握线段垂直平分线的性质、菱形的判定是解答本题的关键.18.【分析】由“AAS”可证△ABC≌△BDE,可得AC=BE.【解答】证明:∵AB∥DE,∴∠D=∠ABC,∵∠ABE=∠ABC+∠A,∠ABE=∠ABC+∠DBE,∴∠A=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴AC=BE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.19.【分析】设此次带队的教师人数为x人,学生由y人,根据若每位教师带12名学生,则剩余5名学生;若每位教师带15名学生,则最后一位教师只需带8人.列出二元一次方程组,解方程组即可.【解答】解:设此次带队的教师人数为x人,学生由y人,由题意得:,解得:,答:此次带队的教师人数为4人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及恰好是一男一女的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意知,七年级推荐了1名女生,八年级推荐了2名女生,∴从推荐的女生中随机选一人,来自七年级的概率是.故答案为:.(2)列表如下:女女男女(女,女)(女,女)(女,男)男(男,女)(男,女)(男,男)男(男,女)(男,女)(男,男)共有9种等可能的结果,其中恰好是一男一女的结果有5种,∴恰好是一男一女的概率为.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.21.【分析】(1)求出甲款红茶分数在90≤x<95这一组的频数,即可补全频数分布直方图;(2)分别根据众数和中位数定义即可求出答案;(3)根据加权平均数公式分别求得两款红茶的得分,即可得出结论.【解答】解:(1)∵甲款红茶分数在85≤x<90的频数为10,∴分数在90≤x<95这一组的频数为25﹣2﹣1﹣4﹣10﹣4=4,补全频数分布直方图:(2)根据所给数据可得众数为86,中位数为从小到大排列的第13个数据为87,故答案为:86,87;(3)以这25名消费者评分的平均数和专业机构的评分按照6:4的比例确定最终成绩为:甲的成绩:=89.16(分),乙的成绩:=87.3(分),∵89.16>87.3,∴可以认定甲款红茶最终成绩更高.【点评】本题考查频数(率)分布直方图,频数(率)分布表,中位数,众数,同时还要掌握加权平均数的计算方法,解题的关键是有较强的识图能力和计算能力.22.【分析】连接GE并延长交AB于H,根据矩形的性质得到FG=DE=BH=1.6米,GH =BF,根据相似三角形的性质得到BC=AB,解直角三角形得到古树AB的高度为9.56米.【解答】解:连接GE并延长交AB于H,∴FG=DE=BH=1.6米,GH=BF,∵DE⊥BF,AB⊥BF,∴∠EDC=∠ABC=90°,∵∠ECD=∠ACB,∴△ACB∽△ECD,∴==2,∴BC=AB,在Rt△AGH中,=tan∠AGH,∴≈,∴AB=9.52,答:古树AB的高度为9.56米.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,相似三角形的应用,正确得出相似三角形是解题关键.23.【分析】(1)将点的坐标代入求解即可;(2)联立成方程组,求解即可;(3)根据图象列出不等式,计算即可.【解答】解:(1)设y A=kx+b,由图象可知直线过点(0,10),(2,14),,,解得y A=2x+10.设y B=mx+n,由图象可知直线y B=mx+n过点(0,25),(25,0),,解得y B=﹣x+25.(2)联立得,解得,∴当两种植物生长高度相同时,药物的施用量应为5mg.(3)当0≤x≤5时,y B﹣y A=﹣x+25﹣(2x+10)≤5,解得:x≥,∴≤x≤5.当x>5时,y A﹣y B=2x+10﹣(﹣x+25)≤5,解得x≤,∴5<x≤.综上所述,当3≤x≤时,两种植物高度差距不超过5cm,两种植物的生长会处于一种良好的平衡状态.【点评】本题考查一次函数的应用,正确记忆相关知识点是解题关键.25.【分析】(1)由待定系数法求出函数表达式,进而求解;(2)由待定系数法求出一个新抛物线的函数表达式,求出当x=6时的函数值,即可求解.【解答】解:(1)由题意得,抛物线的对称轴为x=6,则A(0,3.5),B(12,3.5),∴144a﹣7.2+3.5=3.5,解得:a=0.05,∴抛物线的表达式为y=0.05x2﹣0.6x+3.5,当x=6时,y=0.05x2﹣0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),故答案为:0.05,(6,1.7);(2)∵两个新抛物线彩带最低点之间的水平距离为5m,且比之前的最低点提高0.3m.∴左边新抛物线的顶点坐标为(3.5,2),设左边新抛物线的表达式为y=a′(x﹣3.5)2+2,将点A的坐标代入上式得3.5=a′(0﹣3.5)2+2,解得a′=,∴抛物线的表达式为y=(x﹣3.5)2+2,当x=6时,y=(6﹣3.5)2+2=,∴这根绳子的下端D到地面的距高为m.【点评】本题是二次函数综合题,考查二次函数的应用,涉及待定系数法求二次函数表达式、二次函数图象与性质等知识,解答此类问题的关键是明确题意,求出函数相应的解析式,根据函数的顶点式可以求得函数的最值.26.【分析】(1)设CE长x米,作FH⊥BC于点H,证明△EFH≌△DEC,可得HE=CD=米,FH=EC=x米,根据∠B=30°,可得BH长x米,进而根据BC长41米列出方程即可求得x的值,也就是CE的长;(2)延长BC、AD交于点H,作GN=GH交BC于点N,FM⊥AB于点F,交BE于点M.根据CD的长度可得CH的长度,进而可得BH的长度为42米.类比(1)可得△FME ≌△ENG,那么FM=EN,ME=GN.设ME=GN=NH=x,FM=EN=y,则BM=2y,根据BH的长度为42米列出方程,整理后用x表示出y.作GP⊥BH于点P,用x表示出GP,PE的长,根据勾股定理可得GE2,作GK⊥EF于点K,根据60°的三角函数值可得GK=GE,进而表示出△EFG的面积,求出最小值即可.【解答】解:(1)设CE长x米,过点F作FH⊥BC于点H.∴∠FHE=∠BHF=90°.∴∠HFE+∠HEF=90°.∵∠FEG=90°,∴∠HEF+∠DEC=90°.∴∠HFE=∠DEC.∵∠C=90°,∴∠FHE=∠C.又∵EF=DE,∴△EFH≌△DEC.∴HE=CD=(米),FH=EC=x(米).∵∠B=30°,∴BH=x(米).∵BC=41米,∴x++x=41.解得:x=21﹣22.∴CE的长为(21﹣22)米;(2)延长BC、AD交于点H,作GN=GH交BC于点N,FM⊥AB于点F,交BE于点M.∴∠BFM=90°.∵∠A=90°,∠B=30°,∴∠H=60°,∠BMF=60°,MB=2FM.∴△GNH是等边三角形,∠FME=120°.∴GN=NH,∠GNH=60°.∴∠GNE=120°,∠EGN+∠GEN=60°.∴∠GNE=∠FME.∵∠FEG=120°,∴∠FEM+∠GEN=60°.∴∠EGN=∠FEM.又∵FE=EG,∴△FME≌△ENG.∴FM=EN,ME=GN.设ME=GN=NH=x,FM=EN=y.∴BM=2y.∵∠BCD=90°,∴∠DCH=90°.∵CD=米,∴CH=1(米).∴BH=42(米).∴2y+x+y+x=42.∴y=14﹣x.∴EH=x+y=(14+x)米.作GP⊥BH于点P.∴∠GPE=∠GPH=90°.∴PH=x(米).∴GP=x(米),EP=14+x﹣x=(14﹣x)米.∴GE2=(x)2+(14﹣x)2=x2﹣x+196.作GK⊥EF于点K.∴∠K=90°.∵∠FEG=120°,∴∠GEK=60°.∴GK=EG.=FE•GK∴S△EFG=GE2=x2﹣x+49.最小,最小值为:×9﹣×3+49=(平∴当x=﹣=3时,S△EFG方米).答:为了节省材料,能裁出一个面积最小的等腰△EFG,面积的最小值为平方米.【点评】本题综合考查二次函数的应用.用未知数表示出等腰三角形的腰长和腰上的高是解决本题第二问的关键。
广西桂林市2024届中考三模数学试题含解析
广西桂林市2024学年中考三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km2.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=1 23.下列关于x的方程一定有实数解的是( )A.2x mx10--=B.ax3=C.x64x0-⋅-=D.1x x1x1=--4.a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个6.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.35B.725C.45D.24257.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.9.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是()A.待定系数法B.配方C.降次D.消元10.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A.36°B.45°C.72°D.90°11.如图所示的几何体的俯视图是()A.B.C.D.12.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,23= ABBC,DE=6,则EF= .14.已知⊙O半径为1,A、B在⊙O上,且2AB=AB所对的圆周角为__o.15.计算:(13)0﹣38=_____.16.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.17.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.18.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.(6分)如图,热气球的探测器显示,从热气球A 看一栋髙楼顶部 B 的仰角为30°,看这栋高楼底部 C 的俯角为60°,热气球A 与高楼的水平距离为120m,求这栋高楼BC 的高度.21.(6分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB 上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.22.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.24.(10分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.25.(10分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25≤x<30 4 0.0830≤x<35 8 0.1635≤x<40 a 0.3240≤x<45 b c45≤x<50 10 0.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.26.(12分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.27.(12分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【题目详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.【题目点拨】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.2、D【解题分析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【题目详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【题目点拨】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.3、A【解题分析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;B.ax=3中当a=0时,方程无解,不符合题意;C.由6040xx-≥⎧⎨-≥⎩可解得不等式组无解,不符合题意;D.111xx x=--有增根x=1,此方程无解,不符合题意;故选A.【题目点拨】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.4、D【解题分析】分a>0和a<0两种情况分类讨论即可确定正确的选项【题目详解】当a>0时,函数y=ax的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=ax的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【题目点拨】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.5、C【解题分析】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【题目点拨】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.6、A由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE ∥BC 知AC=2AE=10,∠EDC=∠BCD ,再根据正弦函数的概念求解可得.【题目详解】∵△ABC 中,AC =BC ,过点C 作CD ⊥AB ,∴AD =DB =6,∠BDC =∠ADC =90°,∵AE =5,DE ∥BC ,∴AC =2AE =10,∠EDC =∠BCD ,∴sin ∠EDC =sin ∠BCD =63105BD BC ==, 故选:A .【题目点拨】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.7、C【解题分析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8、C【解题分析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C .点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.9、C【解题分析】根据一元二次方程的解的定义即可求出答案.【题目详解】由题意可知:a 2-a-1=0,或a2-1=a∴a3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C.【题目点拨】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.10、C【解题分析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C.点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.11、B【解题分析】根据俯视图是从上往下看得到的图形解答即可.【题目详解】从上往下看得到的图形是:故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线12、C试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大. 故选C考点:三视图二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解题分析】试题分析:∵AD ∥BE ∥CF ,∴AB DE BC EF=,即263EF =,∴EF=1.故答案为1. 考点:平行线分线段成比例.14、45º或135º【解题分析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA =1, 22AC = 根据勾股定理得:222OC OA AC =-=即OC =AC , ∴△AOC 为等腰直角三角形,45AOC ∴∠=,同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=,∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135.故答案为45或135.15、-1【解题分析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【题目详解】由分析可得:(13)0﹣38=1-2=﹣1. 【题目点拨】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.16、23 1.【解题分析】据题意求得A 0A 1=4,A 0A 1=23,A 0A 3=1,A 0A 4=23,A 0A 5=1,A 0A 6=0,A 0A 7=4,…于是得到A 1019与A 3重合,即可得到结论.【题目详解】解:如图,∵⊙O 的半径=1,由题意得,A 0A 1=4,A 0A 1=3A 0A 3=1,A 0A 4=23A 0A 5=1,A 0A 6=0,A 0A 7=4,…∵1019÷6=336…3,∴按此规律A 1019与A 3重合,∴A 0A 1019=A 0A 3=1,故答案为23,1.【题目点拨】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.17、-1【解题分析】试题解析:设点A 的坐标为(m ,n),因为点A 在y=的图象上,所以,有mn =k ,△ABO 的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k 的几何意义.18、2【解题分析】 试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22CD=2CE=2考点:1.解直角三角形、2.垂径定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)c >﹣2;(2) x 1=﹣1,x 2=1.【解题分析】(1)根据抛物线与x 轴有两个交点,b 2-4ac >0列不等式求解即可;(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x 轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【题目详解】(1)解:∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即16+8c >0,解得c >﹣2;(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x 轴的另一个交点为(1,0),∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=1.【题目点拨】考查了抛物线与x 轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.20、这栋高楼的高度是1603【解题分析】过A 作AD ⊥BC ,垂足为D ,在直角△ABD 与直角△ACD 中,根据三角函数的定义求得BD 和CD ,再根据BC=BD+CD 即可求解.【题目详解】过点A 作AD ⊥BC 于点D,依题意得,30BAD ∠=,60CAD ∠=,AD=120,在Rt △ABD 中tan BD BAD AD∠=, ∴312033BD =⨯= 在Rt △ADC 中tan DC CAD AD∠=, ∴12031203DC ==∴1603BC BD DC =+=,答:这栋高楼的高度是1603.【题目点拨】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.21、(1)①110°②DE=EF ;(1)①90°②AE 1+DB 1=DE 1 【解题分析】试题分析:(1)①由等边三角形的性质得出AC =BC ,∠BAC =∠B =60°,求出∠ACF =∠BCD ,证明△ACF ≌△BCD ,得出∠CAF =∠B =60°,求出∠EAF =∠BAC +∠CAF =110°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.22、证明见解析【解题分析】∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四边形BFDE是平行四边形.23、(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解题分析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD 为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.24、(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元.【解题分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.【题目详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣1(不合题意,舍去),∴80(1+a%)=80×(1+25%)=1.答:乙网店在“双十一”购物活动这天的网上标价为1元.【题目点拨】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25、(1)50;(2)详见解析;(3)220.【解题分析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b 的值,再用1减去其它各组的频率即可求得c 的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【题目详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【题目点拨】本题主要考查数据的收集、 处理以及统计图表。
2024年重庆一中中考数学三模试卷+答案解析
2024年重庆一中中考数学三模试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是()A.8B.C.D.2.下列图形是中心对称图形的是()A. B.C. D.3.如图,已知直线,,,则的度数为()A.B.C.D.4.若反比例函数的图象经过第一、三象限,则k的取值范围是()A. B. C. D.5.如图,与是以点O为位似中心的位似图形,若,的面积为1,则的面积为()A.1B.2C.4D.86.的值在()A.和0之间B.0和1之间C.1和2之在D.2和3之间7.如图,用同样大小的棋子按以下规律摆放,第1个图有6颗棋子,第2个图有9颗棋子…那么,第9个图中的棋子数是()A.27B.30C.35D.388.如图,AB、AC是的切线,B、C为切点,D是上一点,连接BD、CD,若,,则的半径长为()A.B.C.3D.9.如图,在正方形ABCD中,点E在对角线BD上,过点D作且,连接EF,点G是EF的中点,连接AG、若,则一定等于()A.B.C.D.10.将所有字母均不为中的任意两个字母对调位置,称为“对调操作”.例如:“x、y对调操作”的结果为,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则或;③若,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:本题共8小题,每小题4分,共32分。
11.计算:______.12.如图,正六边形ABCDEF中,连接CF,那么的度数为______.13.一个口袋中有2个红球,1个黄球,1个白球,这些球除颜色外都相同,从中随机摸出一个球.记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率为______.14.电视剧《与凤行》播出第一天网上播放量达到亿次,以后每天的播放量按照相同的增长率增长,第三天播放量当日达到亿次,设平均每天的增长率是x,根据题意,可列方程为______.15.如图,在菱形ABCD中,连接AC,以点A为圆心,AB为半径的圆交AC于点E,以点C为圆心,CD为半径的圆交AC于点F,如果,,那么图中阴影部分的面积为______结果保留16.如图,将线段AB绕点A顺时针旋转一定的角度到AC,点D为线段AB上一点,连接CD并延长到点E,连接AE、BE,过点A作交BE的延长线于点F,如果,,,那么的面积是______.17.若关于x的一元一次不等式组有且只有两个偶数解,且关于y的分式方程有整数解,则所有满足条件的整数a的值之和是______.18.如果一个四位数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数S为“胜利数”.将“胜利数”S的千位数字与十位数字对调后,再将这个四位数的百位去掉,这样得到的三位数记为,记,例如:四位数1729,,不是“胜利数”,又如:四位数5432,,是“胜利数”,若能被7整除,令,则所有满足条件的t之和是______;若对于“胜利数”S,在能被7整除的情况下,记,则当取得最大值时,“胜利数”S是______.三、解答题:本题共8小题,共78分。
2024年河南省南阳十三中中考数学三模试卷+答案解析
2024年河南省南阳十三中中考数学三模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2024的相反数是()A.2024B.C.D.2.如图所示的几何体的主视图是()A.B.C.D.3.刻蚀机是芯片制造和微观加工最核心的设备之一,中国自主研发的5纳米刻蚀机已获成功,5纳米就是米.数据用科学记数法表示为()A. B. C. D.4.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F 为焦点.若,,则的度数为()A. B. C. D.5.化简的结果是()A.1B.C.D.6.如图,A,B,C为上的三个点,,若,则的度数是()A.B.C.D.7.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A.且B.C.且D.8.如图所示的两张图片形状大小完全相同,把两张图片全部从中间剪断,再把四张形状大小相同的小图片混合在一起.从四张图片中随机摸取一张,不放回,接着再随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是()A. B. C. D.9.如图,抛物线与x轴交于A,B两点,与y轴交于点C,,则下列各式成立的是()A. B. C. D.10.如图,中,,,点P,Q同时从点A出发,点P以的速度沿AC向点C运动,点Q以的速度沿AB向点B运动,当其中一个点到达终点时,另一个点也随之停止运动.作▱APDQ,设运动时间为t s,▱APDQ与重合部分的面积为,则下列图象中能大致反映S与t的函数关系的是()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。
11.已知,则的值是______.12.若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为______.13.某校举行了“珍爱生命,预防漏水”为主题的演讲比赛,提高学生的安全意识.演讲者的最终比赛成绩按照演讲内容、现场效果、外在形象三项得分分别占,,的比例折算.已知李明同学的三项原始得分分别是90分,95分,90分,那么李明同学最终比赛成绩为______分.14.如图所示的扇形OAB中,,过点O作,OC交AB于点P,若,则阴影部分的面积为______.15.如图,在矩形ABCD中,,连接BD,,点E是AB上一点,,点M是AD上一动点,连接EM,以EM为斜边向下作等腰直角,连接DP,当DP的值最小时,AM的长为______.三、解答题:本题共8小题,共75分。
2024年广东省广州市中考三模数学试题及答案
2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A 51310× B. 51.310× C. 61.310× D. 71.310× 3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形是( )A. B.C. D..的4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小 C 图象与x 轴交于()2,0− D. 图象与y 轴交于()0,47. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°8. 港珠澳大桥是世界上最长跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( ).的A 5B. C. 2.5 D. 310. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A.B. C. 23D. 第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________. 12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=) 14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l分别表示去年、今年水.费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC =18cm ,灯臂CD =33cm ,灯罩DE =20cm ,BC ⊥AB ,CD ,DE 分别可以绕点C ,D 上下调节一定的角度.经使用发现:当∠DCB =140°,且ED ∥AB 时,台灯光线最佳.求此时点D 到桌面AB 的距离.(精确到0.1cm ,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20. 先化简,再求值:22111x x x x x +− −÷ − ,其中1x =.21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.22. 已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣m x>0的解集.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方);②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点.(1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.25. 如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE 的值为 : (2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH,则BC=.2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是()A. 2025− B.12025− C. 2025 D.12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A.【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. 51310× B. 51.310× C. 61.310× D. 71.310×【答案】C【解析】【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.详解】解:61300000 1.310=×,故选:C .3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°后,能够与原图形重合,那么这个图形就叫做中心对称图形,熟练掌握中心对称图形的概念,是解题的关键.【详解】解:A 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意; B 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;C 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;D 、绕某一点旋转180°后,能够与原图形重合,故是中心对称图形,故符合题意;故选:D .4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 【答案】D【解析】【分析】本题考查同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项.根据同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项分别计算各式子,即可解答.【【详解】解:()4312a a =,A 选项:5a 与2a 不是同类项,无法合并,故计算结果与()43a 不相同; B 选项:268a a a ⋅=,故计算结果与()43a 不相同;C 选项:24222a a a ÷=,故计算结果与()43a 不相同; D 选项:()2444812a a a a a =⋅=故计算结果与()43a 相同. 故选:D5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 【答案】A【解析】【分析】两边都乘以()()11x x −+,化整式方程求解,然后检验即可. 【详解】3111x x x −=−+, 两边都乘以()()11x x −+,得()()()()13111x x x x x +−−=+−,整理,得24x −=−,∴2x =.检验:当2x =时,()()110x x −+≠,∴原方程的解为2x =.故选A .【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小C. 图象与x 轴交于()2,0−D. 图象与y 轴交于()0,4 【答案】C 为【解析】【分析】由20k =−<,40b =>,可得图象经过一、二、四象限,y 随x 的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵24y x =−+,20k =−<,4>0b =,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;当0y =时,240x −+=,解得2x =,∴图象与x 轴交于()2,0,故C 符合题意;当0x =时,4y =,∴图象与y 轴交于()0,4,故D 不符合题意;故选C .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.7. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A【解析】 【分析】根据平行得到50ABD EDC ∠=∠=°,再利用外角的性质和对顶角相等,进行求解即可.【详解】解:由题意,得:DE AB ∥,∴50ABD EDC ∠=∠=°,∵120DEF EDC DCE ∠=∠+∠=°,∴70DCE ∠=°,∴70ACB DCE ∠∠°==; 故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键. 8. 港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.【答案】B【解析】 【分析】过点A 作AD CB ⊥于点D ,先根据三角形的外角性质可得A ACB ∠=∠,从而可得160AB BC ==米,然后在Rt △ABD 中,利用锐角三角函数的定义求出AD 的长,即可解答.【详解】解:如图,过点A 作AD CB ⊥于点D ,根据题意得:60,30ABD ACB ∠=°∠=°,∵ABD A ACB ∠=∠+∠,∴30A ∠=°,∴A ACB ∠=∠,∴160AB BC ==米,在Rt △ABD 中,sin 60160AD AB =⋅°=即该主塔的高度是米. 故选:B【点睛】本题考查了解直角三角形的应用——仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( )A. 5B.C. 2.5D. 3【答案】D【解析】 【分析】根据三角形的中位线定理,可得EF =12 DN ,DN =2EF =5,利用勾股定理求出AD 的长,即得结论.【详解】解:∵点E 、F 分别为DM 、MN 的中点,∴EF =12 DN ,∵EF 最大值为2.5,∴当DN 最大,即当N 与B 重合时,有DN =2EF =5,∴5DN =,∴解得AD =3,故选:D .【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想.10. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A. B. C. 23 D. 【答案】B【解析】【分析】本题主要考查了相似三角形、等腰三角形的性质、三角形外角与内角的关系等知识点,先利用等腰三角形的性质及外角与内角的关系说明B DAC ∠=∠,再判断ABC DAC △∽△,利用相似三角形的性质用CE 表示出AC ,最后代入比例可得结论.【详解】解: AD 是ABC 的中线,∴BC CD =,CE CD =,∴CED ADC ∠=∠,∴DAC ACE B BAD ∠+∠=∠+∠,ACE BAD ∠=∠,∴DAC B ∠=∠,又 ACD BCA ∠=∠,∴ABC DAC △∽△, ∴BC AC AC CD=, ∴22222AC BC CD CD CE =⋅==, ∴AC =,∴CE AC = 故选B .第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________.【答案】(2)(2)a a a +−【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a −−+−【点睛】本题考查因式分解,掌握因式分解方法是关键.12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 【答案】6【解析】【分析】本题考查利用概率求个数,根据白球概率求出黑球概率,黑球共有4个,就可以求出球的总数,再减去黑球个数即可解答,熟练掌握简单概率公式是解决问题的关键. 【详解】解:∵摇匀后随机摸出一个,摸到白球的概率为35, ∴摸到黑球的概率为25, ∵袋子中有4个黑球和n 个白球, ∴由简单概率公式可得4245n =+,解得6n =, ∴白球有6个,故答案为:6.13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=)【答案】<【解析】【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上,又()011−−=,303−=,13<,∴1y 2y <故答案为:<14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π 【解析】【分析】延长F A 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠F AB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长F A 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠F AB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+, 120480160720k b k b += +=,得6240k b = =− , 即当120x >时,2l 对应的函数解析式为6240y x =−, 当150x =时,6150240660y =×−=, 由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450×=(元), 660450210−=(元), 即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案为210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.【答案】80【解析】【分析】首先根据折叠的性质得到90DFC C ∠=∠=°,然后根据同角的余角相等得到DFA BEF ∠=∠,进而得到4sin sin 5BEF DFA ∠=∠=,设4BF x =,5EF x =,则3BE x =,5CE FE x ==,根据定理求出88AD x ==,1010DC DF x ===,最后利用矩形面积公式求解即可.【详解】解:∵矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,∴90DFC C ∠=∠=°,∴90DFA BFE ∠+∠=°,∵四边形ABCD 是矩形,∴90A B ∠=∠=°,∴90BEF BFE∠+∠=°, ∴DFA BEF ∠=∠, ∴4sin sin 5BEF DFA ∠=∠=, ∴设4BF x =,5EF x =,则3BE x =,5CE FE x ==,∴8AD BC x ==, ∵4sin 5DFA ∠=, ∴10DF x =,∵90DFC C ∠=∠=°,DE =∴222DF EF DE +=,即()()(222105x x +, ∴解得:1x =,负值舍去,∴88AD x ==,1010DC DF x ===,∴矩形ABCD 面积81080AD CD =⋅=×=.故答案为:80的三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 【答案】不等式组的解集为1−<2x ≤,正整数解为1,2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:12(23)5133x x x x −<+ +≥+①② 解不等式①,得:x >﹣1,解不等式②,得:2x ≤,∴不等式组的解集为1−<2x ≤,则不等式组的正整数解为1,2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.【答案】见解析【解析】【分析】先根据平行四边形的性质得到AB CD =,AB CD ∥,再证明ABE CDF ∠=∠,即可利用SAS 证明C ABE DF ≌△△,即可证明AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,∴ABE CDF ∠=∠∵BE DF =,∴()SAS ABE CDF △△≌,∴AE CF =.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,熟知平行四边形对边相等且平行是解题的关键19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=33cm,灯罩DE=20cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【答案】点D到桌面AB的距离约为43.4cm【解析】【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【详解】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=33cm,∠DFC=90°,∴DF=CD•sin50°≈33×0.77=25.41(cm),∴DG ≈25.41+18≈43.4(cm ),答:点D 到桌面AB 的距离约为43.4cm .【点睛】本题考查的是矩形的判定与性质,解直角三角形的应用,掌握作出适当的辅助线构建直角三角形是解题的关键.20. 先化简,再求值:22111x x x x x +− −÷ −,其中1x =.【答案】11x −+, 【解析】【分析】先根据分式的混合运算法则化简,然后再将1x=−代入计算即可解答.【详解】解:22111x x x x x +− −÷ − 22111x x xx x +− =−⋅ −()()()()1111x x x x xx x −+−⋅+−11xx x =−⋅+11x =−+.当1x =−时,原式 【点睛】本题主要考查了分式的基本性质及其运算、分母有理化,正确的化简分式是解答本题的关键. 21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.【答案】(1)1,2;(2)72°;(3)见解析;(4)见解析,1 4【解析】【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据2部对应的人数,即可将条形统计图补充完整;(4)根据列表所得的结果,可判断他们选中同一名著的概率.【详解】解:(1)调查的总人数为:10÷25%=40,∴2部对应的人数为40-2-14-10-8=6,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部.故答案为:1,2(2)扇形统计图中“4部”所在扇形的圆心角为:8360?=72? 40×故答案为:72°.(3)2部对应的人数为:40-2-14-10-8=6人补全统计图如图所示.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:由图可知,共有16种等可能结果,其中选中同一名著的有4种,()41 164P∴==选中同一部.故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22. 已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.的【答案】(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2. 【解析】【分析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B 的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x ﹣2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <﹣4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】(1)把A (﹣4,2)代入my x=,得m=2×(﹣4)=﹣8, 所以反比例函数解析式为8y x=−, 把B (n ,﹣4)代入8y x=−, 得﹣4n=﹣8 解得n=2,把A (﹣4,2)和B (2,﹣4)代入y=kx+b ,得: 4224k b k b −+= +=− ,解得:12k b =− =− , 所以一次函数的解析式为y=﹣x ﹣2; (2)y=﹣x ﹣2中,令y=0,则x=﹣2, 即直线y=﹣x ﹣2与x 轴交于点C (﹣2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b−mx>0的解集为:x <−4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方); ②连接OC ,交O 于点D ; ③连接BD ,与AC 交于点E . (1)求证:BD 为O 的切线; (2)求AE 的长度.【答案】(1)画图见解析,证明见解析 (2)32AE = 【解析】【分析】(1)根据题意作图,首先根据勾股定理得到5OC ==,然后证明出()SAS AOC DOB ≌,得到90OAC ODB ∠=∠=°,即可证明出BD 为O 的切线;(2)首先根据全等三角形的性质得到4BD AC ==,然后证明出BAE BDO ∽,利用相似三角形的性质求解即可. 【小问1详解】 如图所示,∵AC 是O 的切线, ∴OA AC ⊥, ∵3OA =,4AC =,∴5OC ==,∵3OA =,2AB =, ∴5OB OA AB =+=, ∴OB OC =,又∵3==OD OA ,AOC DOB ∠=∠, ∴()SAS AOC DOB ≌, ∴90OAC ODB ∠=∠=°, ∴OD BD ⊥, ∵点D 在O 上, ∴BD 为O 的切线; 【小问2详解】 ∵AOC DOB ≌, ∴4BD AC ==,∵ABE DBO ∠=∠,BAE BDO ∠=∠,∴BAE BDO ∽,∴AE ABOD BD =,即234AE =, ∴解得32AE =.【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点. (1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.【答案】(1)1b =-;(2)1;(3)a<0或45a >. 【解析】【分析】(1)将点()()2,1,2,3−−代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分a<0和0a >两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得. 【详解】解:(1)将点()()2,1,2,3−−代入2y ax bx c ++得:421423a b c a b c −+=++=− , 两式相减得:44b −=, 解得1b =-;(2)由题意得:0a ≠,由(1)得:2211()24yax x c a x c a a=−+=−+−, 则此函数的顶点的纵坐标为14c a−, 将点()2,3−代入2y ax x c =−+得:423a c −+=−, 解得41a c −=+, 则1141c c a c −=++,下面证明对于任意的两个正数00,x y ,都有00x y +≥2000x y =+−≥ ,00x y ∴+≥(当且仅当00x y =时,等号成立),当1c >−时,10c +>,则11111111c c c c +=++−≥−=++(当且仅当111c c +=+,即0c =时,等号成立), 即114c a−≥, 故当1c >−时,该函数的图像的顶点的纵坐标的最小值是1; (3)由423a c −+=−得:41c a =−−,则二次函数的解析式为241(0)y ax x a a =−−−≠, 由题意,分以下两种情况:①如图,当a<0时,则当=1x −时,0y >;当3x =时,0y <,即141093410a a a a +−−>−−−<,解得a<0;②如图,当0a >时,当=1x −时,14130y a a a =+−−=−<,∴当3x =时,93410y a a =−−−>,解得45a >, 综上,a 的取值范围为a<0或45a >. 【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.25. 如图(1),已知点G 在正方形ABCD 对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 :的(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG =6,GH ,则BC = .【答案】(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为AG BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合90BCD ∠= 可得四边形CEGF 是矩形,再由45ECG ∠= 即可得证;②由正方形性质知90CEG B ∠∠== 、45ECG ∠= ,据此可得CGCE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽BCE 即可得;(3)证AHG ∽CHA 得AGGH AH ACAH CH ==,设BC CD AD a ===,知AC =,由AG GHAC AH=得23AH a =、13DH a =、CH ,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形;。
2024年河北省邯郸十三中中考数学三模试卷+答案解析
2024年河北省邯郸十三中中考数学三模试卷一、选择题:本题共16小题,共38分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.面积为9的正方形,其边长等于()A.9的平方根B.9的算术平方根C.9的立方根D.的算术平方根2.将变形正确的是()A.B.C.D.3.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B 的南偏东的方向上,点A 表示另一处观测台,若,那么起火点M 在观测台A 的()A.南偏东B.南偏西C.北偏东D.北偏西4.如图,在正方形网格内,线段PQ 的两个端点都在格点上,网格内另有A ,B ,C ,D 四个格点,下面四个结论中,正确的是()A.连接AB ,则B.连接BC ,则C.连接BD ,则D.连接AD ,则5.在复习分式的化简运算时,老师把甲、乙两位同学的解答过程分别展示如下.则()甲:……①……②乙:……①……②……③……④……③……④A.甲、乙都错B.甲、乙都对C.甲对,乙错D.甲错,乙对6.某楼盘推出面积为的三室两厅的户型,以万元的均价对外销售,其总价用科学记数法表示为()A.元B.元C.元D.元7.如图所示的几何体由六块相同的小正方体搭成,若移走一块小正方体几何体的左视图发生了改变,则移走的小正方体是()A.①B.②C.③D.④8.3月12日植树节,某单位组织职工开展植树活动,如图是根据植树情况绘制的条形统计图,下面说法错误的是()A..参加本次植活动共有30人B..每人植树量的众数是4棵C..每人植树量的中位数是5棵D.每人植树量的平均数是5棵9.如图,在中,,根据图中圆规作图的痕迹,可用无刻度直尺画一条直线将的周长分成相等两部分的是()A. B.C. D.10.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强与汽缸内气体的体积成反比例,p关于V的函数图象如图所示.若压强由75kPa加压到100kPa,则气体体积压缩了()A.10mLB.15mLC.20mLD.25mL11.如图,在边长为2的正六边形ABCDEF中,M是BC的中点,连接EM交AD于N点,若,则表示实数a的点落在数轴上如图标有四段中的()A.段①B.段②C.段③D.段④12.已知点,,在同一个函数图象上,则这个函数图象可能是()A. B.C. D.13.延时课上,王林用四根长度都为4cm的木条制作了图1所示正方形,而后将正方形的BC边固定,平推成图2的图形,并测得,则在此变化过程中结论错误的是()A.AB长度不变,为4cmB.AC长度变小,减少C.BD长度变大,增大D.ABCD面积变小,减少14.如图,的面积为12,,现将沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是()A.3B.5C.6D.1015.如图,抛物线与x轴交于点和点,与y轴交于点下列说法:①;②抛物线的对称轴为直线;③当时,;④当时,y随x的增大而增大;⑤为任意实数,其中正确的个数是()A.1个B.2个C.3个D.4个16.如图,在边长为1的菱形ABCD中,,将沿射线BD的方向平移得到,分别连接,,,则的最小值为()A.1B.C.D.2二、填空题:本题共3小题,共10分。
2023年辽宁省抚顺市新抚区中考数学三模试卷(含解析)
2023年辽宁省抚顺市新抚区中考数学三模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在实数−2,−4,0,2中,最小的实数是( )A. −2B. −4C. 0D. 22. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B.C. D.3.如图,若AB//CD//EF,∠1=15°,∠2=60°,那么∠BCE=( )A. 120°B. 125°C. 130°D. 135°4.如图为一个台阶的示意图,它的主视图是( )A.B.C.D.5. 下列运算正确的是( )A. a2⋅a4=a6B. (a2)3=a5C. a6÷a2=a3D. 4a3−3a=a26. 一组数据−1,−3,2,4,0,2的众数是( )A. 0B. 1C. 2D. 37. 下列事件为必然事件的是( )A. 小王参加本次数学考试,成绩是500分B. 某射击运动员射靶一次,正中靶心C. 打开电视机,CCTV第一套节目正在播放新闻D. 口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球8. 某商场品牌手机经过5,6月份连续两次降价每部售价由5000元降到3600元.且第一次降价的百分率是第二次的2倍,设第二次降价的百分率为x,根据题意可列方程( )A. 5000(1−x)(1−2x)=3600B. 3600(1−x)(1−2x)=5000C. 5000(1−x)(1−x2)=3600 D. 3600(1+x)(1+2x)=50009.如图,在矩形纸片ABCD中,AB=10,AD=12,点E,F分别在AD,BC上,把纸片按如图所示的方式沿EF折叠,点A,B的对应点分别为A′,B′,连接AA′并延长交边CD于点G,当G为线段CD中点时,线段EF的长为( )A. 656B. 11 C. 12 D. 25210.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC−CD−DA运动,到达点A停止运动,另一动点N同时从点B 出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是( )A. B.C. D.第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 计算:16=______.12. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,将4600000000用科学记数法表示为______ .13. 不等式组{2x−3≤53(x+1)>2的解集是______ .14. 从长度分别为3,5,7,10的四条线段中任选三条作边,能构成三角形的概率为______ .15. 若关于x的一元二次方程2x2−x+m=0有两个相等的实数根,则m的值为.16.如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为______.17. 直线y=−x+4与x轴交于点C,与y轴交于D,与双曲线y=kx交于A,B两点,S四边形B C E F−S△A O F=1,则k=______ .218.如图,正方形ABCD的边长为3,E为BC边上的动点,连接EA,将EA绕点E顺时针旋转90°得到线段EF,连接FD,则FD+2FE的最小值是______ .三、解答题(本大题共8小题,共96.0分。
2024年浙江省杭州市中考数学三模练习试卷及答案
2024年浙江省杭州市中考数学三模练习试卷 (考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线), 请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10题,共30分.在每小题给出的选项中,只有一项是符合题目要求的. 1.如图所示的几何体的左视图是( )A .B .C .D .2. 杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A. 48.810×B. 48.0810×C. 58.810×D. 58.0810×3. 某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )A .75人B .90人C .108人D .150人4. 如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=°,则ABBC=( )A. 124. 如图,电路连接完好,且各元件工作正常.随机闭合开关1S ,2S ,3S 中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23D .135. 如图,一辆自行车竖直摆放在水平地面上,自行车右边是它的部分示意图,现测得88A ∠=°,42C ∠=°,60AB =,则点A 到BC 的距离为( )A .60sin50°B .60sin 50°C .60cos50°D .60tan50°7. 2024年元旦期间,小华和家人到杭州西湖景区游玩,湖边有大小两种游船,小华发现:2艘大船与3艘小船一次共可以满载游客60人,1艘大船与1艘小船一次共可以满载游客26人. 则1艘大船可以满载游客的人数为( )A .15B .16C .17D .198. 已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y x x m =−−+上的点,则( ) A .3y <2y <1y B .3y <1y <2y C .2y <3y <1y D .1y <3y <2y9. 如图,四边形ABCD 内接于O ,BC AD ∥,AC BD ⊥.若120AOD ∠=°,AD = 则CAO ∠的度数与BC 的长分别为( )A .10°,1B .10C .15°,1D .1510. 如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH ,连结DH 并延长交AB 于点K ,若DF 平分CDK ∠,则DHHK=( )A B .65C 1D 二、填空题:(本大题有6个小题,每小题4分,共24分)11. 有意义,则x 可取的一个数是__________.12. 分解因式:228x −=______. 13. 如图,用一个半径为8cm 的定滑轮拉动重物上升,滑轮旋转了150°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了 cm (结果保留π).14 .一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同). 若从中任意摸出一个球是红球的概率为25,则n =_________. 15. 如图,点A ,B 在反比例函数()120y x x=>的图像上,点C 在反比例函数()0ky x x=>的图像上, 连接AC ,BC ,且//AC x 轴,//BC y 轴,AC BC =.若点A 的横坐标为2,则k 的值为 .16.如图1,在矩形纸片ABCD 中,AB =12,AD =10,点E 是CD 的中点.将这张纸片依次折叠两次;如图2,第一次折叠纸片使点A 与点E 重合,折痕为MN , 连接ME 、NE ;如图3,第二次折叠纸片使点N 与点E 重合,点B 落在B ′处,折痕为HG , 连接HE ,则tan EHG ∠= .三、解答题:(本大题有7个小题,共66分)17. 先化简,再求值:21424a a ++−,其中2a =.小明解答过程如图,请指出其中错误步骤的序号,并写出正确的解答过程.原式()()222144424a a a a −+−+− ① 24a =−+ ②2a =+ ③当2a=时,原式4=.18 . 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”. 某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查, 根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部; (2)扇形统计图中“4部”所在扇形的圆心角为________度; (3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.19.如图,在四边形ABCD 中,AB CD ∥,在BD 上取两点E ,F ,使DF BE =,连接,AE CF .(1)若AE CF ,试说明ABE CDF △≌△;(2)在(1)的条件下,连接AF ,CE ,试判断AF 与CE 有怎样的数量关系,并说明理由.20. 如图,一次函数4y x =+的图象与y 轴交于点C , 与反比例函数ky x=的图象交于()1,B m −,(),1A n 两点.(1)求A 、B 两点的坐标和反比例函数的表达式; (2)连接OA 、OB ,求OAB 的面积;(3)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标. 21. 某数学兴趣小组要测量山坡上的联通信号发射塔CD 的高度,已知信号塔与斜坡AB 的坡顶B 在同一水平面上, 兴趣小组的同学在斜坡底A 处测得塔顶C 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AB 爬行了26米,在坡顶B 处又测得该塔塔顶C 的仰角为66°. (参考数据:sin 660.91°≈,cos660.41°≈,tan 66 2.25°≈)(1)求坡顶B 到地面AE 的距离;(2)求联通信号发射塔CD 的高度(结果精确到1米).22. 如图,抛物线2y ax bx c ++经过点(3,0)A −,(1,0)B ,(0,3)C −.(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设PAC △的面积为S ,求S 的最大值并求此时点P 的坐标. (3)设抛物线的顶点为D ,DE x ⊥轴于点E ,在y 轴上确定一点M ,使得ADM △是直角三角形,写出所有符合条件的点M 的坐标,并任选其中一个点的坐标,写出求解过程.23. 定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O , AD = BD ,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角. (3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径. ①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.24 . 如图1,在正方形纸片ABCD 中,点E 是AD 的中点.将ABE 沿BE 折叠,使点A 落在点F 处,连结DF .(1)求证:BEF DFE ∠=∠. (2)如图2,延长DF 交BC 于点G ,求DFDG的值. (3)如图3,将CDG 沿DG 折叠,此时点C 的对应点H 恰好落在BE 上. 若记BEF △和DGH 重叠部分的面积为1S ,正方形ABCD 的面积为2S ,求12S S 的值.2024年浙江省杭州市中考数学三模练习试卷解析(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2023年山东省青岛市市南区中考数学三模试卷 - 副本
2023年青岛市阶段性学业水平检测数学试题(考试时间:120分钟;满分:120分)说明:1.本试题分第I 卷和第II 卷两部分,共25题.第I 卷为选择题,共8小题,24分;第II 卷为填空题、作图题、解答题,共17小题,96分.2.所有题目均在答题卡...上作答,在试题上作答无效.第I 卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列各组数中互为相反数的是A .52(5)-B .5-和15C .5-3125-D .|5|--和(5)--2.某网店2023年儿童节这天的营业额为2210000元,将数2210000用科学记数法表示为A .62.2110⨯B .52.2110⨯C .322110⨯D .60.22110⨯3.下列四个中国银行标志中,既是中心对称图形,又是轴对称图形的是A B C D4.如图是由一个正方体,在底部截去了一个半圆柱的得到的几何体,则其是左视图是.A BC D5.如图,AB 为⊙O 的直径,点C 、D 、E 在⊙O 上,且 AD CD=,∠E =70°,则∠ABC 的度数为A .30°B .40°C .35°D .50°6.如图,四边形ABCD 的顶点坐标(3,6)A -、(1,4)B -、(1,3)C -、(5,3)D -.若四边形ABCD 绕点C 按顺时针方向旋转90︒,再向左平移2个单位,得到四边形A B C D '''',则点A 的对应点A '的坐标是A .(0,5)B .(4,3)C .(2,5)D .(4,5).二次函数2y ax bx c =++的图象如图所示,则一次函数2y bx b =-+-a b c x++在同一坐标系内的图象大致为A B C D9.计算二、填空题(本大题共6小题,每小题3分,共18分第II 卷(共96分)):21(2-=.E ,F 分别在边AD ,BC 上,且2AE =,恰好落在对角线AC 上,点B 的对应点为B ';分别在二次翻折,使点F 与点E 重合,则线段MN三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.15.已知:∠AOB 内一点C 及线段a ,求作:∠AOB 内的点P ,使P 点到射线OA ,OB 的距离相等且PC =a四、解答题(本大题共10小题,共74分)16.(本题每小题4分,共8分)(1)计算:22469x x x +-+(2)解不等式组:÷(2x x --31-1);(321)≤2213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩指针指17.(本小题满分6分)某商场为了吸引顾客,在“元旦”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:方案一:是直接获得20元的礼金卷;方案二:是得到一次摇奖的机会.规则如下:已知如图是由转盘和箭头组成的两个转盘A 、B ,这两个转盘除了颜色不同外,其它构造完全相同,摇奖者同时转动两个转盘,指针分别指向一个区域(指针落在分割线上时重新转动转盘),根据指针指向的区域颜色(如表)决定送礼金券的多少.向两红一红一蓝两蓝礼金券(元)18918(1)请你用列表法或画树状图法,求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分~89分为良好;60分~79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从九年级学生中随机抽取了10%的学生进行了体质测试,并将测试数据制成如下统计图. 根据以上信息,解答下列问题:(1)扇形统计图中,“优秀”等级所在扇形圆心角的度数是(2)求参加本次测试学生的平均成绩︒;19.(本小题满分6分)如图所示。
中考数学2022年上海杨浦区中考数学三模试题(含答案详解)
2022年上海杨浦区中考数学三模试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC 中,90ACB ︒∠=,1BC =,=3AC ,将ABC 以点C 为中心顺时针旋转90︒,得到DEC ,连接BE 、AD .下列说法错误的是( )A .6ABD S =B .3ADE S ∆=C .BE AD ⊥ D .135AED ︒∠= 2、已知三个数为2、4、8,若再添加一个数,使这四个数能组成一个比例,那么这个数可以是( ) A .2 B .4 C .6D .8 3、扇形的半径扩大为原来的2倍,圆心角缩小为原来的12,那么扇形的面积( ) A .不变 B .扩大为原来的2倍 C .缩小为原来的12 D .扩大为原来的4倍 ·线○封○密○外4、下列说法中错误的是( )A .如果整数a 是整数b 的倍数,那么b 是a 的因数B .一个合数至少有3个因数C .在正整数中,除2外所有的偶数都是合数D .在正整数中,除了素数都是合数5、下列分数中不能化成有限小数的是( )A .916B .38 C .518 D .7506、如果1a =,2b =,4c =,那么下列说法正确的是( )A .a ,b ,c 的第四比例项是6B .2a ,2b ,2c 的第四比例项是18C .c 是a ,b 的比例中项D .b 是a ,c 的比例中项7、如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-68、下列四组数不能组成比例的是( )A .1、2、3、4B .0.2、0.3、0.4、0.6C .23、34、43、112D .10、15、20、309、下面是嘉嘉和琪琪的对话,根据对话内容,则x 的值可能是( )嘉嘉:我能正确的化简分式22111x x x⎛⎫-÷ ⎪+-⎝⎭;琪琪:我给x 取一个值,使你化简分式后所得代数式的值大于0,你能猜出来我给x 取的值是几吗?A .-1B .1C .0D .2 10、比较23-与()32-的大小,正确的是( )A .大小不定B .()3232->-C .()3232-=-D .()3232-<- 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、一个圆形花坛,它的直径约为4米,那么它的面积约是________平方米. 2、已知ABC 中,,120,AB AC BAC FE =∠=︒垂直平分AB 交BC 于F ,垂足为E ,若2EF cm =,则BC =_______cm . 3、如果51183a +=,那么a =_______________ 4、一个两位数的十位上的数字为x ,个位上的数字为y ,则这个两位数表示为__________. 5、如图,在△ABC 中,AB =4,BC =6,∠B=60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,将一个直径AB 等于12厘米的半圆绕着点A 逆时针旋转60︒后,点B 落到点C 位置,半圆扫过部分的图形如阴影部分所示.求: ·线○封○密·○外(1)阴影部分的周长;(2)阴影部分的面积.2、三个容器各装相同重量的糖水.第一个容器中糖与水的重量比为2:3,第二个容器中糖与糖水的重量比为3:7,第三个容器中糖水与水的重量比为9:5,现把这三个容器中的糖水混合,求混合后的糖水的浓度.(保留一位小数)3、如图,抛物线y=﹣x2+bx+c与一条直线相交于A(﹣1,0),C (2,3)两点.(1)求抛物线和直线的解析式;(2)若动点P在抛物线上位于直线AC上方运动,求△APC的面积最大值.4、计算:531.9 124-+.5、计算:112(31)0.823÷--.-参考答案-一、单选题1、D【分析】根据旋转的性质可得CD=AC ,再根据三角形的面积公式即可对A 项进行判断;先求出AE 的长,进而可对B 项进行判断;如图,由旋转的性质和等腰直角三角形的性质可分别得出∠1、∠2、∠3、∠4的度数,进而可对C 项进行判断;由于∠CED ≠45°,即可对D 项进行判断. 【详解】 如图,延长BE 交AD 于点F , ∵ABC 以点C 为中心顺时针旋转90︒,得到DEC ,90ACB ︒∠=,1BC =,=3AC , ∴CD=AC =3,BC=EC =1,AE =2, ∴BD =1+3=4,∠1=∠2=45°,∠4=∠ADC =45°, ∴14362ABD S =⨯⨯=,12332ADE S ∆=⨯⨯=,∠3=∠2=45°, ∴∠AFE =90°,即BE AD ⊥, ∴A、B 、C 三项都是正确的; 而∠CED ≠45°,∴135AED ︒∠≠,∴D 选项是错误的. 故选D.【点睛】 本题考查了旋转的性质、等腰直角三角形的性质和三角形的面积等知识,难度不大,属于常考题型,熟练掌握旋转的性质和等腰直角三角形的性质是关键. 2、 B·线○封○密·○外【分析】比例的性质是:在比例里,两个内项的积等于两个外项的积.现在的三个数2、4、8中,2×8=16,所以16÷4=4,所以若再添加一个数,使这四个数能组成一个比例,那么这个数可以是4.据此选择即可.也可以通过计算比值的方法.【详解】现在的三个数2、4、8中,2×8=16,而16÷4=4,所以若再添加一个数能组成比例,此数可以是4.故选:B .【点睛】此题主要考查了有理数的除法,此题属于根据比例的意义或基本性质,判断四个数能否组成比例,一般运用比例的性质判断较为简便.3、B【分析】 扇形的面积=2360r π⨯圆心角度数,由此设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,由此利用扇形的面积公式即可计算得出它们的面积,从而进行比较选择.【详解】设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,根据扇形的面积公式可得: 原来扇形的面积为:2211360180ππ⨯⨯=; 变化后扇形面积为:211236090ππ⨯⨯=; 原来扇形面积:变化后扇形面积=11:18090ππ=1:2; 故选:B .【点睛】此题考查了扇形面积公式,解题的关键是熟知公式的灵活应用.4、D【分析】根据题意,逐项进行分析即可,进而得出结论.【详解】A.根据因数和倍数的意义可知:如果整数a是整数b的倍数,那么b是a的因数,故正确;B.根据合数的含义:除了1和它本身外,还能被其他整数整除,得出:一个合数至少有3个因数,故正确;C.因为正整数不包括0,所以除2外所有的偶数,都至少有1,2和本身3个约数,所以都是合数,说法正确;D.在正整数中,1既不是素数也不是合数,故在正整数中,除了素数就是合数,说法错误.故选:D.【点睛】本题主要考查了素数、合数、因数以及倍数,熟练掌握其概念是解题的关键.5、C【分析】把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】解:916分母中只含有质因数2,所以能化成有限小数;38分母中只含有质因数2,所以能化成有限小数;5 18分母中含有质因数3.所以不能化成有限小数;·线○封○密○外750分母中只含有质因数2和5,所以能化成有限小数; 故选:C .【点睛】本此题主要考查什么样的分数可以化成有限小数,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.6、D【分析】根据第四比例项和比例中项的性质作答即可.【详解】解:∵1a =,2b =,4c =,设a ,b ,c 的第四比例项为x ,则有:a c b x =,解得:2481bc x a ,故A 选项错误;设2a ,2b ,2c 的第四比例项为y ,则有:222a c by ,解得:2224161bc y a ,故B 选项错误;如果c 是a ,b 的比例中项,则有2c ab =,解得:122cab , 故C 选项错误;如果b 是a ,c 的比例中项,则有2b ac =,解得:142bac , 故D 选项正确;故选:D .【点睛】本题主要考查了第四比例项和比例中项的性质,熟悉相关性质是解题的关键.7、B【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p 、q 的值. 【详解】 解:∵(x-2)(x+3)=x 2+x-6, 又∵(x-2)(x+3)=x 2+px+q , ∴x 2+px+q=x 2+x-6, 8、A 【分析】 根据比例的定义去判断下列选项能否组成比例. 【详解】 A 选项不能; B 选项可以,0.2:0.30.4:0.6=; C 选项可以,2341::13432=; D 选项可以,10:1520:30=. 故选:A . 【点睛】 本题考查比例的定义,解题的关键是利用比例的定义去判断. 9、D 【分析】 先化简分式,然后列出不等式,解不等式即可. ·线○封○密·○外【详解】原式= 211112x x x x x +-⎛⎫-⋅ ⎪++⎝⎭ =1(1)(1)12x x x --+-=⋅+ =12x -, ∵102x ->, ∴x>1,故选D .【点睛】本题考查了分式化简与一元一次不等式,熟练掌握分式化简是解题的关键.分式加减的本质是通分,乘除的本质是约分.10、D【分析】根据有理数的大小比较及有理数的乘方直接排除选项即可.【详解】 解:()32=8,329---=-∴89-->即()3223-->. 故选D .【点睛】本题主要考查有理数的乘方及有理数的大小比较,熟练掌握负数的大小比较及乘方运算是解题的关键.二、填空题1、12.56【分析】根据圆的面积=πr 2即可求出结论.【详解】 解:3.14×(4÷2)2=3.14×4=12.56(平方米) 故答案为:12.56. 【点睛】 此题考查的是求圆的面积,掌握圆的面积公式是解决此题的关键. 2、12 【分析】 首先连接AF ,由EF 垂直平分AB ,可得AF =BF ,由△ABC 中,AB =AC ,∠BAC =120°,可求得∠B =∠C =∠BAF =30°,继而求得AF 与BF 的长,则可求得CF 的长,继而求得答案. 【详解】 如图,连接AF , △ABC 中,AB = AC ,∠BAC = 120°,∴∠B = ∠C = 30°, EF 垂直平分AB , ∴AF =BF , ∴∠BAF =∠B =30°,·线○封○密○外∴AF =BF = 2EF = 2 × 2 = 4cm ,∠CAF = ∠BAC -∠BAF = 90°,∴CF = 2AF = 8cm ,∴BC = BF + CF = 12 cm故答案为:12.【点睛】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质,此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、1【分析】 由51183a +=可直接进行求解即可. 【详解】 解:51183a +=, ∴()3518a ⨯+=,解得1a =;故答案为1.【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.4、10x y +##【分析】十位上的数字表示几个十,十位上的数字是x ,就是x 个十,即10x ,个位上的数字表示几个一,个位上的数字是y ,把十位和个位加起来就是这个两位数.【详解】解:十位上的数字是x ,就是x 个十,即x ×10=10x ,个位上的数字是y ,这两位数是10x y +.故答案为:10x y +.【点睛】本题考查列代数式,属于基础题型.5、12 【分析】 根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长. 【详解】 ABC 平移两个单位得到的A B C ''', 2BB ∴'=,AB A B ='', 4AB =,6BC =, 4A B AB ∴''==,624B C BC BB '=-'=-=, 4A B B C ∴''='=, 又60B ∠=︒, 60A B C ∴∠''=︒, A B C ∴''是等边三角形, A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是·线○封○密○外对应点.连接各组对应点的线段平行且相等.三、解答题1、(1)50.24厘米;(2)75.36平方厘米【分析】(1)根据2C C C =+半圆弧周长弧长,将数值代入计算即可;(2)根据S S S S S =+-=扇阴影半圆半圆形扇形,将数值代入计算即可.【详解】解:(1)160π12222π616π50.242180C C C ⨯=+=⨯⨯⨯+==弧长半圆弧周长(厘米) (2)260π1224π75.36360S S S S S ⨯⨯=+-====阴影半圆半圆扇形扇形(平方厘米) 【点睛】 本题考查了扇形的周长和面积,熟记公式是解题的关键.2、42.4%【分析】三杯相同重量的糖水,把它看作单位“1”, 第一个容器中糖与水的重量比是2:3,那么糖占的分率是22+3,水占的分率是32+3;第二个容器中糖与糖水的重量比为3:7,那么糖占的分率是37,水占的分率是47;第三个容器中糖水与水的重量比为9:5,那么糖占的分率是49,水占的分率是59;则将三个容器中的糖水混合,糖与糖水的重量之比是(22+3+37+49):(1+1+1),然后化简即可. 【详解】解: 234(++):(111)579++ =126135140(++):(111)315315315++=40113153⨯ =401945 42.4%≈ 【点睛】 此题考查比的意义,关键是根据糖和水的关系,分别表示出这两个杯子里糖和水的分率,再利用比的性质化简比. 3、(1)y =﹣x 2+2x+3;y =x+1;(2)△APC 的面积最大值为278. 【分析】 (1)利用待定系数法求抛物线和直线解析式; (2)设P 点坐标,过点P 作PQ⊥x 轴于点H ,交AC 于点Q ,用水平宽乘以铅垂高除以2表示APC △的面积,然后求最值. 【详解】 解:(1)由抛物线y =﹣x 2+bx+c 过点A (﹣1,0),C (2,3), 得:10423b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的函数解析式为y =﹣x 2+2x+3, 设直线AC 的函数解析式为y =mx+n , 把A (﹣1,0),C (2,3)代入, 得023m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩, ∴直线AC 的函数解析式为y =x+1; (2)如图,过点P 作PQ⊥x 轴于点H ,交AC 于点Q , ·线○封○密○外设P(x,﹣x2+2x+3),则Q(x,x+1),∴PQ=﹣x2+2x+3﹣(x+1)=﹣x2+x+2,∴S△APC=S△APQ+S△CPQ=12PQ×3=32(﹣x2+x+2)=﹣32(x﹣12)2+278,∵﹣32<0,∴当x=12时,△APC的面积最大,最大值为278.【点睛】本题考查二次函数综合题,涉及解析式的求解,三角形面积的表示方法,解题的关键是掌握这些特定的解题方法进行求解.4、17 1 30【分析】先把第二项和第三项交换位置,再用结合律先算后面两项的差,最后算加法. 【详解】解:53 1.9124-+=5 1.90.7512+- =()5 1.90.7512+- =5 1.1512+ =5311220+ =25916060+ =34160 =17130 【点睛】 完成本题要注意分析式中数据,运用合适的简便方法计算. 5、0.7 【分析】 先计算括号内的,再把除法运算转化成乘法运算,最后计算加减即可. 【详解】 112(31)0.823÷-- 50.8235=÷- 50.8253=⨯- 1.50.8=- 0.7=. ·线○封○密·○外【点睛】本题考查了分数的四则混合运算,熟练掌握分数的运算法则是解题的关键.。
2023年山东省枣庄市滕州市中考三模数学试题(含答案)
2023年枣庄市初中学业水平考试模拟试题(三)数学注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案,填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试题和答题卡一并交回.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列各数中,是负数的是( )A.B .C .D.2.我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .B .C .D .3.下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是( )A .山东博物馆B .西藏博物馆C .温州博物馆D .湖北博物馆4.已知经过闭合电路的电流(单位:)与电路的电阻(单位:)是反比例函数关系.根据下表判断和的大小关系为()5...a .........b (120)30405060708090100A .a >bB .a ≥bC .a <bD .a ≤b5.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()2-2(0(1)-23-π355113π7310-⨯60.310-⨯6310-⨯7310⨯I A R Ωa b /I A /R ΩA.5分B .4分C .3分D .45%6.如图、在中,,点D 在AB 的延长线上,连接CD ,若,,则的值为( )A .1B .2C .D .7.如图,为正方形对角线的中点,为等边三角形.若,则的长度为()A B .C .D8.某款“不倒翁”(图1)的主视图是图分别与所在圆相切于点.若该圆半径是,,则的长是( )ABC △90ACB ∠=︒2AB BD =2tan 3BCD ∠=AC BC1232O ABCD AC ACE △2AB =OE 2,,PA PB AMB ,A B 9cm 40P ∠=︒ AMBA .B.C .D .9.如图,在平面直角坐标系中,边长为2的正六边形的中心与原点重合,轴,交轴于点.将绕点顺时针旋转,每次旋转,则第2022次旋转结束时,点的坐标为()A .B .C .D .10.如图,抛物线的对称轴是直线,并与轴交于两点,若,则下列结论中:①;②;③;④若为任意实数,则,正确的个数是()A .1B .2C .3D.4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共6小题,满分18分,请将答案填在答题卡的相应位11cmπ11cm 2π7cmπ7cm2πABCDEF O AB x ∥y P OAP △O 90︒A )1-(1,-()1-(()20yax bx c a =++≠2x =-x ,A B 5OA OB =0abc >22()0a c b +-=940a c +<m 224am bm b a ++≥置.11.分解因式:______.12.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是______.13.如图,在中,,通过尺规作图得到的直线分别交于,连接.若,则______.14.如图,是的切线,为切点,与交于点,以点为圆心、以的长为半径作,分别交于点.若,则图中阴影部分的面积为______.15.在水光潋滟的墨子湖畔,苳庄市首条湖底隧道建设格外受人关注.如图,沿方向修建隧道箱体,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则两点的距离是______m .16.如图,在中,为的中点,点在上,且,将绕点在平面内旋转,点的对应点为点,连接.当时,的长为______.39x y xy -=Rt ABC △90ACB ∠=︒MN ,AB AC ,D E CD 113CE AE ==CD =AB O B OA O C A OCEF,AB AC ,E F 2,4OC AB ==AB AB D 150ABC ∠=︒1600m BC =105BCD ∠=︒,C D Rt ABC △90,ACB AC BC ∠==︒=D AB P AC 1CP =CP C P Q ,AQ DQ 90ADQ ∠=︒AQ三、解答题:本大题共8小题,满分72分.解答时,要写出必要的文字说明、证明过程或演算步骤.17.(本题满分6分)已知方程组的解满足,求的取值范围.18.(本题满分6分)先化简,再求代数式的值,其中.19.(本题满分10分)在“双减”背景下,某区教育部门想了解该区A ,B 两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A 学校50名九年级学生中,课后书面作业时长在组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80.【整理数据】不完整的两所学校的频数分布表如下,不完整的A 学校频数分布直方图如图所示:组别A学校515x84B 学校71012174【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A 学校7475y 127.36B 学校748573144.1231x y x y +=⎧⎨-=⎩①②235kx y -<k 21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭2cos451x =︒+70.580.5x ≤<50.560.5x ≤<60.570.5x ≤<70.580.5x ≤<80.590.5x ≤<90.5100.5x ≤<根据以上信息,回答下列问题:(1)本次调查是______调查(选填“抽样”或“全面”);(2)统计表中,______,______;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是______学校(选填“A ”或“B ”);(5)按规定,九年级学生每天课后书面作业时长不得过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有______人.20.(本题满分8分)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的学院路地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?21.(本题满分10分)如图,中,AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.(1)求证:;(2)设,当k 为何值时,四边形DEBF 是矩形?请说明理由.22.(本题满分10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为∠BAD ,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.x =y =ABCD BE DF =ACk BD=(1)求证:.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得.已知铁环⊙O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.23.(本题满分10分)已知反比例函数和一次函数,其中一次函数图象过,两点.(1)求反比例函数的关系式;(2)如图,函数,的图象分别与函数图象交于两点,在轴上是否存在点,使得周长最小?若存在,求出周长的最小值;若不存在,请说明理由.24.(本题满分12分)在平面直角坐标系中,为坐标原点,抛物线与轴交于点.(1)求抛物线的解析式.(2)如图,将抛物线向左平移1个单位长度,记平移后的抛物线顶点为,平移后的抛物线与轴交于两点(点在点的右侧),与轴交于点.判断以90BOC BAD ∠+∠=︒3cos 5BAD ∠=ky x=1y x =-()3,a b 31,3k a b ⎛⎫++ ⎪⎝⎭13y x =3y x =(0)ky x x =>,A B y P ABP △O 2y x c =-+y ()0,4P 2y x c =-+Q x ,A B A B y C三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线与抛物线交于两点(点在点的右侧),当轴上存在一点,能使以三点为顶点的三角形与相似时,请直接写出点的坐标.2023年枣庄市初中学业水平考试模拟试题(三)数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共10小题,每小题3分,共30分)题号12345678910答案DACABBDABC二、填空题:(本大题共6小题,每小题3分,共18分)11. 12.1314. 15.16三、解答题:(本大题共8小题,共72分)17.解:①+②得:,∴,①-②得:,∴,∴方程组的解为,代入得:,∴.18.原式,,B C Q BC 2y x c =-+,M N N M x T ,,B N T ABC △T ()()33xy x x +-124π-24x =2x =22y =1y =21x y =⎧⎨=⎩235kx y -<435k -<2k <21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭当时,原式19.解:(1)抽样.(2)18,74.5.(3)补全频数分布直方图:(4)A .(5)920.解:(1)设原计划每天改造管网米,则实际施工时每天改造管网米,由题意得:,解得:,经检验,是原方程的解,且符合题意.此时,(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加米,由题意得:,解得:.答:以后每天改造管网至少还要增加36米.21.(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴,,∵E ,F 分别为AO ,OC 的中点,∴,,2131(1)2x x x x --+-=⋅-2112x =⋅-11x =-2cos451211x =+=+=+︒==x ()120%x +()3600360010120%x x-=+60x =60x =()60120%72⨯+=m ()()40207236007220m -+≥-⨯36m ≥BO OD =AO OC =12EO OA =12OF OC =∴,∵,,∴四边形BFDE 是平行四边形,∴;(2)解:当时,四边形DEBF 是矩形;理由如下:当时,四边形DEBF 是矩形,∴当时,四边形DEBF 是矩形,∵,∴,∴当时,四边形DEBF 是矩形.22.(1)证明:如图1,过点B 作,分别交AD 于点E ,交OC 于点F .∵CD 与⊙O 相切于点C ,∴.∵AD ⊥CD ,∴.∵,∴,∴,,∵AB 为⊙O 的切线,∴.∴,∴,∴;(2)解:如图1,在中,∵,,∴.由(1)知,,∴,在中,∵,∴,∴.∵,∴.∵,∴四边形CDEF 为矩形,∴,∴.23.解:(1)把代人中可得:EO FO =BO OD =EO FO =BE DF =2k =BD EF =OD OE =AE OE =2AC BD =2k =EF CD ∥90OCD ∠=︒90ADC ∠=︒EF CD ∥90OFB AEB ∠=∠=︒90BOC OBF∠+∠=︒90ABE BAD ∠+∠=︒90OBA ∠=︒90OBF ABE ∠+∠=︒OBF BAD ∠=∠90BOC BAD ∠+∠=︒Rt ABE △75AB =3cos 5BAD ∠=45AE =OBFBAD ∠=∠3cos 5OBF ∠=Rt OBF △25OB =15BF =20OF =25OC =5CF=90OCD ADC CFE ∠=∠=∠=︒5DE CF ==50cm AD AE ED =+=()3,,31,3k a b a b ⎛⎫++⎪⎝⎭1y x =-,解得:,∴反比例函数的关系式为:;(2)存在.作点关于轴的对称点,连接交轴于点,连接,此时的最小,即周长最小,由题意得:,解得:或,∴,由题意得:,解得:或,∴,∴,∵点与点关于轴对称,∴,∴∴的最小值为∴周长最小值周长的最小值为.24.解:(1)∵抛物线与轴交于点,∴,∴抛物线的解析式为;(2)是直角三角形.理由如下:将抛物线向左平移1个单位长度,得新抛物线,∴平移后的抛物线顶点为,令,得,∴,令,得,解得:,∴,如图1,连接,∵,∴轴,,313113b a k b a =-⎧⎪⎨+=+-⎪⎩3k =3y x=B y B 'AB 'y P BP AP BP +ABP △33y x y x⎧=⎪⎨⎪=⎩13x y =⎧⎨=⎩13x y =-⎧⎨=-⎩()1,3B 313y x y x ⎧=⎪⎪⎨⎪=⎪⎩31x y =⎧⎨=⎩31x y =-⎧⎨=-⎩()3,1A AB =B B 'y ()1,3,B BP B P '-='AB '=AP BP AP B P AB '='+=+=AP BP +ABP △=+ABP △+2y x c =-+y ()0,4P 4c =24y x =-+BCQ △24y x =-+2(1)4y x =-++()1,4Q -0x =143y =-+=()0,3C 0y =2(1)40x -++=121,3x x ==-()()3,0,1,0B A -,,BQ CQ PQ ()()0,4,1,4P Q -PQ y ⊥1PQ =∵,∴,∴是等腰直角三角形,∴,∵,∴是等腰直角三角形,∴,∴,∴是直角三角形.(3)点的坐标或.431CP =-=,90PQ CP CPQ =∠=︒CPQ △45PCQ ∠=︒3,90OB OC BOC ==∠=︒BOC △45BCO ∠=︒180454590BCQ ︒︒=-︒∠-=︒BCQ △T T ⎫⎪⎭⎫⎪⎭。
2024年浙江省温州二中中考数学三模试卷(含答案)
2024年浙江省温州二中中考数学三模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图标中是轴对称图形的是( )A. B. C. D.2.温州市2023年末常住人口总数约为9761000.数字9761000用科学记数法可表示为( )A. 976.1×104B. 97.61×105C. 9.761×106D. 0.9761×1073.如图是由3个大小相同的小正方体摆成的几何体,它的主视图是( )A. B. C. D.4.下列运算正确的是( ))2=4 B. (−2)2=−4 C. 22+22=24 D. 22=4A. (125.为让学生加强体育锻炼,学校购买了甲、乙、丙、丁四种体育器材,数量统计图如图所示,已知丁器材有40件,则购买的器材一共有( )件.A. 80B. 120C. 200D. 3006.如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB长为半径画圆,则图中阴影部分的面积是( )πA. 13πB. 23πC. 23πD. 2237.经两次降息调整,某银行人民币存款一年期的年利率,从2022年6月的0.021降到2024年6月的0.018.设平均每次降息百分率为x,可列出方程为( )A. 0.021(1−x)2=0.018B. 0.021(1+x)2=0.018C. 0.021(1−2x)=0.018D. 0.021(1+2x)=0.0188.如图,将矩形纸片ABCD(AB<BC)沿对角线BD折叠,点C落在点E处,BE与AD相交于点F,若∠EDF=44°,则∠DBE的度数是( )A. 22°B. 22.5°C. 23°D. 23.5°9.如图,在Rt△ABC中,∠C=90°,BC=5,分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于点M,N,作直线MN交AB于点D,交AC于点E,连结BE;以点D为圆心,AD长为半径作弧,交直线MN于点F,连结AF,BF.若AF=1322,则CE的长是( )A. 5312B. 11924C. 6512D. 1692410.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如表所示,其中m+n=3,n+p=6,则n的值为( )x…123…y…m n p…A. 52B. 94C. 2D. 1二、填空题:本题共6小题,每小题3分,共18分。
2023年山东省潍坊市临朐县等八县市中考三模数学试题(含答案)
2023年初中学业水平考试复习自测(三)数学试题2023.6注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,40分;第Ⅰ卷为非选择题,110分;共150分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题,40分)一、单项选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,多选、不选、错选均记0分.)1.下列计算结果正确的是( )A. B. C. D.2.星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒(1纳秒秒)的授时精度,那么20纳秒用科学记数法表示为()A.秒B.秒C.秒D.秒3.如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变4.把一块等腰直角三角板和一把直尺按如图的位置放置,若,则的度数为()A.15°B.20°C.25°D.30°752a a -=933a a a÷=532a a a ÷=()32639a a =9110-=⨯8210-⨯9210-⨯92010-⨯10210-⨯125∠=︒2∠5.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流与电阻成反比例函数的图象,该图象经过点.根据图象可知,下列说法正确的是()A.当时,B.与的函数关系式是C.当时,D.当时,的取值范围是6.某函数的图象如图所示,当时,在该函数图象上可找到个不同的点,,…,使得,则的取值不可能为( )A.3B.4 C.5 D.6二、多项选择题(本题共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.实数在数轴上的对应点的位置如图所示,若实数满足,则的值可以是()A. B. C.0 D.18.某校组织学生进行健康体检,小亮将领航班所有学生测量体温的结果制成如下统计图表.下列说法正确的是()()A I ()R Ω()880,0.25P 0.25R <880I <I R ()2000I R R=>1000R >0.22I >8801000R <<I 0.220.25I <<0x a ≤≤n ()11,x y ()22,x y (),n n x y 1212n ny y y x x x ==⋅⋅⋅=n a b a b a -<<b 2-1-体温℃36.136.236.336.436.536.6人数/人488102A.这个班有40名学生B.C.这些体温的众数是8D.这些体温的中位数是36.359.如图,抛物线的对称轴是直线,则下列结论正确的是()A. B. C. D.10.如图,在正方形纸片中,对角线,交于点,折叠正方形纸片,使落在上,点恰好与上的点重合,展开后,折痕分别交,点,.连接,下列结论正确的是()A. B.C. D.四边形是菱形第Ⅱ卷(非选择题,110分)三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分.)11.分解因式:______.m8m =()20y ax bx c a =++≠1x =0abc >0a b c ++>32b c<b a c>+ABCD AC BD O ABCD AD BD A BD F DE AB AC E G GF 112.5AGD ︒∠=tan 1AED ∠=+2AGD OGDS S =△△AEFG 3222a a b ab -+=12.随着生活节奏加快,居民越来越愿意使用在线上买菜.某买菜今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是______.13.如图,点,,,为一个正多边形的顶点,为正多边形的中心,若,则这个正多边形的边数为______.14.如图,在中,,,延长至,使得,点为动点,且,连接,则的最小值为______.四、解答题(本题共8小题,共94分.解答应写出文字说明、证明过程或演算步骤)15.(本题满分10分)(1)计算:;(2)解不等式组:16.(本题满分8分)如图,小明练习册上的一个等腰三角形被墨迹污染了,只有它的底边和还保留着.(1)小明要在练习册上画出原来的等腰,用到的基本作图可以是______(填写正确答案的序号);①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的垂直平分线;⑤过一点作已知直线的垂线;(2)为边上的中线,若的一个外角为110°,求的度数.17.(本题满分12分)APP APP A B C D O 18ADB ∠=︒ABC △10AB AC ==6BC =AB D 12BD AB =P PB PC =PD PD 22124a a a ⎛⎫-÷ ⎪+-⎝⎭()21234131x x x x +⎧+≤⎪⎨⎪-<+⎩AB B ∠ABC △CD ABC △AB B ∠BCD ∠为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数,并补全条形统计图;(2)若本市人口300万人,估算该市对市创卫工作表示满意的人数和非常满意的人数;(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自同区的概率.18.(本题满分12分)如图,光从空气斜射入水中,入射光线射到水池的水面点后折射光线射到池底点处,入射角,折射角;入射光线射到水池的水面点后折射光线射到池底点处,入射角,折射角.,、为法线.入射光线、和折射光线、及法线、都在同一平面内,点到直线的距离为6米.(1)求的长;(结果保留根号)(2)如果米,求水深.,,,,,,)19.(本题满分12分)在初中阶段的函数学习中,我们经历了“确定函数的表达式,利用函数图象研究其性质,运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在中,如表是与的几组对应值.…0123……73113…AB B BD D 30ABM ∠=︒22DBN ∠=︒AC C CE E 60ACM ∠='︒40.5ECN ∠='︒DE BC ∥MN M N ''AB AC BD CE MN M N ''A BC BC 8.72DE =BN 1.41≈ 1.73≈sin220.37︒≈cos220.93︒≈tan220.4︒≈sin40.50.65︒≈cos40.50.76︒≈tan40.50.85︒≈1y a x b =-+y x x3-2-1-ymn(1)______,______;(2)在平面直角坐标系中,画出函数的图象;(3)根据图象,判断下列说法是否正确,正确的打“√”,错误的打“×”:①该函数图象是轴对称图形,对称轴为直线.()②当时,随的增大而增大,当时,随的增大而减小.( )③该函数在自变量的取值范围内有最小值,当时有最小值.( )(4)若关于,的方程组有且只有一个公共解,则的取值范围是______.20.(本题满分12分)某公司对其办公楼大厅一块米的正方形墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修;中心区域是正方形,用材料乙装修).两种材料的成本如下:材料甲乙单价(元/米)800600设矩形的较短边的长为米,装修材料的总费用为元.(1)求与之间的关系式;(2)当中心区域的边长不小于2米时,计划用28000元购买甲乙两种装修材料够用吗?请说明理由.21.(本题满分14分)从一个已知图形外一点引两条射线,分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,是点对线段的视角.m =n =1x =1x <y x 1x ≥y x 1x =1-x y 21y x ty a x b=+⎧⎨=-+⎩t 66⨯ABCD EFGH 2AM x y y x EF APB ∠P AB【应用】(1)如图②,在直角坐标系中,已知点,,,求原点对的视角的度数;(2)如图③,在直角坐标系中,以坐标原点为圆心,半径为2画圆;以坐标原点为圆心,半径为4画圆.证明:圆上任意一点对圆的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑轮廓呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的平面直角坐标系,此时天桥所在的直线的表达式为,正方形建筑的边长为4,请直接写出直线上满足条件的点的坐标.22.(本题满分14分)综合与实践:如图1,将一个等腰直角三角尺的顶点放置在直线上,,,过点作于点,过点作于点.【观察发现】(1)如图1,当,两点均在直线的上方时,①猜测线段,与的等量关系,并说明理由;②直接写出线段,与的等量关系;【操作证明】(2)将等腰直角三角尺绕着点逆时针旋转至图2位置时,线段,与又有怎样的数量关系,请写出你的猜想,并写出证明过程;(A (2,B (C O ABC △O 1O O 2O 2O P 1O 5x =-ABCD ABC C l 90ABC ∠=︒AB BC =A AD l ⊥D B BE l ⊥E A B l AD CE BE DC AD BE ABC C DC AD BE【推广探索】(3)将等腰直角三角尺绕着点继续旋转至图3位置时,与交于点,若,,请直接写出的长度.2023年初中学业水平考试复习自测(三)数学试题参考答案一、选择题(每小题4分,共24分)1-6 CABBDD二、多选题(每小题满分4分,部分得分为2分,共16分)7.BCD8.ABD9.AC10.ABD三、填空题(每小题4分,共16分)11. 12.30% 13.1014.四、解答题15.(本题满分10分)解:(1)原式……2分……3分;……4分ABC C AD BC H 3CD =9AD =DH ()2a ab -92()()22222a a a a a +-+-=⋅+()()222a a a a a+-=⋅+2a =-(2),由①得,,……2分由②得,,……4分故不等式的解集为.……6分16.(本题满分8分)解:(1)②④……4分(选对一个得2分,有错选得0分)(2)∵的一个外角为110°,∴,……5分∵,∴,∴,……6分∵,,∴.……8分17.(本题满分12分)解:(1)∵非常满意的有20人,占40%,∴此调查中接受调查的人数:(人),……2分∴此次调查中结果为满意的人数为:(人),补全统计图如下:……4分(2)该市对市创卫工作表示满意的人数(万),……6分该市对市创卫工作表示非常满意的人数(万),答:估算该市对市创卫工作表示满意和非常满意的人数分别为108万,120万;……8分(3)画树状图得: (10)分()21234131x x x x +⎧+≤⎪⎨⎪-<+⎩①②1x ≤4x <1x ≤B ∠70B ∠=︒CA CB =70A B ︒∠=∠=18027040ACB ∠=︒-⨯︒=︒CA CB =CD AB ⊥1202BCD ACB ∠=∠=︒2040%50÷=50482018---=1830010850=⨯=2030012050=⨯=∵共有12种等可能的结果,选择的市民均来自同区的有4种情况,∴选择的市民均来自甲区的概率为:.……12分18.(本题满分12分)解:(1)作,交的延长线于点,则,……1分∴,,∵,,∴,,……3分∵米,∴(米),(米),……5分∴即的长为6分(2)设水深为米,即米,……7分由题意可知:,.米,……8分∴(米),(米),……10分∵,∴,……11分解得,即水深约为4米.……12分19.(本题满分12分)解:(1)∵函数的图象经过点,,∴,解得,∴,41123=AF BC ⊥CB F AF MN M N ''∥∥ABM BAF ∠=∠ACM CAF ∠∠'=30ABM ∠=︒60ACM ∠='︒30BAF ∠=︒60CAF ∠=︒6AF =tan306BF AF =⋅︒==tan606CF AF =⋅︒==BC CF BF =-=-=BC x BN CN x ='=22DBN ∠=︒40.5ECN ∠='︒8.72DE =tan220.4DN BN x =⋅︒≈tan40.50.85N E CN x ⋅︒≈'='DN DE BC N E +=+'0.48.720.85x x +=4x ≈1y a x b =-+()1,3-()0,1231a b a b +=⎧⎨+=⎩21a b =⎧⎨=-⎩211y x =--∴当时,,当时,.故答案为:5,;……4分(2)函数的图象如图所示:……6分(3)根据图象可知,①该函数图象是轴对称图形,对称轴为直线.正确;②当时,随的增大而增大,当时,随的增大而减小.错误;③该函数在自变量的取值范围内有最小值,当时有最小值.正确;故答案为:√;×;√;……9分(4)把代入得,,∴当时,直线与函数的图象只有一个交点,∴方程组有且只有一个公共解,则的取值范围是.故答案为:.……12分20.(本题满分12分)解:(1)根据题意,得,,∵四周阴影部分是八个全等的矩形,∴.……2分∴.答:关于的函数解析式为.……6分(2)∵不小于2,∴,∴.……7分∵2x =-22115m =⨯---=1x =21111n =⨯--=-1-211y x =--1x =1x <y x 1x ≥y x 1x =1-()1,1-2y x t =+3t =-3t >-2y x t =+211y x =--21y x t y a x b =+⎧⎨=-+⎩t 3t >-3t >-6AD AB ==AM MN x ==64EF x =-()()280086260064y x x x =⨯-+-23200960021600x x =-++y x 23200960021600y x x =-++EF 642x -≥01x <≤23200960021600y x x =-++,……8分当时,即,解得(舍),.……10分∵,图象开口向下,对称轴是直线∴当时,随的增大而增大,且时,……11分即:时,预备材料的购买资金不超过28000.答:预备材料的购买资金28000元够用.……12分21.(本题满分14分)解:(1)延长交轴于点,过点作轴于点,∵点,,,∴轴,,,∵轴,∴,,……2分∴,∴,,……4分∴,即原点对的视角为30° (5)分(2)证明:如图,过圆上任一点作圆的两条切线交圆于,,连接,,,则有,,……6分233200288002x ⎛⎫=--+ ⎪⎝⎭28000y =23320028800280002x ⎛⎫--+= ⎪⎝⎭12x =21x =32000-<32x =01x <≤y x 1x =28000y =01x <≤BA x D C CE x ⊥E (A (2,B (C AB y ∥CE =3OE =AB x ⊥BD =2OD =tan BD BOD OD ∠==tan CE COE OE ∠==60BOD ∠=︒30COE ∠=︒30BOC BOD COE ∠︒=∠-∠=O ABC △2O P 1O 1O A B OA OB OP OA PA ⊥OB PB ⊥在中,,,∴,,……8分同理可求得:,∴,……9分即圆上任意一点对圆的视角是60°,∴圆上任意一点对圆的视角是定值.……10分(3)①当摄影者在与连接而成的线段上时,视角是,此时以为圆心,半径画圆,交直线于,,此时∵,,不符合视角的定义,,舍去.②当摄影者在直线上,且位于上方时,视角是,此时以为圆心,半径画圆,交直线于,;此时不符合题意;过点作交延长线于点,则,,Rt OAP △2OA =4OP =1sin 2OA OPA OP ∠==30OPA ∠=︒30OPB ∠=︒60APB ∠=︒2O P 1O 2O P 1O ()5,2--()5,2-APD ∠()4,0E -EA 5x =-3P 6P 361452DP A DP A AED ∠=∠=∠=︒3345DP B DP A ∠>∠=︒6645AP C DP C ∠>∠=︒3P 6P 5x =-()5,2-BPD ∠()2,2A -AB 5x =-1P 5P 5P 1P 1PM AD ⊥DA M 14AP =1523PM =-=∴,∴③当摄影者在直线上,且位于下方时,视角是,此时以为圆心,半径画圆,交直线于,,此时不符合题意;同理得:;综上所述,直线上满足条件的位置坐标或.……14分22.(本题满分14分)解:(1)①……1分理由如下:如答图1,过点作,交的延长线于点,∵, ∴又∵,∴.∴四边形 ∴……2分又∵,∴.即在和中,,,∴……4分∴,.又∵四边形为矩形,∴四边形为正方形……5分∴∴……6分②……7分(2)……8分如答图2,过点作,交延长线于点,AM ==(15,2P -+5x =-()5,2--APC ∠()2,2D --DC 2P 4P 4P (25,2P ---(15,2P -+(25,2P --AD CE BE +=B BF AD ⊥DA F BE l ⊥BF AD ⊥90BEC F ∠=∠=︒AD l ⊥90FDE ∠=︒DEBF 90FBE ∠=︒90ABC ∠=︒ABC ABE FBE ABE ∠-∠=∠-∠CBE ABE∠=∠CBE △ABF △90CEB AFB ∠=∠=︒CBE ABF ∠=∠CB AB=()AAS CBE ABF ≌△△CE AF =BE BF =DEBF DEBF BE DE FD FB===AD CE AD AF FD BE +=+==2DC AD BE +=2CD AD BE -=B BG AD ⊥AD G∵,∴又∵,∴.∴四边形为矩形 ∴……9分又∵,∴.即……10分在和中,,,∴ ∴,又∵四边形为矩形,∴四边形为正方形∴又∵,∴.即……12分(3)的长度为.……12分BE l ⊥BG AD ⊥90BEC G ∠=∠=︒AD l ⊥90GDE ∠=︒DEBG 90GBE ∠=︒90ABC ∠=︒ABC ABE GBE ABE ∠-∠=∠-∠CBE ABG ∠=∠BCE △BAG △90CEB AGB ∠=∠=︒CBE ABG ∠=∠CB AB=()AAS BCE BAG ≌△△CE AG =BE BG=DEBG DEBG DE BE BG DG===CD CE DE =+2CD AG BE AD DG BE AD BE =+=++=+2CD AD BE -=DH 32。
湖北省孝感市2024届九年级下学期中考三模数学试卷(含答案)
数学试卷(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区城均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔。
4.考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10题,每小题3分,共30分。
在每题给出的四个选项中,只有一项符合题目要求)1.实数的相反数是()A.B.5 C.D.2.下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.3.函数中,自变量x的取值范围是()A.B.C.D.4.下列运算正确的是()A.B.C.D.5.下表记录了甲、乙、丙、丁四个科技创新小组最近几次选拔赛成绩的平均数和方差,如果要选出一个成绩较好且状态稳定的小组去参赛,那么应选的小组是()甲乙丙丁平均数88929288方差0.9 1.51 1.8A.甲B.乙C.丙D.丁6.一元二次方程的两根为,,则的值为()A.2 B.C.3 D.7.如图,用直尺和圆规作的角平分线,根据作图痕迹,下列结论不一定正确的是()A.B.C.D.8.半径为的圆内接正五边形一边所对的劣弧的长为()A.B.C.D.9.图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.测得,阳光垂直照射地面时雕塑的影长,则雕塑的高BC的长约为()(参考数据:,,,结果保留两位小数)A.B.C.D.10.已知抛物线(a,b,c是常数,)经过点(,)和(0,1),当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③;④若方程的两根为,,则.其中,正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5题,每小题3分,共15分)11.请写出使不等式成立的一个x的值为________.12.如图,平面镜MN放置在水平地面CD上,墙面于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在ED上,若,则的度数为________.13.为了解某地区九年级学生的视力情况,从该地区九年级学生中随机抽取了部分学生进行调查,根据调查结果,绘制了如下两幅不完整的统计图.该地区九年级学生共有4000人,根据以上统计分析,估计该地区九年级学生中视力正常的人数约有________人.14.元朝朱世杰所著的《算学启蒙》中,记载有这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,则可列方程为为________.15.如图1,在中,,,,点D是AC的中点,点E是AB的中点,连接DE.如图2,将绕A点顺时针旋转到点C,D,E首次在同一条直线上,连接BE.则BE的长为________.三、解答题(共9题,共75分。
人教版中考数学三模试卷(I)卷
人教版中考数学三模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若a=-3,b=-π,c=,则a、b、c的大小关系为()A . a<c<B . a<b<cC . b<a<cD . c<b<a2. (2分) (2013·贵港) 下列四个式子中,x的取值范围为x≥2的是()A .B .C .D .3. (2分)已知a≠0,14(a2+b2+c2)=(a+2b+3c)2 ,那么a:b:c=()A . 2:3:6B . 1:2:3C . 1:3:4D . 1:2:44. (2分) (2017八下·定安期末) 某校数学兴趣小组12名成员的年龄情况如下:年龄(岁)1213141516人数14322则这个小组成员年龄的中位数、平均数分别是()A . 13、14B . 14、14C . 14、15D . 16、135. (2分)(-1)³等于()A . -1B . 1C . -3D . 36. (2分)(2016·藁城模拟) 如图所示,等腰直角三角形ABC与等腰直角三角形A′B′C′是位似图形,位似中心为点O,位似比1:2,点A的坐标为(1,0),点C的坐标为(0,1),则点B′的坐标为()A . (2,2)B . (﹣2,2)C . (﹣2,﹣2)D . (2,2)或(﹣2,﹣2)7. (2分) (2013·宜宾) 下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .8. (2分)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是()A . 甲B . 乙C . 丙D . 不确定9. (2分)课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A . 第3天B . 第4天C . 第5天D . 第6天10. (2分)如图,△ABC的面积等于6,边AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,点P在直线AD上,则线段BP的长不可能是()A . 3B . 4C . 5D . 611. (1分) (2016七上·夏津期末) 已知,,且x+y<0,则 x﹣y 的值等于________.12. (1分) (2016九上·沙坪坝期中) 2016年9月19日,重庆市第五届运动会开幕式将在涪陵区拉开大幕,组委会面向社会公开征集了主题口号、会徽、会歌、吉祥物等元素,共收到有效作品16000余件,数据16000用科学记数法表示为________.13. (1分)某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是________.14. (1分) (2017九上·河口期末) 如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为________15. (1分)如图,放置的△OAB1 ,△B1A1B2 ,△B2A2B3 ,…都是边长为a的等边三角形,点A在x轴上,点O,B1 , B2 , B3 ,…都在同一条直线上,则点A2015的坐标是________16. (1分)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1________y2(填“>”或“<”或“=”).17. (10分)(2018七上·翁牛特旗期末) 解方程:(1)(2)18. (5分) (2017八上·陕西期末) 如图,在中,,作交的延长线于点,作、,且、相交于点 .求证: .19. (7分) (2015八上·南山期末) 甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1) a=________, =________;(2)请完成图中表示乙成绩变化情况的折线;(3) S甲2=360,乙成绩的方差是________,可看出________的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,________将被选中.20. (10分)(2017·邢台模拟) 已知,如图,在平面直角坐标系xOy中,正比例函数y= x的图像经过点A,点A的纵坐标为6,反比例函数y= 的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB,求:(1)这个反比例函数的解析式;(2)直线AB(一次函数)的表达式.21. (15分)(2018·滨湖模拟) 如图(1),在矩形ABCD中,AB=4,BC=3,点E是射线CD上的一个动点,把△BCE沿BE折叠,点C的对应点为F,(1)若点F刚好落在线段AD的垂直平分线上时,求线段CE的长;(2)若点F刚好落在线段AB的垂直平分线上时,求线段CE的长;(3)当射线AF交线段CD于点G时,请直接写出CG的最大值22. (15分) (2018八上·金堂期中) 某移动公司有两类收费标准:A类收费是不管通话时间多长,每部手机每月须缴月租12元.另外,通话费按0.2元/min;B类收费是没有月租,但通话费按0.25元/min .(1)请分别写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)若小芳爸爸每月通话时间为300min,请说明选择哪种收费方式更合算;(3)每月通话多长时间,按A、B两类收费标准缴费,所缴话费相等.23. (15分) (2019九上·嘉定期末) 在矩形ABCD中,AB=6,AD=8,点E是边AD 上一点,EM⊥EC交AB于点M ,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.24. (15分) (2017九上·黑龙江开学考) 如图,点O为正方形ABCD对角线的交点,点E,F分别在DA和CD的延长线上,且AE=DF,连接BE,AF,延长FA交BE于G.(1)试判断FG与BE的位置关系,并证明你的结论;(2)连接OG,求∠OGF的度数;(3)若AE= ,tan∠ABG= ,求OG的长.参考答案一、选择题 (共10题;共20分)1、答案:略2、答案:略3、答案:略4、答案:略5、答案:略6、答案:略7、答案:略8、答案:略9、答案:略10、答案:略二、填空题 (共6题;共6分)11、答案:略12、答案:略13、答案:略14、答案:略15、答案:略16、答案:略三、解答题 (共8题;共92分)17、答案:略18、答案:略19、答案:略20、答案:略21、答案:略22、答案:略23、答案:略24、答案:略第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学三模试卷I卷
一、选择题 (共6题;共12分)
1. (2分)生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()
A . 0.432×10﹣5
B . 4.32×10﹣6
C . 4.32×10﹣7
D . 43.2×10﹣7
2. (2分)如图图形中完全是中心对称图形的一组是()
A . ①②
B . ③④
C . ①③
D . ②④
3. (2分)已知,则下列不等式一定成立的是()
A .
B .
C .
D .
4. (2分)如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在
该位置的小立方块的个数,那么这个几何体的主视图是()
A .
B .
C .
D .
5. (2分)某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是()
A .
B .
C .
D .
6. (2分)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()
A . ﹣
B .
C . ﹣
D .
二、填空题 (共10题;共11分)
7. (1分)下列四个数:,,,,其中为无理数的是________.
8. (1分)在平面上将边长相等的正方形、正五边形和正六边形按如图所示的位置摆放,则 ________度.
9. (1分)分解因式:2m2﹣8=________.
10. (1分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.
11. (1分)等腰三角形的一个角是110°,则它的底角是________.
12. (2分)如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=________;AD=________.
13. (1分)在等式两边都________得;
14. (1分)若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是________cm2(结果保留π).
15. (1分)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c 的图象上,则y1 , y2 , y3的大小关系是________.
16. (1分)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1 ,作正方形A1B1C1B2 ,延长C1B2交直线l于点A2 ,作正方形A2B2C2B3 ,延长C2B3交直线l于点A3 ,作正方形A3B3C3B4 ,…,依此规律,则A2014A2015= ________
三、解答题 (共10题;共136分)
17. (10分)计算
(1).
(2).
18. (7分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段统计如下:
学业考试体育成绩(分数段)统计表
分数段人数(人)频率
A480.2
B a0.25
C840.35
D36b
E120.05
分数段为:(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)
根据上面提供的信息,回答下列问题:
(1)在统计表中,a的值为________,b的值为________,
(2)将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);
19. (9分)一张长方形的桌子有6个座位,小刚和小丽分别用长方形桌子设计了一种摆放方式:
(1)小刚按方式一将桌子拼在一起如左图.3张桌子在一起共有________个座位,n张桌子拼在一起共有________个座位。
(2)小丽按方式二将桌子拼在一起如右图.3张桌子在一起共有________个座位,m张桌子拼在一起共有________个座位。
(3)某食堂有A、B两个餐厅,现有300张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子。
将a张桌子放在A餐厅,按方式一每6张桌子拼成一张大桌子;将其余桌子都放在B餐厅,按照方式二每4张桌子拼成一张大桌子。
若两个餐厅一共有1185个座位,A、B两个餐厅各有多少个座位?
21. (10分)某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天)1351036…
日销售量m(件)9490867624…
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1= t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣ t+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的表达式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
22. (10分)如图,PA,PB是☉O的切线,切点分别为A,B,BC为☉O的直径,连结AB,AC,OP.
求证:
(1)∠APB=2∠ABC
(2)AC∥OP.
23. (10分)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.
(结果精确到1cm.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin55°≈0.8,cos55°≈0.6,tan55°≈1.4)
(1)求B点到OP的距离;
(2)求滑动支架的长.
24. (15分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).
(1)求这两个函数的表达式;
(2)观察图象,当x>0时,直接写出y1>y2时自变量x的取值范围;
(3)如果点C与点A关于x轴对称,求△ABC的面积.
25. (15分)如图,抛物线y=﹣ x2+ x+3 与x轴交于A、B两点(点A
在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).
(1)求直线BC的函数表达式;
(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)
②在点P、Q运动的过程中,当PQ=PD时,求t的值;
(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.
26. (30分)如图,抛物线y= x2﹣mx+n与x轴交于A、B两点,与y轴交于点C(0,﹣1).且对称轴x=1.
(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).
(4)求出抛物线的解析式及A、B两点的坐标;
(5)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(6)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).
参考答案一、选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共10题;共11分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共10题;共136分) 17-1、
17-2、
18-1、
18-2、
19-1、
19-2、
19-3、
20-1、
20-2、
21-1、
21-2、
22-1、
22-2、23-1、23-2、
23-3、
24-1、
24-2、
24-3、
25-1、
25-2、
25-3、
25-4、
25-5、
25-6、。