高三年级第三次月考数学试卷

合集下载

2022-2023学年河北省衡水中学高三(下)第三次月考数学试卷+答案解析(附后)

2022-2023学年河北省衡水中学高三(下)第三次月考数学试卷+答案解析(附后)

2022-2023学年河北省衡水中学高三(下)第三次月考数学试卷1.设复数,则在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知集合,,则有个真子集.( )A. 3B. 16C. 15D. 43.已知且,“函数为增函数”是“函数在上单调递增”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有( )A. 48B. 54C. 60D. 725.公差不为0的等差数列的前n项和为,且,若,,,,依次成等比数列,则( )A. 81B. 63C. 41D. 326.在中,,,,则直线AD通过的( )A. 垂心B. 外心C. 重心D. 内心7.如图,平面平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且,,若G是线段EF上的动点,则三棱锥的外接球表面积的最小值是( )A.B.C.D.8.已知向量,是夹角为的单位向量,若对任意的,,且,,则m的取值范围是( )A. B. C. D.9.以下四个命题中,真命题的有( )A. 在回归分析中,可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好B. 回归模型中残差是实际值与估计值的差,残差点所在的带状区域宽度越窄,说明模型拟合精度越高C. 对分类变量x与y的统计量来说,值越小,判断“x与y有关系”的把握程度越大D. 已知随机变量X服从二项分布,若,则10.2022年9月钱塘江多处出现罕见潮景“鱼鳞潮”,“鱼鳞潮”的形成需要两股涌潮,一股是波状涌潮,另外一股是破碎的涌潮,两者相遇交叉就会形成像鱼鳞一样的涌潮.若波状涌潮的图像近似函数的图像,而破碎的涌潮的图像近似是函数的导函数的图像.已知当时,两潮有一个交叉点,且破碎的涌潮的波谷为,则( )A. B.C. 的图像关于原点对称D. 在区间上单调11.在棱长为2的正方体中,E,F分别为AB,BC的中点,则( )A. 异面直线与所成角的余弦值为B. 点P为正方形内一点,当平面时,DP的最小值为C. 过点,E,F的平面截正方体所得的截面周长为D. 当三棱锥的所有顶点都在球O的表面上时,球O的表面积为12.已知F是抛物线W:的焦点,点在抛物线W上,过点F的两条互相垂直的直线,分别与抛物线W交于B,C和D,E,过点A分别作,的垂线,垂足分别为M,N,则( ) A. 四边形AMFN面积的最大值为2 B. 四边形AMFN周长的最大值为C. 为定值D. 四边形BDCE面积的最小值为3213.的展开式的常数项是______ .14.已知点,,若线段AB与圆C:存在公共点,则m的取值范围为______ .15.已知实数,满足,则的最小值是______ .16.若正实数a,b满足,则的最小值为______ .17.已知为等差数列,求的通项公式;若为的前n项和,求18.已知的内角A,B,C所对的边分别为a,b,c,且求证:;求的取值范围.19.2020年席卷全球的新冠肺炎给世界人民带来了巨大的灾难,面对新冠肺炎,早发现、早诊断、早隔离、早治疗是有效防控疾病蔓延的重要举措之一.某社区对55位居民是否患有新冠肺炎疾病进行筛查,先到社区医务室进行口拭子核酸检测,检测结果成阳性者,再到医院做进一步检查,已知随机一人其口拭子核酸检测结果成阳性的概率为,且每个人的口拭子核酸是否呈阳性相互独立.假设该疾病患病的概率是,且患病者口拭子核酸呈阳性的概率为,设这55位居民中有一位的口拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将55位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将55位居民分成11组,每组5人;方案二:将55位居民分成5组,每组11人;试分析哪一个方案的工作量更少?参考数据:,20.图①是直角梯形ABCD,,,四边形ABCE是边长为2的菱形,并且,以BE为折痕将折起,使点C到达的位置,且求证:平面平面ABED;在棱上是否存在点P,使得点P到平面的距离为?若存在,求出直线EP与平面所成角的正弦值;若不存在,请说明理由.21.已知双曲线W:的左、右焦点分别为、,点,右顶点是M,且,求双曲线的方程;过点的直线l交双曲线W的右支于A、B两个不同的点在A、Q之间,若点在以线段AB为直径的圆的外部,试求与面积之比的取值范围.22.已知为正实数,函数若恒成立,求A的取值范围;求证:…答案和解析1.【答案】D【解析】解:复数,对应点的坐标为,即在复平面内对应的点位于第四象限.故选:化简复数为代数形式,即可判断对应点所在象限.本题考查复数的运算,复数的几何意义,是基础题.2.【答案】A【解析】解:,,则,真子集个数为故选:计算,得到真子集个数.本题主要考查集合交集运算及集合真子集个数的判断,属于基础题.3.【答案】C【解析】解:因为且,若函数为增函数,则,若函数在上单调递增,则,即,故,“函数为增函数”是“函数在上单调递增”的充要条件.故选:由已知结合指数函数与幂函数单调性分别求出相应的a的范围,即可判断.本题主要考查了指数函数与幂函数单调性的应用,属于基础题.4.【答案】C【解析】解:将5名大学生分为1,2,2三组,即第一组1个人,第二组2个人,第三组2个人,共有种方法;由于甲不去看冰球比赛,故甲所在的组只有2种选择,剩下的2组任意选,所以由种方法;按照分步乘法原理,共有种方法.故选:先分组,再考虑甲的特殊情况.本题考查了排列组合的混合问题,先选后排是最基本的指导思想,属于基础题.5.【答案】C【解析】解:因为,所以,,故,设等差数列的公差为d,则,所以,因为,,,,依次成等比数列,,所以,所以,所以,故选:由条件求出数列的通项公式,再结合等比数列定义求本题主要考查等差数列与等比数列的综合,考查运算求解能力,属于基础题.6.【答案】D【解析】解:,设,,则,由向量加法的平行四边形法则可知,四边形AEDF为菱形.为菱形的对角线,平分直线AD通过的内心.故选:首先根据已知条件可知,又因为,设,,由向量加法的平行四边形法则可知四边形AEDF为菱形,从而可确定直线AD通过的内心.本题考查向量加法的平行四边形法则及其几何意义,属于中档题.7.【答案】C【解析】解:设的外接圆的半径为r,则,当,即时,r由最小值为2,此时的外心为AB的中点,三棱锥的外接球的半径R满足三棱锥的外接球的面积的最小值为故选:设的外接圆的半径为r,在中,由正弦定理可得,求出r的最小值,进一步得到三棱锥的外接球的半径的最小值,则答案可求.本题考查多面体的外接球,求出外接圆半径的最小值是关键,是中档题.8.【答案】D【解析】解:已知向量,是夹角为的单位向量,则,即,即,即,设,,则函数为减函数,即,恒成立,即,即,故选:由题意可得,设,,则函数为减函数,即,恒成立,然后求解即可.本题考查了平面向量数量积的运算,重点考查了导数的综合应用,属中档题.9.【答案】AB【解析】解:对于A,由相关指数的定义知:越大,模型的拟合效果越好,A正确;对于B,残差点所在的带状区域宽度越窄,则残差平方和越小,模型拟合精度越高,B正确;对于C,由独立性检验的思想知:值越大,“x与y有关系”的把握程度越大,C错误.对于D,,,又,,解得:,D错误.故选:根据相关指数的定义确定A;根据残差的性质确定B;根据独立性检验确定C;根据二项分布与均值的运算确定本题主要考查独立性检验,残差和独立性的定义,以及二项分布的期望公式,属于基础题.10.【答案】BC【解析】解:,则,由题意得,即,故,因为,所以由,可得,故选项A错误;因为破碎的涌潮的波谷为,所以的最小值为,即,得,所以,则,故选项B正确;因为,所以,所以为奇函数,则选项C正确;根据,由,得,因为函数在上单调递增,在上单调递减,所以在区间上不单调,则选项D错误.故选:对于A,由题意,求导建立方程,根据正切函数的性质,可得答案;对于B,整理其函数解析式,代入值,利用和角公式,可得答案;对于C,整理函数解析式,利用诱导公式,结合奇函数的性质,可得答案;对于D,利用整体思想,整体换元,结合余弦函数的性质,可得答案.本题主要考查三角恒等变换,求三角函数的导数,函数的图像变换规律,正弦函数的图像和性质,属于中档题.11.【答案】BCD【解析】解:对于A:因为,所以为直线与直线所成的角,所以,故A错误;对于B:取的中点M,取的中点N,取AD的中点S,连接MN,DM,DN,所以四边形是平行四边形,所以,因为,所以,所以面,同理可得,所以面,又面,平面,所以点P的轨迹为线段MN,在中,过点D作,此时DP取得最小值,由题可得,,,所以,故B正确;对于C:由平面面得,过点,E,F的平面必与和有交点,设过点,E,F的平面与平面和平面分别交于与FN,所以,同理可得,过点,E,F的平面截正方体所得的截面图形为五边形,所以D为坐标原点,分别以DA,DC,所在直线为x轴,y轴,z轴建立空间直角坐标系,设,,则,,,,,所以,,,,因为,,所以,,解得,,所以,,所以,,由题可知,,,,,所以,过点,E,F的平面截面正方体所得截面周长为,故C正确;对于D:取EF的中点,连接,则,过点作,且,所以O为三棱锥的外接球的球心,所以OE为外接球得半径,在中,,所以,所以,故选:对于A:根据异面直线所成角的定义可得为直线与直线所成的角,再计算,即可判断A是否正确;对于B:取的中点M,取的中点N,取AD的中点S,连接MN,DM,DN由面,找到点P的轨迹为线段MN,再计算DP的最小值,即可判断B是否正确;对于C:找到过点,E,F的平面截正方体所得的截面图形为五边形,再计算截面周长,即可判断C是否正确;对于D:取EF的中点,连接,则,求出三棱锥的外接球的半径,再计算球的表面积,即可判断D是否正确.本题考查直线与平面的位置关系,解题中注意转化思想的应用,属于中档题.12.【答案】ABD【解析】解:因为点在抛物线W:上,所以,,,故抛物线W的方程为:,焦点坐标为,由,得,所以,当且仅当时,等号成立,所以四边形AMFN面积的最大值为2,故A正确.由,得,即,所以四边形AMFN周长的最大值为,故B正确.设直线BC的方程为,,,联立,消x得,,判别式,,,则,同理得,,故C错误.,所以,当且仅当时,等号成立,此时,故D正确.故选:根据给定条件,求出抛物线W的方程,确定四边形AMFN形状,利用勾股定理及均值不等式计算判断A,B ;设出直线的方程,与抛物线方程联立,求出弦BC,DE长即可计算推理判断C,D作答.本题考查了抛物线的方程和性质以及直线与抛物线的位置关系,属于中档题.13.【答案】70【解析】解:,则常数项为,故答案为:先将多项式进行化简,然后利用多项式特点进行求解即可.本题主要考查二项式定理的应用,根据多项式的性质先进行化简,然后利用常数项特点进行求解是解决本题的关键,是基础题.14.【答案】【解析】解:如图,当圆和线段AB相切时,圆的半径最小,当圆过B点时,圆的半径最大.又圆C方程为:,圆心为,半径为,,当圆和线段AB相切时,,即,,解得,当圆过B点时,可得,,的取值范围为故答案为:通过图像可得当圆和线段AB相切时,圆的半径最小,当圆过B点时,圆的半径最大,据此可得m的取值范围.本题考查直线与圆的位置关系,运动变化思想,方程思想,化归转化思想,属中档题.15.【答案】9【解析】解:由已知条件得,,,又,,,,当且仅当,即时等号成立.故答案为:将已知条件通过恒等变形,再利用基本不等式即可求解.本题主要考查了基本不等式在最值求解中的应用,属于中档题.16.【答案】【解析】解:因为,所以,所以,即令,则有,设,只需证明,,令得,所以当时,,单调递增,当时,,单调递减,所以,即,又因为,所以,当且仅当时等号成立,所以,所以,所以设,所以,由得,所以当时,,单调递减,当时,,单调递增,所以,所以的最小值为故答案为:由不等式变形为,通过换元,根据不等式恒成立得出a与b的关系,从而把表示为关于a的表达式,再通过构造函数求最值即可.本题考查导数的综合应用,解题中注意转化思想的应用,属于中档题.17.【答案】解:,,,⋯,,,;当时,满足上式,所以;由可得,【解析】本题考查运用累乘法求数列的通项公式,裂项相消法求数列的前n项和,属中档题.利用累乘法可求的通项公式;由可得,利用裂项相消法求出18.【答案】证明:在中,由及正弦定理得:,又,,即,,即,,,,,;解:由得,,,由题意,及正弦定理得:,,,即,故的取值范围为【解析】结合正弦定理及正弦和角公式得,结合角度范围即可证明;结合正弦定理及三角恒等变换,结合B角范围即可求解.本题主要考查解三角形,考查转化能力,属于中档题.19.【答案】解:设事件A为“核酸检测呈阳性“,事件B 为“患疾病”由题意可得,,,由条件概率公式得:,即,故该居民可以确诊为新冠肺炎患者的概率为设方案一中每组的检测次数为X,则X 的取值为1,6,,,所以X 的分布列为X16P所以,即方案一检测的总次数的期望为,设方案二中每组的检测次数为Y,则Y 的取值为1,12,;,所以Y 的分布列为Y112P所以,即方案二检测的总次数的期望为,由,则方案二的工作量更少.【解析】设事件A为“核酸检测呈阳性“,事件 B 为“患疾病“,利用条件概率公式求解即可;设方案一和方案二中每组的检测次数为X,Y,分别求出两种方案检测次数的分布列,进而得出期望,通过比较期望的大小即可得出结论.本题主要考查了条件概率公式的应用以及均值的实际应用,属于中档题.20.【答案】解:证明:如图所示,在图①中,连接AC,交BE于O,因为四边形ABCE是边长为2的菱形,且,所以,且,在图②中,相交直线OA,均与BE垂直,所以是二面角的平面角,因为,所以,所以,所以平面平面由知,分别以直线OA,OB,为x,y,z轴建立如图②所示的空间直角坐标系,则,,,,,所以,,,,,设,,则,设平面的一个法向量,则,令,则,,所以因为P到平面的距离为,所以,解得,由,得,所以,,,所以,所以设直线EP与平面所成的角为,所以【解析】在图①中,连接AC,交BE于O,可推出,且,在图②中,相交直线OA,均与BE垂直,则是二面角的平面角,由勾股定理可得,进而可得答案.由知,分别以直线OA,OB,为x,y,z轴建立如图②所示的空间直角坐标系,设,,可得的坐标,求出平面的一个法向量,由于P到平面的距离为,则,解得,设直线EP与平面所成的角为,进而可得答案.本题考查直线与平面的位置关系,解题关键是空间向量法的应用,属于中档题.21.【答案】解:由已知,,,,,则,,解得,,双曲线的方程为直线l的斜率存在且不为0,设直线l:,设,,由,得,则,解得①点在以线段AB为直径的圆的外部,则,②由①、②得实数k的范围是,由已知,在A、Q之间,则,且,,则,,则,,,解得,又,故的取值范围是【解析】考查双曲线标准方程,简单几何性质,直线与双曲线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.由已知,,,,由,知,故,,由此能求出双曲线的方程.直线l的斜率存在且不为0,设直线l:,设,,由,得,由此入手,能够求出的取值范围.22.【答案】解:,①若,即,,函数在区间单调递增,故,满足条件;②若,即,当时,,函数单调递减,故,矛盾,不符合题意;综上:先证右侧不等式,如下:由可得:当时,有,则,即,即则有,即,右侧不等式得证.下面证左侧不等式,如下:易知,可得,即,则有,即,,则故,综上:…【解析】求导得,分,两种情况讨论可得的取值范围;当时,有,则,可得可证右侧不等式,可得,,可证左侧不等式.本题考查导数的综合应用,考查不等式的证明,属难题.。

高三(上)第三次月考数学试卷(附答案)

高三(上)第三次月考数学试卷(附答案)

***学校高三(上期)第三次月考数学试卷一、选择题(本大题共9小题,共45.0分))1. 已知全集U=R,集合A={x||x−1|<1},B={x|2x−5x−1≥1},则A∩∁U B=( )A.{x|1<x<2}B.{x|1<x≤2}C.{x|1≤x<2}D.{x|1≤x<4}2. 设m∈R,则“m=−3”是“直线l1:mx+3y=2−m与l2:x+(m+2)y=1平行”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要的条件3. 函数f(x)=e x+1x3(e x−1)(其中e为自然对数的底数)的图象大致为()A. B.C. D.4. 已知棱长为的正方体ABCD−A1B1C1D1的一个面A1B1C1D1在半球底面上,四个顶点A,B,C,D都在半球面上,则半球体积为()A.4B.2C.D.5. 已知△ABC的内角A,B,C的对边分别为a,b,c,满足2acos A =3c−2bcos B,且b=√5sin B,则a=()A.5 3B.23C.35D.2√536. 已知函数y=f(x)是定义在R上的偶函数,且当x∈[0, +∞)时,f(x)+xf′(x)>0,若a =0.76f(0.76),b=(log0.76)f(log0.76),c=60.6⋅f(60.6),则a,b,c的大小关系是()A.c>a>bB.a>c>bC.b>a>cD.a>b>c7. 设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|,若cos∠AF2B=35,则椭圆E的离心率为()A.1 2B.23C.√32D.√228. 已知函数f(x)=cos(2x−)+2sin(x−)sin(x+)(x∈R).给出下面四个结论:①f(x)是最小正周期为π的奇函数;②f(x)图象的一条对称轴是;③f(x)图象的一个对称中心是;④f(x)的单调递增区间为.其中正确的结论是()A.①③B.②③C.②③④D.①②③9. 已知函数f(x)={x2+4a,x>01+log a|x−1|,x≤0(a>0,且a≠1)在R上单调递增,且关于x的方程|f(x)|=x+3恰有两个不相等的实数解,则a的取值范围是()A.(34, 1316] B.(0, 34]∪{1316}C.[14, 34)∪{1316} D.[14, 34]∪{1316}二、填空题(本大题共6小题,共30.0分))10. 若,则z的共轭复数为________.11. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.12. 已知圆C的圆心在直线x+y=0上,圆C与直线x−y=0相切,且在直线x−y−3=0上截得的弦长为√6,则圆C的方程为________.13. 已知a∈R,设函数f(x)=,若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为________.14. 在直角三角形ABC中,∠ACB=90∘,AC=4,=2,=3,则=________.15. 已知正数x,y满足x2y+4xy2+6xy=x+4y,则xyx+4y 的最大值为________18.三、解答题(本大题共5小题,共75.0分))16. 在△ABC中,内角A,B,C所对的边分别为a,b,c,sin B2=√66,b sin A=√6a sin C,c=1.(1)求a的值和△ABC的面积;(2)求sin(2A+π3)的值.17. 在四棱锥P−ABCD中,PD⊥平面ABCD,AB // DC,AB⊥AD,DC=AD=1,AB=2,∠PAD=45∘,E是PA的中点,F在线段AB上,且满足=0.(Ⅰ)求证:DE // 平面PBC;(Ⅱ)求二面角F−PC−B的余弦值;(Ⅲ)在线段PA上是否存在点Q,使得FQ与平面PFC所成角的余弦值是,若存在,求出AQ的长;若不存在,请说明理由.18. 如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,短轴长是2.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当时,求k的取值范围.19. 已知等比数列{a n}的公比q>0,且满足a1+a2=6a3,a4=4a32,数列{b n}的前n项和S n=,n∈N∗.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前2n项和T2n.20. 已知f(x)=x2−4x−6ln x.(Ⅰ)求f(x)在(1, f(1))处的切线方程以及f(x)的单调性;(Ⅱ)对∀x∈(1, +∞),有xf′(x)−f(x)>x2+6k(1−)−12恒成立,求k的最大整数解;(Ⅲ)令g(x)=f(x)+4x−(a−6)ln x,若g(x)有两个零点分别为x1,x2(x1<x2)且x0为g(x)的唯一的极值点,求证:x1+3x2>4x0.参考答案与试题解析**8学校高三(上)第三次月考数学试卷一、选择题(本大题共9小题,共45.0分)1.【答案】C【考点】交、并、补集的混合运算【解析】可解出集合A,B,然后进行补集、交集的运算即可.【解答】解:A={x|0<x<2},B={x|x<1或x≥4};∴∁U B={x|1≤x<4},∴A∩∁U B={x|1≤x<2}.故选C.2.【答案】C【考点】充分条件、必要条件、充要条件【解析】由直线l1:mx+3y=2−m与l2:x+(m+2)y=1平行,可得且,解出即可判断出.【解答】直线l1:mx+3y=2−m与l2:x+(m+2)y=1平行,则且,解得m=−3,因此“m=−3”是“直线l1:mx+3y=2−m与l2:x+(m+2)y=1”平行的充要条件.3.【答案】D【考点】函数的图象与图象的变换【解析】由函数为偶函数,排除AC;由x→+∞时,f(x)→0,排除B,由此得到答案.【解答】f(−x)=e−x+1(−x)3(e−x−1)=−1+e xx3(1−e x)=e x+1x3(e x−1)=f(x),故函数f(x)为偶函数,其图象关于y轴对称,故排除A,C;当x→+∞时,x3(e x−1)>>e x+1,f(x)→0,故排除B.4.【答案】B【考点】柱体、锥体、台体的体积计算球的表面积和体积棱柱的结构特征【解析】先求正方体的底面对角线的长,再求球的半径,然后求半球的体积.【解答】正方体的顶点A、B、C、D在半球的底面内,顶点A1、B1、C1、D1在半球球面上,底面ABCD的中心到上底面顶点的距离就是球的半径=,半球的体积:×π×()3=2π.5.【答案】A【考点】正弦定理【解析】由正弦定理及两角和的正弦函数公式,三角形内角和定理可得3sin C cos A=2sin C,结合sin C≠0,可得cos A,利用同角三角函数基本关系式可求sin A,由正弦定理可求a的值.【解答】∵2acos A =3c−2bcos B,可得:2a cos B=3c cos A−2b cos A,∴由正弦定理可得:2sin A cos B=3sin C cos A−2sin B cos A,可得3sin C cos A=2(sin A cos B+ sin B cos A)=2sin C,∵sin C≠0,可得:cos A=23,∴sin A=√1−cos2A=√53,又∵b=√5sin B,∴由正弦定理asin A =bsin B,可得:√53=bsin B=√5,可得:a=53.6.【答案】A【考点】利用导数研究函数的单调性【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】椭圆的离心率椭圆的定义余弦定理【解析】设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,由cos∠AF2B=35,利用余弦定理,可得a=3k,从而△AF1F2是等腰直角三角形,即可求椭圆E的离心率.【解答】设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,∴|AF2|=2a−3k,|BF2|=2a−k∵cos∠AF2B=35,在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2−2|AF2|⋅|BF2|cos∠AF2B,∴(4k)2=(2a−3k)2+(2a−k)2−65(2a−3k)(2a−k),化简可得(a+k)(a−3k)=0,而a+k>0,故a=3k,∴|AF2|=|AF1|=3k,|BF2|=5k,∴|BF2|2=|AF2|2+|AB|2,∴AF1⊥AF2,∴△AF1F2是等腰直角三角形,∴c=√22a,∴椭圆的离心率e=ca =√22,8.【答案】B【考点】命题的真假判断与应用三角函数中的恒等变换应用【解析】本题考查两角和与差的三角函数及辅助角公式,同时考查函数y=A sin(ωx+φ)的图象与性质,利用两角和与差的三角函数及辅助角公式化简f(x),然后由正弦函数的性质,逐一分析求解即可.【解答】∵=,∴f(x)不是奇函数,故①不正确.∵,∴直线是f(x)图象的一条对称轴,故②正确.∵,∴点是f(x)图象的一个对称中心,故③正确,令,可得,所以f(x)的单调递增区间为,故④不正确.所以正确的结论为②③.9.【答案】D【考点】分段函数的应用【解析】由题意可知f(x)在两段上均为增函数,且f(x)在(0, +∞)上的最小值大于或等于f(0),作出|f(x)|和y=x+3的图象,根据交点个数判断4a与3的大小关系,以及直线和抛物线相切的条件,列出不等式组解出.【解答】由1+loga |x−1|=0,解得x=1−1a≤−3,即x≤0时,有且只有一解.则a的范围是[14, 34]∪{1316}.故选:D.二、填空题(本大题共6小题,共30.0分)10.【答案】1−3i【考点】复数的运算【解析】利用复数的运算法则求出z,由此能求出z的共轭复数.【解答】=,∴z的共轭复数为1−3i.11.【答案】43【考点】柱体、锥体、台体的体积计算由三视图求外接球问题【解析】本题主要考查空间几何的体积.【解答】解:正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正八面体的所有棱长都是√2,则该正八面体的体积为1 3×(√2)2×2=43.故答案为:43.12.【答案】(x−1)2+(y+1)2=2【考点】直线与圆的位置关系【解析】设圆心为C(a, b),半径为r,由题意可得关于a,b,r的方程组,求解可得a,b,r的值,则圆的方程可求.【解答】设圆心为C(a, b),半径为r,由题意可得,{a+b=0 r=√2(√2)2+(√62)2=r2,解得{a=1b=−1r=√2.∴圆C的方程为(x−1)2+(y+1)2=2.13.[0, 2e]【考点】函数恒成立问题分段函数的应用【解析】按照x≤1与x>1分类讨论,分别分离变量、求最值即可.【解答】当x<1时,f(x)≥0化为恒成立,,∵x<1,∴x−1<0,∴,∴,当且仅当即x=0时取等号.∴a≥0(1)当x>1时,f(x)≥0化为恒成立.设,,∴当∈(1, e)时,,g(x)单调递减,当∈(e, +∞)时,,g(x)单调递增,∴g(x)≥g(e)=e+e=2e,∴a≤2e.综上,a∈[0, 2e].故答案为[0, 2e].14.【答案】【考点】数量积表示两个向量的夹角如图所示,设B(0, a),利用向量的线性运算和数量积运算即可得出.【解答】建立如图所示的坐标系,则由题意可得A(4, 0),C(0, 0),设B(0, a).又∵=2,∴=(,);∵=3,∴=+=+•=(−2,),∴则=4×−2×4=,15.【答案】18【考点】基本不等式及其应用【解析】令x+4y=t,则由条件可得xyx+4y =1t+6,然后根据条件出t的范围,进一步求出xyx+4y的最大值.【解答】∵正数x,y满足x2y+4xy2+6xy=x+4y,∴xy(x+4y+6)=x+4y,∴xy=x+4yx+4y+6.令x+4y=t,则xy=tt+6且t>0,∵x+4y≥2√4xy=4√xy,当且仅当x=4y时取等号,∴t≥4√tt+6,即t2+6t−16≥0,∴t≥2或t≤−8(舍),∴xyx+4y =1t+6≤18,∴xyx+4y 的最大值为18.三、解答题(本大题共5小题,共75.0分)16.【答案】解:(1)△ABC中,sin B2=√66,∴cos B2=√1−sin2B2=√306,∴sin B=2sin B2cos B2=√53,cos B=1−2sin2B2=23,∴B为锐角.∵b sin A=√6a sin C,利用正弦定理可得sin B sin A=√6sin A sin C,∴sin C=√6=√3018<sin B,故C为锐角,cos C=√1−sin2C=7√618,∴sin A=sin(B+C)=sin B cos C+cos B sin C=√53×7√618+23×√3018=√306.再根据c=1,利用正弦定理asin A =csin C,可得√306=√3018,求得a=3,故△ABC的面积为S=12ac⋅sin B=12×3×1×√53=√52.(2)∵cos A=−cos(B+C)=sin B sin C−cos B cos C=√53×√3018−23×7√618=−√66,∴sin A=√1−cos2A=√306,cos2A=1−2sin2A=1−2×3036=−23,∴sin(2A+π3)=sin2A cosπ3+cos2A sinπ3=√306×12−23×√32=√30−4√312.【考点】求两角和与差的正弦两角和与差的余弦公式【解析】(1)△ABC中,由条件利用同角三角函数的基本关系、二倍角公式求得sin B、cos B的值,再利用正弦定理求得sin C的值,可得cos C的值,可得sin A=sin(B+C)的值,再利用正弦定理求得a的值.(2)求得cos A=−cos(B+C)的值,可得sin A的值,求得sin2A、cos2A的值,再利用两角和的正弦公式求得sin(2A+π3)的值.【解答】解:(1)△ABC中,sin B2=√66,∴cos B2=√1−sin2B2=√306,∴sin B=2sin B2cos B2=√53,cos B=1−2sin2B2=23,∴B为锐角.∵b sin A=√6a sin C,利用正弦定理可得sin B sin A=√6sin A sin C,∴sin C=√6=√3018<sin B,故C为锐角,cos C=√1−sin2C=7√618,∴sin A=sin(B+C)=sin B cos C+cos B sin C=√53×7√618+23×√3018=√306.再根据c=1,利用正弦定理asin A =csin C,可得√306=√3018,求得a=3,故△ABC的面积为S=12ac⋅sin B=12×3×1×√53=√52.(2)∵cos A=−cos(B+C)=sin B sin C−cos B cos C=√53×√3018−23×7√618=−√66,∴sin A=√1−cos2A=√306,cos2A=1−2sin2A=1−2×3036=−23,∴sin(2A+π3)=sin2A cosπ3+cos2A sinπ3=√306×12−23×√32=√30−4√312.17.【答案】证明:(Ⅰ)证法一:取PB的中点M,AB的中点N,连结EM,CM,∵在四棱锥P−ABCD中,PD⊥平面ABCD,AB // DC,AB⊥AD,DC=AD=1,AB=2,∠PAD=45∘,E是PA的中点,F在线段AB上,∴CD // AB,且CD=,EM // AB,且EM=,∴EM // CD,且EM=CD,四边形CDEM为平行四边形,∴DE // CM,∵CM⊂平面PBC,DE⊄平面PBC,∴DE // 平面PBC.(1)证法二:由题意得DA、DC、DP两两垂直,如图,以D为原点,DA、DC、DP分别为x,y,z轴,建立空间直角坐标系,则A(1, 0, 0),B(1, 2, 0),C(0, 1, 0),P(0, 0, 1),E(),=(−1, −1, 0),=(0, −1, 1),设平面PBC的法向量为=(x, y, z),则,取y=1,得=(−1, 1, 1),又=(),∴=0.又DE⊄平面PBC,∴DE // 平面PBC.(2)设点F(1, t, 0),则=(1, t−1, 0),=(1, 2, 0),∵=0,∴=1+2(t−1)=0.解得t=,∴F(1,,0),,=(0, 1, −1),设平面FPC的法向量=(x, y, z),由,得,取x=1,得=(1, 2, 2),设二面角F−PC−B的平面角为θ,则cosθ==,∴二面角F−PC−B的余弦值为.(Ⅲ)设==(−λ, 0, λ),λ∈[0, 1],∴=,∴=λ−1,∴cos<>==,∵FQ与平面PFC所成角的余弦值是,∴其正弦值为,∴||=,解得,或(舍),∴在线段PA上是否存在点Q,使得FQ与平面PFC所成角的余弦值是,=(-),|AQ|=.【考点】二面角的平面角及求法直线与平面平行【解析】(Ⅰ)证法一:取PB的中点M,AB的中点N,连结EM,CM推导出四边形CDEM为平行四边形,从而DE // CM,由此能证明DE // 平面PBC.证法二:由题意得DA、DC、DP两两垂直,以D为原点,DA、DC、DP分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明DE // 平面PBC.(Ⅱ)设点F(1, t, 0),求出平面FPC和平面PCB的法向量,利用向量法能求出二面角F−PC−B的余弦值.(Ⅲ)设==(−λ, 0, λ),λ∈[0, 1],利用向量法能求出在线段PA上是否存在点Q,使得FQ与平面PFC所成角的余弦值是,|AQ|=.【解答】证明:(Ⅰ)证法一:取PB的中点M,AB的中点N,连结EM,CM,∵在四棱锥P−ABCD中,PD⊥平面ABCD,AB // DC,AB⊥AD,DC=AD=1,AB=2,∠PAD=45∘,E是PA的中点,F在线段AB上,∴CD // AB,且CD=,EM // AB,且EM=,∴EM // CD,且EM=CD,四边形CDEM为平行四边形,∴DE // CM,∵CM⊂平面PBC,DE⊄平面PBC,∴DE // 平面PBC.(1)证法二:由题意得DA、DC、DP两两垂直,如图,以D为原点,DA、DC、DP分别为x,y,z轴,建立空间直角坐标系,则A(1, 0, 0),B(1, 2, 0),C(0, 1, 0),P(0, 0, 1),E(),=(−1, −1, 0),=(0, −1, 1),设平面PBC的法向量为=(x, y, z),则,取y=1,得=(−1, 1, 1),又=(),∴=0.又DE⊄平面PBC,∴DE // 平面PBC.(2)设点F(1, t, 0),则=(1, t−1, 0),=(1, 2, 0),∵=0,∴=1+2(t−1)=0.解得t=,∴F(1,,0),,=(0, 1, −1),设平面FPC的法向量=(x, y, z),由,得,取x=1,得=(1, 2, 2),设二面角F−PC−B的平面角为θ,则cosθ==,∴二面角F−PC−B的余弦值为.(Ⅲ)设==(−λ, 0, λ),λ∈[0, 1],∴=,∴=λ−1,∴cos<>==,∵FQ与平面PFC所成角的余弦值是,∴其正弦值为,∴||=,解得,或(舍),∴在线段PA上是否存在点Q,使得FQ与平面PFC所成角的余弦值是,=(-),|AQ|=.18.【答案】(1)设椭圆C的半焦距为c,则由题意得,又a2=b2+c2,联立解得a=2,b=1.∴椭圆方程为+y2=1,(2)由(Ⅰ)知,椭圆C的方程为+y2=1,所以椭圆C与y轴负半轴交点为D(0, −1).因为l1的斜率存在,所以设l1的方程为y=kx−1,代入+y2=1,得M(,),从而DM==.用-代k得DN=,所以△DMN的面积S=•×=.则=,因为,即>,整理得4k4−k2−14<0,解得-<k2<2所以0<k2<2,即-<k<0或0<k<.从而k的取值范围为(-,0)∪(0,).【考点】椭圆的标准方程椭圆的应用直线与椭圆的位置关系【解析】(Ⅰ)根据椭圆C的离心率为,短轴长是2,结合a2=b2+c2,即可求出a,b的值;(Ⅱ)设l1的方程为y=kx−1,代入入+y2=1,求出M的坐标,可得DM,用-代k得DN=,求出△DMN的面积,=,可得>,从而可求k的取值范围.【解答】(1)设椭圆C的半焦距为c,则由题意得,又a2=b2+c2,联立解得a=2,b=1.∴椭圆方程为+y2=1,(2)由(Ⅰ)知,椭圆C的方程为+y2=1,所以椭圆C与y轴负半轴交点为D(0, −1).因为l1的斜率存在,所以设l1的方程为y=kx−1,代入+y2=1,得M(,),从而DM==.用-代k得DN=,所以△DMN的面积S=•×=.则=,因为,即>,整理得4k4−k2−14<0,解得-<k2<2所以0<k2<2,即-<k<0或0<k<.从而k的取值范围为(-,0)∪(0,).19.【答案】(1)依题意,由a1+a2=8a3,a4=2a32,可得,解得q=,a1=,∴a n=•()n−1=()n,n∈N∗,对于数列{b n}:当n=1时,b3=S1=1,当n≥7时,b n=S n−S n−1=-=n,∵当n=6时,b1=1也满足上式,∴b n=n,n∈N∗.(2)由题意及(Ⅰ),可知当n为奇数时,c n=•a n+7=×()n+3=-,当n为偶数时,c n=a n⋅b n=n⋅()n,令A=c5+c3+...+c2n−2,B=c2+c4+...+c8n,则A=c1+c3+...+c4n−1=-+-+…+-=-=-,B=c6+c4+c6+...+c2n=2⋅()2+4⋅()4+2⋅()8+...+2n⋅()2n,∴()2B=2⋅()4+2⋅()2+...+(2n−2)⋅()2n+7n⋅()7n+2,两式相减,可得B=2⋅()2+2⋅()4+3⋅()2+...+2⋅()2n−2n⋅()2n+6,=()3+()7+()5+...+()3n−1−2n⋅()2n+2,=−2n⋅()2n+7,=−(n+)•()2n+2+,∴B=-•()2n−6+,∴T8n=c1+c2+...+c5n=(c1+c3+...+c8n−1)+(c2+c3+c6+...+c2n)=A+B=--•()2n−1+=-(+)2n−2.【考点】数列递推式数列的求和【解析】此题暂无解析【解答】此题暂无解答20.【答案】(1)f(x)=x2−4x−6ln x的导数为f′(x)=2x−4−,可得f′(1)=−8,f(1)=−3,所以f(x)在(1, f(1))处的切线方程为y+3=−8(x−1)即y=−8x+5;由f′(x)=(x+1)(x−3),由f′(x)>0,可得x>3;由f′(x)<0,可得0<x<3,所以f(x)的单调递减区间为(0, 3),单调递增区间为(3, +∞);(2)xf′(x)−f(x)>x2+6k(1−)−12等价于k<()min,可令ℎ(x)=,ℎ′(x)=,记m(x)=x−2−ln x,m′(x)=1−>0,所以m(x)为(1, +∞)上的递增函数,且m(3)=1−ln3<0,m(4)=2−ln4>0,所以∃x0∈(3, 4),m(x0)=0,即x0−2−ln x0=0,所以ℎ(x)在(1, x0)上递减,在(x0, +∞)上递增,且ℎ(x)min=ℎ(x0)==x0∈(3, 4),所以k的最大整数解为3;(Ⅲ)证明:g(x)=x2−a ln x,g′(x)=2x−==0,可得x0=,当x∈(0,),g′(x)<0,x∈(,+∞),g′(x)>0,所以g(x)在(0,)上单调递减,(,+∞)上单调递增,而要使g(x)有两个零点,要满足g(x0)<0,即g()=()2−a ln<0可得a>2e,因为0<x1<,x2>,令=t(t>1),由f(x1)=f(x2)⇒x12−a ln x1=x22−a ln x2,即x12−a ln x1=t2x12−a ln tx1⇒x12=,而x1+3x2>4x0⇔(3t+1)x1>2⇔(3t+1)2x12>8a,即(3t+1)2•>8a,由a>0,t>1,只需证(3t+1)2ln t−8t2+8>0,令ℎ(t)=(3t+1)2ln t−8t2+8,则ℎ′(t)=(18t+6)ln t−7t+6+,令n(t)=(18t+6)ln t−7t+6+,则n′(t)=18ln t+11+>0(t>1),故n(t)在(1, +∞)上递增,n(t)>n(1)=0;故ℎ(t)在(1, +∞)上递增,ℎ(t)>ℎ(1)=0;∴x1+3x2>4x0.【考点】利用导数研究函数的最值利用导数研究函数的单调性【解析】(Ⅰ)求得f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线方程;由导数大于0,可得增区间;导数小于0,可得减区间,注意定义域;(Ⅱ)xf′(x)−f(x)>x2+6k(1−)−12等价于k<()min,可令ℎ(x)=,求得导数,再构造函数,求得导数,判断单调性可得ℎ(x)的单调性,以及最小值,即可得到所求k的最大整数解;(Ⅲ)求得g(x)的导数和单调性,由极小值小于0,可得a>2e,再由分析法,注意构造函数,求得导数和单调性,即可得证.【解答】(1)f(x)=x2−4x−6ln x的导数为f′(x)=2x−4−,可得f′(1)=−8,f(1)=−3,所以f(x)在(1, f(1))处的切线方程为y+3=−8(x−1)即y=−8x+5;由f′(x)=(x+1)(x−3),由f′(x)>0,可得x>3;由f′(x)<0,可得0<x<3,所以f(x)的单调递减区间为(0, 3),单调递增区间为(3, +∞);(2)xf′(x)−f(x)>x2+6k(1−)−12等价于k<()min,可令ℎ(x)=,ℎ′(x)=,记m(x)=x−2−ln x,m′(x)=1−>0,所以m(x)为(1, +∞)上的递增函数,且m(3)=1−ln3<0,m(4)=2−ln4>0,所以∃x0∈(3, 4),m(x0)=0,即x0−2−ln x0=0,所以ℎ(x)在(1, x0)上递减,在(x0, +∞)上递增,且ℎ(x)min=ℎ(x0)==x0∈(3, 4),所以k的最大整数解为3;(Ⅲ)证明:g(x)=x2−a ln x,g′(x)=2x−==0,可得x0=,当x∈(0,),g′(x)<0,x∈(,+∞),g′(x)>0,所以g(x)在(0,)上单调递减,(,+∞)上单调递增,而要使g(x)有两个零点,要满足g(x0)<0,即g()=()2−a ln<0可得a>2e,因为0<x1<,x2>,令=t(t>1),由f(x1)=f(x2)⇒x12−a ln x1=x22−a ln x2,即x12−a ln x1=t2x12−a ln tx1⇒x12=,而x1+3x2>4x0⇔(3t+1)x1>2⇔(3t+1)2x12>8a,即(3t+1)2•>8a,由a>0,t>1,只需证(3t+1)2ln t−8t2+8>0,令ℎ(t)=(3t+1)2ln t−8t2+8,则ℎ′(t)=(18t+6)ln t−7t+6+,令n(t)=(18t+6)ln t−7t+6+,则n′(t)=18ln t+11+>0(t>1),故n(t)在(1, +∞)上递增,n(t)>n(1)=0;故ℎ(t)在(1, +∞)上递增,ℎ(t)>ℎ(1)=0;∴x1+3x2>4x0.。

高三第三次月考数学试卷及答案

高三第三次月考数学试卷及答案

n高三第三次月考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至5页,共150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和座位号填写在答题卡上。

2.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

参考公式:球的表面积、体积公式24S πR =,343V πR =,其中R 为球的半径. 第Ⅰ卷 (选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.复数(i 为虚数单位)的实部和虚部相等,则实数b 的值为( )A. 一1B. 一2 C. 一3D. 1A.{x|x <-1或x >2}B. {x|x ≤-1或x >2}C.{x|x <-1或x ≥ 2}D. {x|x ≤-1或x ≥2}3A .等腰梯形B .菱形C .矩形D .正方形4.函数2sin sin cos y x x x =+的最小正周期T= ( )5.右图是一个算法的程序框图,该算法输出的结果是( ) A .21 B .32C .43 D .546.设a ,b 是不同的直线,α、β是不同的平面,则下列命题:①若,,//;a b a b αα⊥⊥则 ②若//,,;a a ααββ⊥⊥则 ③若,,//;a a βαβα⊥⊥则 ④若,,,.a b a b αβαβ⊥⊥⊥⊥则 其中正确命题的个数是 ( )A .0B .1C .2D .37. 函数ax x x f +=ln )(存在与直线02=-y x 平行的切线,则实数a 的取值范围是( )A. ]2,(-∞B. )2,(-∞C. ),2(+∞D. ),0(+∞8. 已知1010,310x x y x y x y -≤⎧⎪-+≥-⎨⎪+-≥⎩则2的取值范围是( )A. ]2,3[-B. ]2,3[--C. ]3,4[--D. ]2,4[- 9. 设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是 ( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值11.将正方形ABCD 沿对角线BD 折成直二面角后,有下列四个结论:(1)BD AC ⊥ (2)ACD ∆是等边三角形 (3)AB 与平面BCD 的夹角成60° (4) AB 与CD 所成的角为60° 其中正确的命题有 ( )A .1个B .2个C .3个D .4个12.已知双曲线22221x y ab-=,过其右焦点且垂直于实轴的直线与双曲线交于M 、N 两点,O是坐标原点.若OM ON ⊥,则双曲线的离心率为( )A.B.C.D.第Ⅱ卷(非选择题90分)二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知函数()sin()f x x ωφ=+)2||,0,,(πφω<>∈R x 的部分图象如图所示,则)(x f 的解析式是14.设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过1F 的直线与E 相交于B A ,两点,且|||,||,|22BF AB AF 成等差数列,则||AB 的长为 . 15.已知球O 的表面积为,点A ,B ,C 为球面上三点,若,且AB=2,则球心O到平面ABC 的距离等于__________________.16.在ABC ∆中,内角C B A ,,的对边分别是a b c ,,,若22a b -=,sin C B =,则A =三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:15 25 20 10 30 次数a(Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率. 18. (本小题满分12分)已知函数132)(23+-=ax x x f .(1)若1=x 为函数)(x f 的一个极值点,试确定实数a 的值,并求此时函数)(x f 的极值; (2)求函数)(x f 的单调区间.19.(本题满分12分)如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形.(Ⅰ)求证:DM //平面APC ; (Ⅱ)求 证:平面ABC ⊥平面APC ;(Ⅲ)若BC =4,AB =20,求三棱锥D —BCM 的体积.20.(本小题满分12分){}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(Ⅰ)求{}n a 、{}n b 的通项公式;(Ⅱ)求数列{}nna b 的前n 项和n S 。

高三数学第三次月考试题(含解析)

高三数学第三次月考试题(含解析)

——————————新学期新成绩新目标新方向——————————2019届高三数学第三次月考试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】A【解析】由已知,故选A.2. 设集合为,,则()A. B. C. D.【答案】B【解析】由已知可得,,为不能被整除的数,为整数,又分母相同,故,故选B.3. 已知焦点在轴上的双曲线的渐近线方程为,则该双曲线的离心率为()A. B. C. 或 D. 2或【答案】A【解析】因为焦点在轴上的双曲线的渐近线方程为,所以,故选A.4. 一支田径队有男运动员40人,女运动员30人,要从全体运动员中抽取一个容量为28的样本来研究一个与性别有关的指标,则抽取的男运动员人数为()A. 20B. 18C. 16D. 12【答案】C【解析】因为田径队男运动员,女运动员人,所以这支田径队共有人,用分层抽样的方法从该队的全体运动员中抽取一个容量为的样本,所以每个个体被抽到的概率是,因为田径队有男运动员人,所以男运动员要抽取人,故选C.5. 等差数列中,是函数的两个零点,则的前9项和等于()A. -18B. 9C. 18D. 36【答案】C【解析】等差数列中,是函数两个零点,的前项和,,故选C...................6. 已知,则()A. 0B. 1C. 32D. -1【答案】A【解析】由二项展开式的通项公式,可知都小于.则.在原二项展开式中令,可得.故本题答案选.7. 下图所示中,为某次考试三个评阅人对同一道题的独立评分,为该题的最终得分,当,,时,等于()A. 11B. 10C. 7D. 8【答案】D【解析】当,时,不满足,,故此时输入的值,并判断,若满足条件,此时,解得,这与与条件矛盾,若不满足条件,此时,解得,此时不成立,符合题意,综上所述,,故选D.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 已知的面积为12,如果,则的面积为()A. 4B. 5C. 6D. 7【答案】C【解析】设,以为邻边作平行四边形,连接则,,,,所以可得的面积为,故选C.9. 已知,,,,从这四个数中任取一个数使函数有极值点的概率为()A. B. C. D. 1【答案】B【解析】对求导得若函数有极值点,则有2个不相等的实数根,故,解得,而满足条件的有2个,分别是,故满足条件的概率故选:B.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,解题时准确理解题意是解题的关键.10. 已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,且满足则其外接球的表面积为()A. B. C. D.【答案】B【解析】试题分析:由题可知,O为△ABC的重心,△ABC外接圆的半径为,且三棱锥的高为1.故∴球==,故选D考点: 三棱锥外接球的半径 球的表面积公式11. 已知为抛物线的焦点,过作两条夹角为的直线,交抛物线于两点,交抛物线于两点,则的最大值为()A. B. C. D.【答案】D【解析】设直线的倾斜角为,则的倾斜角为,由过焦点的弦长公式,可得,,所以可得,的最大值为,故选D.12. 已知,函数对任意有成立,与的图象有个交点为,…,,则()A. B. C. D.【答案】D【解析】化简,的图象关于对称,由可得,可得的图象也关于对称,因此与的图象的个交点为,…,,也关于对称,所以,,设,则,两式相加可,同理可得,,故选D.【方法点睛】本题主要考函数的对称性、函数的图象与性质、倒序相加法求和以及数学的转化与划归思想. 属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将等式与解析式转化为对称问题,将对称问题转化为倒序相加求和.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. __________.【答案】1【解析】由,故答案为.14. 在中,三顶点,,,点在内部及边界运动,则最大值为__________.【答案】【解析】画出符合题意的的平面区域如图:(阴影部分),由得,平移直线,由平移可知当直线,经过时,直线的截距最小,此时取得最大值,代入,即的最大值是,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 若半径为1的球与的二面角的两个半平面切于两点,则两切点间的球面距离(即经过两点的大圆的劣弧长)是__________.【答案】【解析】画出图形,如图,在四边形中,是球的大圆的切线,,,两切点间的球面距离是弧,故答案为.16. 在数1和2之间插入个正数,使得这个数构成递增等比数列,将这个数的乘积记为,令,,______.【答案】【解析】设在数和之间插入个正数,使得这个数构成递增等比数列为,则,即为此等比数列的公比,,,由,又,,,,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 不是直角三角形,它的三个角所对的边分别为,已知. (1)求证:;(2)如果,求面积的最大值.【答案】(1)见解析;(2)48【解析】试题分析:(1)由,根据正弦定理及两角和的正弦公式化简可得,因为不是直角三角形,所以,由正弦定理可得;(2)视为定点,求出满足条件下的轨迹为一个圆,圆心在直上,当上升到离直线最远时面积最大.试题解析:(1)由,根据正弦定理可得,,因为不是直角三角形,所以,由正弦定理可得;(2)方法一:b=2a.c=12,余弦定理用a表示cosC,表示出sinC,进而用a表示出,求出该函数的最大值.(最费力的做法)方法二:视A.B为定点,求出满足b=2a条件下C的轨迹为一个圆,圆心在直线AB上,当C上升到离直线AB最远时面积最大。

湖南省长沙市2024-2025学年高三上学期第三次月考数学试题含答案

湖南省长沙市2024-2025学年高三上学期第三次月考数学试题含答案

湖南2025届高三月考试卷(三)数学(答案在最后)时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A.7B.8C.15D.162.“11x -<”是“240x x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是()3,4a a ,其中0a ≠,则sin2α=()A.43B.725C.2425D.2425-4.设向量a ,b 满足a b += a b -=a b ⋅ 等于()A. B.2C.5D.85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m 的取值范围是()A.1m ≥ B.01m <≤C.05m <<,且1m ≠ D.1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A.13B.23C.23- D.13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =,11A B =棱台的高为()A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列ab ,()()()()()()11,22,,11a b a b a n b n cd +++⋅++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若2024220240122024(12)x a a x a x a x +=++++ ,则下列正确的是()A.02024a = B.20240120243a a a +++= C.012320241a a a a a -+-++= D.12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A.()f x 与()g x 有相同的零点B.()f x 与()g x 有相同的最大值点C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()11,A x y ,()22,B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A.5OA OB ⋅=-B.直线MN 恒过定点C.点M 的轨迹方程是()22(1)10y x y -+=≠D.AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数1z ,2z 的模长为1,且21111z z +=,则12z z +=________.13.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 已知5a =,4b =,()31cos 32A B -=,则sin B =________.14.若正实数1x 是函数()2e e xf x x x =--的一个零点,2x 是函数()()()3e ln 1e g x x x =---的一个大于e的零点,则()122e ex x -的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:101.12.594≈,101.259.313≈)16.(本小题满分15分)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,222AD AB BC ===.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.17.(本小题满分15分)已知函数()e sin cos x f x x x =+-,()f x '为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点为1F 、2F ,P 为椭圆C 上一动点,设12F PF θ∠=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点M 、N (M 在B ,N 之间),若Q 为椭圆C 上一点,且OQ OM ON =+ ,①求OBMOBNS S 的取值范围;②求四边形OMQN 的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数X 的均值11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑)(2)对于两个离散型随机变量ξ,η,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()11,m i i ijj p x p x p x y ξ====∑,()()()21,njjiji p y p y p x y η====∑)ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}{}{}()()1,,j i i j j i i i P y x p x y P y x P x p x ηξηξξ=======∣.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑.(ⅰ)上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.湖南2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C.2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,44tan 33y a x a α===,22sin cos 2tan 24sin211tan 25ααααα===+,故选C.4.B 【解析】()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为13r =,24r =,过点A ,1A ,1O ,2O 的截面如图:24OO ==,13OO ==,211h OO OO ∴=-=,故选A.8.B 【解析】由题意,得6c a =+,6d b =+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦,整理得()321ab a b ++=,所以773aba b +=-<.因为a ,b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由2024220240122024(12)x a a x a x a x +=++++ ,两边同时求导得202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC.10.ACD 【解析】()4f x x π⎛⎫=+ ⎪⎝⎭,()3244g x x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.令()0f x =,则4x k ππ=-+,k ∈Z ;令()0g x =,则34x k ππ=+,k ∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是24k ππ+,k ∈Z ,()g x 的最大值点是324k ππ-+,k ∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为4x k ππ=+,k ∈Z ,曲线()y g x =的对称轴为54x k ππ=+,k ∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:设直线AB 的方程为2y tx =+(斜率显然存在),211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得124x x t +=,128x x =-,A.221212444x x y y =⋅=,1212844OA OB x x y y ⋅=+=-+=- ,故A 错误;B.抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点()0,0,故B 正确;C.由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()22(1)10y x y -+=≠,故C 正确;D.22222222211t t MN t t +---==++,()22222212121411632412AB t x x x x t t t t =++-=++=++则()2222222221122222221t AB t t t MNt t t t +⎫++==+++++,22t m +=,2m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1f m m m =-,2m ≥()2110f m m=+>',当2m ≥()f m 单调递增,所以min ()22f m f==,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()1i ,z a b a b =+∈R ,()2i ,z c d c d =+∈R ,因为21111z z +=,所以1222111z z z z z z +=.因为111z z =,221z z =,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1a c +=,0b d +=,所以()()12i 1z z a c b d +=+++=.13.4【解析】在ABC ∆中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B -为锐角且()37sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin A B -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故sin 4B =.14.e 【解析】依题意得,1211e e 0xx x --=,即1211e e xx x -=,10x >,()()322e ln 1e 0x x ---=,即()()322e ln 1e x x --=,2e x >,()()()131122e e e e ln 1x x x x x ∴-==--,()()()11122e e ln 1e x x x x +∴-=--,()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦,又2ln 1x > ,2ln 10x ->,∴同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+'=-+,0x > ,0e e 1x ∴>=,e 10x ∴->,又1e 0x x +>,()0F x ∴'>,()F x 单调递增,12ln 1x x ∴=-,()()()31222222e ln 1e e e e e ex x x x ---∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()1091.2511125%(125%)33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为1010(110%)25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD ∆中,2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠.同理,在ABC ∆中,有222cos AC ABC =-∠.又因为180ABC ADC ∠+∠= ,所以1cos 2ADC ∠=,()0,180ADC ∠∈ ,所以60ADC ∠=,AC =,故222AC CD AD +=,即AC CD ⊥.又因为PQ AC Q = ,PQ ,AC ⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD 平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,AQ DQ ==.故Q 为AC ,BD 的交点,且2AQ ADCQ BC==.所以233AQ AC ==,3PQ ==.过C 作直线PQ 的平行线l ,则l ,AC ,CD ,两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()1,0,0D ,3260,,33P ⎛⎫⎪ ⎪⎝⎭,()A ,13,,022B ⎛⎫- ⎪ ⎪⎝⎭,所以()1,0,0CD =,0,,33CP ⎛⎫= ⎪ ⎪⎝⎭,0,,33AP ⎛⎫=- ⎪ ⎪⎝⎭,1,,263BP ⎛=- ⎝⎭ .设平面PCD 的法向量为(),,m x y z =,则()0,0,3m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩取()0,m =- .同理,平面PAB的法向量)1n =-,1cos ,3m n m n m n ⋅==,……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin xf x x x =+'+,设()e cos sin xh x x x =++,则()e sin cos xh x x x =+'-,当0x ≥时,设()e 1x p x x =--,()sin q x x x =-,()e 10x p x ='-≥ ,()1cos 0q x x ='-≥,()p x ∴和()q x 在[)0,+∞上单调递增,()()00p x p ∴≥=,()()00q x q ≥=,∴当0x ≥时,e 1x x ≥+,sin x x ≥,则()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥',∴函数()e cos sin x h x x x =++在[)0,+∞上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.(2)由已知得()e sin cos 21xg x x x x =+---.①当0x ≥时,()()e cos sin 220x g x x x f x =+='+--'≥ ,()g x ∴在[)0,+∞上单调递增,又()010g =-< ,()e 20g πππ=->,∴由零点存在定理可知,()g x 在[)0,+∞上仅有一个零点.……(10分)②当0x <时,设()2sin cos (0)e x x xm x x --=<,则()()2sin 10e xx m x -=≤',()m x ∴在(),0-∞上单调递减,()()01m x m ∴>=,e cos sin 20x x x ∴++-<,()e cos sin 20x g x x x ∴=++-<',()g x ∴在(),0-∞上单调递减,又()010g =-< ,()e 20g πππ--=+>,∴由零点存在定理可知()g x 在(),0-∞上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,P x y ,c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S ∆最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠=∠=,所以c =,又因为12F PF S bc ∆==,所以1b =,c =.从2a =,∴而椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()11: 2.,l y kx M x y =+,()22,N x y .……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴=.……(6分)联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()222Δ(16)4121416430k k k ∴=-⨯⨯+=->,234k ∴>.……(9分)又1221614k x x k -+=+ ,12212014x x k =>+,1x ∴,2x 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫⎪++⎝⎭∴===++++.234k > ,()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭,211216423x x x x ∴<++<.令()120x x λλ=≠,则116423λλ<++<,解得()1,11,33λ⎛⎫∈ ⎪⎝⎭,()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ .……(12分)(3)OQ OM ON =+,()1212,Q x x y y ∴++.且四边形OMQN 为平行四边形.由(2)知1221614k x x k -+=+,()121224414y y k x x k∴+=++=+,22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d ==……(16分)574OMQN S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭,1k =,2,3,…,所以()56k k k P X k ⋅==,1k =,2,3,…,()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑.故116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(ⅰ){}E ηξ∣所有可能的取值为:{}i E x ηξ=∣,1,2,,i n = .且对应的概率{}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣,1,2,,i n = .所以{}()()()()()111111111[{}],,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣,又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ⅱ){}01E E ηξη==+∣,156p =;{}12E E ηξη==+∣,2536p =;{}22E η==,3136p =,{}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。

北京高三下学期3月月考数学试卷(解析版)

北京高三下学期3月月考数学试卷(解析版)

2023北京汇文中学高三3月月考数学一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,那么( )()(){|210}A x x x =∈+-<Z {}2,1B =--A B ⋃=A. B. {}2,1,0,1--{}2,1,0--C. D.{}2,1--{}1-【答案】B 【解析】【分析】求解一元二次不等式从而求解集合,再根据并集的定义求解. A A B ⋃【详解】由,得, ()(){|210}A x x x =∈+-<Z {}1,0A =-结合,可知. {}2,1B =--{}2,1,0A B =-- 故选:B . 2. 如果,那么下列不等式一定成立的是( )0a b >>A. B.C. D.a b <11a b>1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ln ln a b >【答案】D 【解析】【分析】根据不等式的性质判断A 、B ,再根据指数函数的性质判断C ,根据对数函数的性质判断D ; 【详解】解:因为,所以,故A 错误;0a b >>0a b >>因为,所以,故B 错误;0a b >>11ab<因为,且在定义域上单调递减,所以,故C 错误;0a b >>12xy ⎛⎫= ⎪⎝⎭1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭因为,且在定义域上单调递增,所以,故D 正确;0a b >>ln y x =()0,∞+ln ln a b >故选:D3. 如果平面向量,,那么下列结论中正确的是( ).(2,0)a =(1,1)b =A. B. C. D.||a b |=|a b ⋅= ()a b b -⊥v v v a b【答案】C 【解析】【详解】由平面向量,知:(2,0)a = (1,1)b =在中,,A ||2a = ||b =r∴,故错误;||||a b ≠A 在中,,故错误;B 2a b ⋅=B 在中,,C (1,1)a b -=-∴,()110a b b -⋅=-=∴,故正确;()a b b -⊥C 在中,∵, D 2011≠∴与不平行,故错误.a bD 综上所述. 故选.C 4. 已知直线m ,n 和平面,如果,那么“m ⊥n”是“m ⊥”的( ) αn ⊂ααA. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【详解】若,则,即必要性成立,m α⊥m n ⊥当时,不一定成立,必须垂直平面内的两条相交直线,即充分性不成立, m n ⊥m α⊥m α故“”是“”的必要不充分条件, m n ⊥m α⊥故选:.B 5. 在等比数列中,,,则等于( ) {}n a 13a =1239a a a ++=456a a a ++A. 9 B. 72C. 9或70D. 9或72-【答案】D 【解析】【分析】利用等比数列的性质求出公比,即可求出的值. 456a a a ++【详解】由题意,,N n *∈在等比数列中,,, {}n a 13a =1239a a a ++=设公比为,q ,即,解得或,21119a a q a q ∴++=23339q q ++=2q =-1q =∴,()334561239a a a a a q a q ++=++=当时,, 1q =4569a a a ++=当时,.2q =45672a a a ++=-故选:D.6. 下列函数中,定义域为的奇函数是 R A. B. C. D.21y x =+tan y x =2x y =sin y x x =+【答案】D 【解析】【详解】定义域为R,所以舍去B,又为偶函数,为非奇非偶函数, 21y x =+y =2x 故选:D.7. 已知双曲线的一个焦点是,则其渐近线的方程为( )2221(0)y x b b-=>(2,0)A. B.0x ±=0y ±=C. D.30x y ±=30x y ±=【答案】B 【解析】【分析】求出的值即得解. b【详解】解:由题得,21+4,b b =∴=所以双曲线的渐近线方程为. y x ==0y ±=故选:B8. 在空间直角坐标系中,正四面体的顶点、分别在轴,轴上移动.若该正四O xyz --P ABC A B x y 面体的棱长是,则的取值范围是( ). 2||OPA. B.C.D.1]-+[1,3]1,2]-1]【答案】A 【解析】【分析】固定正四面体的位置,原点在以为直径的球面上运动,由此根据球的性质可以-P ABC O AB 得到答案.【详解】如图所示,若固定正四面体的位置, -P ABC 则原点在以为直径的球面上运动, O AB 设的中点为, AB M则PM ==所以原点到点的最近距离等于减去球的半径, O P PM M 最大距离是加上球的半径, PM M,11OP -≤≤即的取值范围是. ||OP 1]-+故选:.A9. 如果函数的两个相邻零点间的距离为2,那么()sin (0)f x x x ωωω=+>的值为( ).()()()()1239f f f f ++++LA. 1B.C.D.1-【答案】A 【解析】【分析】利用辅助角公式化简函数,由已知求出,再结合函数式计算作答. ()f x ω【详解】依题意,,函数的周期,而,则,π()2sin(3f x x ω=+()f x 4T =0ω>2ππ2T ω==,ππ()2sin(23f x x =+,, 5π11π(1)(3)2sin2sin 066f f +=+=4π7π(2)(4)2sin 2sin 033f f +=+=所以. ()()()()5π1239(1)2[(1)(2)(3)(4)](1)2sin 16f f f f f f f f f f ++++=++++===L 故选:A10. 如图,已知正方体的棱长为,、分别是棱、上的动点,设1111ABCD A B C D -1E F AD 11B C AE x =,.若棱与平面有公共点,则的取值范围是( )1B F y =1DD BEF x y +A. B.C.D.[]1,213,22⎡⎤⎢⎥⎣⎦3,22⎡⎤⎢⎥⎣⎦[]0,1【答案】A 【解析】【分析】取特殊值和,进行验证,结合排除法可得出结论.1x y ==0x =1y =【详解】由题意,若,则棱与平面交于点,符合题意,此时; 1x y ==1DD BEF D 2x y +=若,,则棱与平面交于线段,符合题意,此时. 1x =0y =1DD BEF 1DD 1x y +=排除B 、C 、D 选项. 故选:A .【点睛】本题考查线面位置关系,考查特殊值法的运用,属于中档题.二、填空题:共5小题,每小题5分,共25分.11. 复数____. 1i1i+=-【答案】 i 【解析】【分析】利用复数的代数形式的四则运算法则求解.【详解】. ()()()21i 1i2i i 1i 1i 1i 11++===--++故答案为:.i 12. 在的展开式中,常数项是__________(用数字作答). 261()x x-【答案】15 【解析】【分析】求出通项,令由此求得展开式中常数项. ()36161 rr r r T C x -+=-,3662r r -==,【详解】在的展开式中,通项 621x x ⎛⎫- ⎪⎝⎭()()2612316611 r r r rr r r r T C x x C x (),---+=-=-令 .故展开式中常数项是 , 3662r r -==,()2261 15 C -=,故答案为 15.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 13. 若,则______ ;lg 2lg 21a -==a 【答案】40 【解析】 【分析】利用对数的运算公式,,直接求值即可.log log na a n M M =log log log ()a a a M N MN +=【详解】lg 2lg 21a -=Qlg 2lg 21lg 4lg10lg 40a ∴=+=+=40a ∴=故答案为:4014. 在中,角的对边分别为,若,,,则ABC ,,A B C ,,a b c 3c =π3C =sin 2sin B A ==a __________.【解析】【分析】由正弦定理得到,再由余弦定理求出的值. 2b a =a 【详解】由正弦定理得:,2b a =再有余弦定理得:,22222225591cos 22242a b c a c a C ab a a a +---====⨯⋅解得:. a =故答案为:15. 设函数其中.()3,log ,,x a f x x x a ≤≤=>⎪⎩0a >①若,则______;3a =()9f f =⎡⎤⎣⎦②若函数有两个零点,则的取值范围是______. ()2y f x =-a 【答案】 ①.②.[)4,9【解析】【分析】①代值计算即可;②分别画出与y =2的图象,函数有两个零点,结合图象可得答案.()y f x =()2y f x =-【详解】解:①当时, 3a =()33,log ,3,x f x x x ≤≤=>⎪⎩则, ()39log 92f ==∴()()92f f f ⎡⎤⎣⎦==②分别画出与y =2的图象,如图所示,()y f x =函数有两个零点,结合图象可得4≤a <9, ()2y f x =-故a 的取值范围是. [)4,9;.[)4,9【点睛】本题主要考查函数零点个数的判断,根据函数与方程之间的关系转化为两个函数的交点个数问题是解决本题的关键.注意要利用数形结合.三、解答题:共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 如图,在四边形中,,,,.ABCD //ABCD AB =CD =cos A =1cos 3ADB ∠=(1)求; cos BDC ∠(2)求的长. BC 【答案】(12. 【解析】【分析】(1)计算出、,利用两角和的余弦公式可求得的值; sin A sin ADB ∠cos cosBDC ABD ∠=∠(2)在中,利用正弦定理可求出的长,然后在中利用余弦定理可求得的长. ABD △BD BCD △BC 【详解】(1)因为,,则、均为锐角,cos A =1cos 3ADB ∠=A ADB ∠所以,,,sin A ==sin ADB ∠==()()cos cos cos sin sin cos cos ABD A ADB A ADB A ADB A ADB π∠=--∠=-+∠=∠-∠,13==,则,因此,; //AB CD Q BDC ABD ∠=∠cos cos BDC ABD ∠=∠=(2)在中,由正弦定理可得,ABD △sin sin AB BDADB A=∠可得,sin 3sin AB ABD ADB===∠在中,由余弦定理可得,BCD△2222cos 962311BC BD CD BD CD BDC =+-⋅∠=+-⋅=因此,.BC =【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有、、的齐次式,优先考虑正弦定理“边化角”; a b c (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.17. 如图,在四棱锥中,O 是边的中点,底面.在底面P ABCD -AD PO ⊥,1ABCD PO =ABCD 中,.//,,1,2BC AD CD AD BC CDAD ⊥===(1)求证:平面;//AB POC(2)求二面角的余弦值. B AP D --【答案】(1)证明见解析;(2. 【解析】【分析】(1)证明后可证线面平行;//AB OC (2)以为轴建立空间直角坐标系,用空间向量法求二面角.,,OB OD OP ,,x y z 【详解】(1)由题意,又,所以是平行四边形,所以, BC OA =//BC OA BCOA //AB OC 又平面,平面,所以平面;AB ⊄POC OC ⊂POC //AB POC (2),所以是平行四边形,所以,,而,,//BC OD BC OD =BCDO //OB DC OB CD =CD AD ⊥所以,OB AD ⊥以为轴建立空间直角坐标系,如图,,,OB OD OP ,,x y z 则,,,,,(1,0,0)B (0,1,0)A -(0,0,1)P (1,1,0)AB = (0,1,1)=AP 设平面的一个法向量为,则ABP (,,)n x y z =,取,则,即, 00n AB x y n AP y z ⎧⋅=+=⎨⋅=+=⎩1x =1,1y z =-=(1,1,1)n =- 易知平面的一个法向量是,APD (1,0,0)m =所以cos ,m n m n m n⋅<>===所以二面角. B AP D --【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论;(2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).18. 自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下: 20以下 [)20,30 [)30,40 [)40,50 [)50,60[]60,7070以上 使用人数312 17 6 4 2 0 未使用人数 0314363(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;[)30,50(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人[]50,70X 中年龄在的人数,求随机变量的分布列及数学期望;[)50,60X (Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋. 【答案】;(Ⅱ)详见解析;(Ⅲ)2200 17100【解析】 【分析】(Ⅰ)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人,由概率公式即可得到所求值;(Ⅱ)所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望; X (Ⅲ)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值.【详解】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为. 17100P =(Ⅱ)所有的可能取值为1,2,3,X , ()124236C C 115C P X ===, ()214236C C 325C P X ===. ()304236C C 135C P X ===所以的分布列为XX 1 2 3P 15 35 15所以的数学期望为. X 1311232555EX =⨯+⨯+⨯=(Ⅲ)在随机抽取的100名顾客中,使用自由购的共有人,3121764244+++++=所以该超市当天至少应准备环保购物袋的个数估计为. 4450002200100⨯=【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,是一道综合题. 19.已知函数.2()()x k f x x k e =-(Ⅰ)求的单调区间;()f x (Ⅱ)若对于任意的,都有≤,求的取值范围. (0,)x ∈+∞()f x 1ek 【答案】(Ⅰ)当时,的单调递增区间是和:单调递减区间是,当0k >()f x (,)k -∞-(,)k +∞(,)k k -时,的单调递减区间是和:单调递减区间是.0k <()f x (,)k -∞(,)k -+∞(,)k k -(Ⅱ) . 102⎡⎫-⎪⎢⎣⎭,【解析】【分析】【详解】,令,当时,的情况如下: 221()()x k f x x k e k -'=()0,f x x k ='=±0k >(),()f x f x ' x (,)k -∞-k - (,)k k - k (,)k +∞ ()f x '+0 -0 + ()f x 214k e -所以,的单调递增区间是和:单调递减区间是,当时,与()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x 的情况如下:()f x ' x (,)k -∞k (,)k k - k - (,)k -+∞ ()f x '-0 + 0 - ()f x 0 214k e -所以,的单调递减区间是和:单调递减区间是.()f x (,)k -∞(,)k -+∞(,)k k -(Ⅱ)当时,因为,所以不会有当时,由(Ⅰ)知0k >11(1)k k f k e e++=>1(0,),().x f x e ∀∈+∞≤0k <在上的最大值是所以等价于, 解得()f x (0,)+∞24()k f k e -=1(0,),()x f x e ∀∈+∞≤24()k f k e-=1e ≤故当时,的取值范围是. 10.2k -≤<1(0,),()x f x e ∀∈+∞≤k 102⎡⎫-⎪⎢⎣⎭ 20. 已知椭圆的一个顶点为,焦距为. 2222:1(0)x y E a b a b+=>>(0,1)A (1)求椭圆E 的方程;(2)过点作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点(2,1)P -M ,N ,当时,求k 的值.||2MN =【答案】(1) 2214x y +=(2)4k =-【解析】【分析】(1)依题意可得,即可求出,从而求出椭圆方程;22212b c c a b =⎧⎪=⎨⎪=-⎩a (2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直()11,B x y ()22,C x y 线、的方程,表示出、,根据得到方程,解得即可;AB AC M x N x N M MN x x =-【小问1详解】解:依题意可得,,1b =2c =222c a b =-所以,所以椭圆方程为; 2a =2214x y +=【小问2详解】解:依题意过点的直线为,设、,不妨令()2,1P -()12y k x -=+()11,B x y ()22,C x y 1222x x -≤<≤,由,消去整理得, ()221214y k x x y ⎧-=+⎪⎨+=⎪⎩y ()()22221416816160k x k k x k k +++++=所以,解得,()()()222216841416160k k k k k ∆=+-++>0k <所以,, 212216814k k x x k ++=-+2122161614k k x x k+⋅=+直线的方程为,令,解得, AB 1111y y x x --=0y =111M x x y =-直线的方程为,令,解得, AC 2211y y x x --=0y =221N x x y =-所以 212111N M x x MN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦ ()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++, ()()12212222x x k x x -==++所以,()()122122x x k x x -=++()212124k x x x x =+++⎡⎤⎣⎦ 22221616168241414k k k k k kk ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414k k k k k k k ⎡⎤=+-+++⎣⎦+整理得,解得4k =4k =-21. 设数列.如果,且当时,()12:,,,2n A a a a n ≥ {}()1,2,,1,2,,i a n i n ∈= i j ≠,则称数列A 具有性质.对于具有性质的数列A ,定义数列,()1,i j a a i j n ≠≤≤P P ()121:,,,n T A t t t - 其中. ()111,,1,2,,10,k k k k k a a t k n a a ++⎧==-⎨⎩ <>(1)对,写出所有具有性质的数列A ;():0,1,1T A P (2)对数列,其中,证明:存在具有性质的数列()121:,,,2n E e e e n -≥ {}()0,11,2,,1i e i n ∈=- P A ,使得与为同一个数列;()T A E(3)对具有性质的数列A ,若且数列满足P ()115n a a n -=≥()T A ()0,,1,2,,11,i i t i n i ⎧==-⎨⎩ 为奇数为偶数,证明:这样的数列A 有偶数个.【答案】(1)、、4,1,2,33,1,2,42,1,3,4(2)证明见解析(3)证明见解析 【解析】 【分析】(1)根据数列的定义,得到且,,,确定,按照()T A 4n =12a a >23a a <34a a <21a =14a =或分别讨论可得答案;44a =(2)设数列:中恰有项为1,在按照、、三种情况分别讨E 121,,,n e e e - s 0s =1s n =-01s n <<-论可证结论;(3)按照的奇偶分类讨论,结合数列的定义可证结论.n ()T A 【小问1详解】因为,所以,则():0,1,1T A 13-=n 4n =因为,,,所以,,, 10t =21t =31t =12a a >23a a <34a a <又,{1,2,3,4}(1,2,3,4)i a i ∈=所以,或,21a =14a =44a =当时,,14a =342,3a a ==当时,或,44a =133,2a a ==132,3a a ==综上所述:所有具有性质的数列A 为:、、.P 4,1,2,33,1,2,42,1,3,4【小问2详解】由于数列:,其中, E 121,,,n e e e - {0,1}i e ∈(1,2,3,1,2)i n n =-≥ 不妨设数列:中恰有项为1,E 121,,,n e e e - s 若,则符合题意,0s =:,1,,1A n n - 若,则符合题意,1s n =-:1,2,,A n 若,则设这项分别为, 01s n <<-s 12,,,s k k k e e e 12()s k k k << 构造数列,令分别为, 12:,,,n A a a a L 1211,,1,s k k k a a a +++ 1,2,,n s n s n -+-+ 数列的其余各项分别为, A 12,,,n s m m m a a a - 12()n s m m m -<<< ,1,,1n s n s --- 经检验数列符合题意.A 【小问3详解】对于符合题意的数列,1,2:,,(5)n A a a a n ≥ ①当为奇数时,存在数列符合题意,n 11:,,,n n A a a a -'且数列与不同,与相同, A A '()T A ()T A '按这样的方式可由数列构造出数列, A 'A 所以为奇数时,这样的数列有偶数个, n A 当时,这样的数列也有偶数个, 3n =A ②当为偶数时,n 如果是数列中不相邻的两项,交换与得到数列符合题意, ,1n n -A n n 1-A '且数列与不同,与相同, A A '()T A ()T A '按这样的方式可由数列构造出数列, A 'A 所以这样的数列有偶数个,A 如果是数列中相邻的两项,由题设知,必有,,, ,1n n -A 1n a n -=1n a n =-12a n =-除这三项外,是一个项的符合题意的数列, 232,,,n a a a - 3n -A 由①可知,这样的数列有偶数个, A 综上,这样的数列有偶数个.A 【点睛】关键点点睛:正确理解数列的定义,并利用定义求解是解题关键. ()T A。

炎德英才大联考2025届高三上学期月考数学试卷(三)

炎德英才大联考2025届高三上学期月考数学试卷(三)

大联考长郡中学2025届高三月考试卷(三)数学本试卷共8页。

时量120分钟。

满分150分。

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{1,2}A =,{2,3}B =,{1,2,3,4}C =,则( ) A .A B =∅B .A BC =C .A C C =D .A C B =2.在复平面内,复数1z 对应的点和复数212i z =+对应的点关于实轴对称,则12z z =( )A .5B C .34i −−D .34i −+3.已知向量a ,b满足3a = ,b = ,且()a ab ⊥+ ,则b 在a 方向上的投影向量为( )A .3B .3−C . 3a −D .a −4.已知函数()f x 的定义域为()(),54,3f f x =+R 是偶函数,12,x x ∀∈[3,)+∞,有()()12120f x f x x x −>−,则( ) A .()04f <B .()14f =C .()24f >D .()30f <5.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为( ) A .24B .32C .96D .1286.已知曲线e x y =在1x =处的切线l 恰好与曲线ln y a x =+相切,则实数a 的值为( ) A .1B .2C .3D .47.在直角坐标系中,绕原点将x 轴的正半轴逆时针旋转角π02αα<<交单位圆于A 点、顺时针旋转角ππ42ββ <<交单位圆于B 点,若A 点的纵坐标为1213,且OAB △,则B 点的纵坐标为( )A .B .C .D .8.已知双曲线()2222:10,0x y C a b a b−=>>的左顶点为(),,0A F c 是双曲线C 的右焦点,点P 在直线2x c =上,且tan APF ∠,则双曲线C 的离心率是( )A .B .C .4+D .2二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.函数()()π3sin 0,2f x x ωϕωϕ=+><的部分图象如图所示,则下列匀选项中正确的有( )A .()f x 的最小正周期为2πB .2π3f是()f x 的最小值 C .()f x 在区间π0,2上的值域为33,22−D .把函数()y f x =的图象上所有点向右平移π12个单位长度,可得到函数3sin 2y x =的图象 10.在长方体1111ABCD A B C D −中,1222AB AA AD ===,点P 满足AP AB AD λµ=+,其中[][]0,1,0,1λµ∈∈,则( )A .若1B P 与平面ABCD 所成的角为π4,则点P 的轨迹长度为π4B .当λµ=时,1B P ∥平面11ACD C .当12λ=时,有且仅有一个点,使得1A P BP ⊥D .当2µλ=时,1A P DP +11.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线()2:20C y px p =>绕其顶点分别逆时针旋转90,180,270°°°后所得三条曲线与C 围成的(如图阴影区域),,A B 为C 与其中两条曲线的交点,若1p =,则( )A .开口向上的抛物线的方程为212y x = B .4AB =C .直线x y t +=截第一象限花瓣的弦长的最大值为34D .阴影区域的面积大于4三、填空题(本大题共3小题,每小题5分,共15分.)12.若()523450123451x a a x a x a x a x a x −=+++++,则2a =_____.13.已知函数()24,1,ln 1,1,x x a x f x x x ++<=+≥ 若函数()2y f x =−有3个零点,则实数a 的取值范围是_____. 14.设n T 为数列{}n a 的前n 项积,若n n T a m +=,其中常数0m >,数列1n T为等差数列,则m =_____. 四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)记ABC △的内角,,A B C 所对的边分别为,,a b c ,已知()()b c a b c a bc +−++=. (1)求A ;(2)若D 为BC 边上一点,3,4,BAD CAD AC AD ∠=∠=sin B . 16.(本小题满分15分)如图,三棱柱111ABC A B C −中,11160,,,1,2A AC AC BC A C AB AC AA ∠=°⊥⊥==.(1)求证:1A C ⊥平面ABC ;(2)若直线1BA 与平面11BCC B ,求平面11A BB 与平面11BCC B 夹角的余弦值. 17.(本小题满分15分)人工智能(AI )是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某公司研究了一款答题机器人,参与一场答题挑战.若开始基础分值为()*m m ∈N 分,每轮答2题,都答对得1分,仅答对1题得0分,都答错得-1分.若该答题机器人答对每道题的概率均为12,每轮答题相互独立,每轮结束后机器人累计得分为X ,当2X m =时,答题结束,机器人挑战成功,当0X =时,答题也结束,机器人挑战失败.(1)当3m =时,求机器人第一轮答题后累计得分X 的分布列与数学期望; (2)当4m =时,求机器人在第6轮答题结束且挑战成功的概率. 18.(本小题满分17分).已知椭圆()2222:10x y C a b a b +=>>3.,A B 是椭圆的左、右顶点,过,A B 分别做椭圆的切线,取椭圆上x 轴上方任意两点,P Q (P 在Q 的左侧),并过P ,Q 两点分别作椭圆的切线交于R 点,直线RP 交点A 的切线于I ,直线RQ 交点B 的切线于J ,过R 作AB 的垂线交IJ 于K .(1)求椭圆C 的标准方程;(2)若()1,2R ,直线RP 与RQ 的斜率分别为1k 与2k ,求12k k 的值; (3)求证:IK IA JKJB=.19.(本小题满分17分)对于函数()f x ,若实数0x 满足()00f x x =,则称0x 为()f x 的不动点.已知0a ≥,且()21ln 12f x x ax a =++−的不动点的集合为A .以min M 和max M 分别表示集合M 中的最小元素和最大元素.(1)若0a =,求A 的元素个数及max A ; (2)当A 恰有一个元素时,a 的取值集合记为B . (i )求B ;(ii )若min a B =,数列{}n a 满足()112,n n nf a a a a +==,集合n C =*141,,3nk k a n = −∈∑N .求证:*4,max 3n n C ∀∈=N .长郡中学2025届高三月考试卷(三)数学参考答案题号 1 2 3 4 5 6 7 8 91011答案CADBCBBDBD BCD ABD一、选择题(本大题共8小题,每小题5分,共40分.)1.C 【解析】由题意,{2},{1,2,3},{1,2,3,4},{1,2}A B A B A C C A C ===== ,对比选项可知只有C 选项符合题意.2.A 【解析】因为复数1z 对应的点和复数212i z =+对应的点关于实轴对称,所以112i z =−,所以()()1212i 12i 5z z =−+=. 3.D 【解析】因为()a ab ⊥+,则()290a a b a a b a b ⋅+=+⋅=+⋅= ,故9a b ⋅=− ,所以b 在a 方向上的投影向量为299a b a a a a⋅−⋅=⋅=−.4.B 【解析】因为12,[3,)x x ∀∈+∞,有()()12120f x f x x x −>−,所以()f x 在[3,)+∞上单调递增,又()3f x +是偶函数,则()3f x+的图象关于0x =对称,所以()f x 的图象关于3x =对称,则()()()0654f f f =>=,A 错误;()()154f f ==,故选项B 正确;()()()2454f f f =<=,故选项C 错误;()3f的正负不能确定,故选项D 错误.5.C 【解析】如图,设P 在底面的投影为G ,易知正四棱锥P ABCD −的外接球球心在PG 上, 由题意,球O 的半径5,853PO AO OG ====−=,所以4,8AG PA AB === 故PAB △中,边AB所以该正四棱锥的侧面积为14962××=.6.B 【解析】由e x y =得e xy ′=,又切点为(1,e ),故e k =,切线l 为e y x =, 设l 与曲线ln y a x =+的切点为()001,e ,x x y x ′=,所以01e x =,解得切点为1,1e, 所以1ln11ea a +=−=,解得2a =. 7.B 【解析】由A 点的纵坐标为1213,得125sin ,cos 1313αα==,显然ππ42α<<, 而()111sin 2AOB S αβ=×××+=△()sin αβ+,又ππ42β<<, 因此ππ2αβ<+<,3π4αβ+=,有3π4βα=−,)3π512sin sin cos sin 41313βααα=−=+=+=显然B 点在第四象限,所以B 点的纵坐标为 8.D 【解析】如图,设直线2x c =与x 轴交于点,H PH m =, 则tan ,tan 2m mPFH PAH c a c∠=∠=+. 因为APF PFH PAH ∠=∠−∠,所以()tan tan tan tan 1tan tan PFH PAHAPF PFH PAH PFH PAH∠−∠∠=∠−∠=+∠⋅∠()22222212m m m a c a c c a c m m ac c ac c m m c a c m−+++==++++⋅++.因为22ac c m m++≥m =时,等号成立,所以tan APF ∠≤,整理得22430c ac a −−=,则2430e e −−=,解得2e =+.二、选择题(本大题共3小题,每小题6分,共18分.)9.BD 【解析】∵()()3sin f x x ωϕ=+,由题图知33π44T =,∴πT =,2ω=,故A 错误; ∵π2π623T +=,∴可得2π3f是()f x 的最小值,故B 正确; ∵ππ3sin 2366f ϕ=×+=,∴πsin 13ϕ+=,∴π2π6k ϕ=+,k ∈Z , 又π2ϕ<,∴π6ϕ=,∴()π3sin 26f x x =+,∵π0,2x∈ ,∴ππ7π2,666x +∈ , ∴()π33sin 2,362f x x=+∈−,故C 错误; 将()f x 的图象向右平移π12个单位长度得到的图象为πππ3sin 23sin 212126f x x x−=−+=,故D 正确.10.BCD 【解析】对于A 中,连接BP ,在长方体1111ABCD A B C D −中,可得1BB ⊥平面ABCD ,所以1B PB ∠即为1B P 与平面ABCD 所成的角,即1π4B PB ∠=,在直角1BB P △中,可得11BP BB ==,所以点P 的轨迹为以B 为圆心,半径为1的14圆,其周长为1π2π142××=,所以A 错误;对于B 中,当λµ=时,因为1222AB AA AD ===,且点P 满足AP AB AD λµ=+,所以点P 在线段AC 上,连接11,,AC AB B C ,在长方体1111ABCD A B C D −中,可得1111,AC A C B C A D ∥∥,因为AC ⊄平面11AC D ,且11A C ⊂平面11A C D ,所以AC ∥平面11AC D ,同理可证1B C ∥平面11A C D ,又因为1AC B C C = ,且1,AC B C ⊂平面1AB C ,所以平面1AB C ∥平面11A C D ,因为1B P ⊂平面1AB C ,所以1B P ∥平面11A C D ,所以B 正确;对于C 中.当12λ=时,因为1222AB AA AD ===,且点P 满足AP AB AD λµ=+ ,取,AB CD 的中点,E F ,过接,,EF AF BF ,可得点P 在线段EF 上运动,若1A P BP ⊥,因为1AA ⊥平面ABCD 且BP ⊂平面ABCD ,所以111111,,,AA BP A P A A A A P A A ⊥=⊂ 平面1A AP 、故BP ⊥平面1A AP ,又AP ⊂平面1A AP ,故BP AP ⊥,所以点P 在以AB 为直径的圆上,又因为22AB AD ==,可得线段EF 与以AB 为直径的圆只有一个交点F ,所以当点P 与F 重合时,即当且仅当P 为CD 的中点时,能使得1A P BP ⊥,所以C 正确;对于D 中,当2µλ=时,因为1222AB AA AD ===,且点P 满足AP AB AD λµ=+ ,取,AB CD 的中点,E F ,连接,AF EF ,可得点P 在线段AF 上运动,沿着AF 将直角1AA F △和平面ADF △展开在一个平面上,如图所示,在1AA D △中,113π1,1,4AA AD A AD ==∠=,由余弦定理得2221113π2cos24A D AA AD AA AD =+−⋅=+,所以1A D =1A P DP +的最小值为,所以D 正确.11.ABD 【解析】由题意,开口向右的抛物线方程为2:2C y x =,顶点在原点,焦点为11,02F,将其逆时针旋转90°后得到的抛物线开口向上,焦点为210,2F,则其方程为22x y =,即212y x =,故A 正确; 对于B ,根据A 项分析,由222,2y x x y = =可解得0x =或2x =,即2A x =,代入可得2A y =, 由图象对称性,可得()()2,2,2,2A B −,故4AB =,即B 正确; 对于C ,如图,设直线x y t +=与第一象限花瓣分别交于点,M N ,由2,2,y x t y x =−+ =解得11,M M x t y =+− =− 由2,2,y x t x y =−+ =解得1,1N N x y t = =+− ,即得()11,1,1M t N t +−−+, 则弦长为2MN =−由图知,直线x y t +=经过点A 时t 取最大值4,经过点O 时t 取最小值0,即在第一象限部分满足04t <<, 不妨设u=13u <<,且212u t −=,代入得,)()222113MNu =+−−−<<, 由此函数的图象知,当2u =时,MN取得最大值为,即C 错误;对于D ,根据对称性,每个象限的花瓣形状大小相同,故可以先求18部分面积的近似值.如图:在抛物线()2102yx x ≥上取一点P ,使过点P 的切线与直线OA 平行,由1y x ′==可得切点坐标为11,2P,因为:0OA l x y −=,则点P 到直线OA的距离为d =于是1122OPA S ==△,由图知,半个花瓣的面积必大于12,故原图中的阴影部分面积必大于1842×=,故D 正确. 三、填空题(本大题共3小题,每小题5分,共15分.)12.10−【解析】()51x −的展开式通项是:()55C 1kk k x −−,依题意,得52k −=,即3k =,所以()3325C 110a =−=−. 13.(-3,6)【解析】函数()24,1,ln 1,1,x x a x f x x x ++<=+≥ 当1x ≥时,方程ln 12x +=,解得e x =,函数()2y f x =−有一个零点,则当1x <时,函数()2y f x =−须有两个零点,即242x x a ++=在1x <时有两个解.设()242g x x x a =++−,对称轴为()2,x g x =−在(),2−∞−上单调递减,在()2,−+∞上单调递增,∴()10g >,且()20g −<,即1420,4820,a a ++−> −+−< 解得36a −<<,所以a 的取值范围是(-3,6).14.1或2【解析】当2n ≥时,111,11n n n n n n n n m mT a T a a m a T m a −−−+=+===++−, 所以()1211111111111121n n n n n n n n a n m T T m a m a m a m ma m m a −−−−−−−−=−=−=≥−−−−−+−.由数列1n T为等差数列,则1211n n a m ma −−−−为常数d ,①若0d =,则()112n a n −=≥恒成立,即()11n a n =≥恒成立,∴2m =;②若0d ≠,则2111n n a dm dma −−−=−,∴21,1,dm dm = = 解得1,1,m d = =综上所述,1m =或2m =.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.【解析】(1)()()()222222b c a b c a b c a b bc c a bc +−++=+−=++−=,则222b c a bc +−=−,所以2221cos 22b c a A bc +−==−,因为0πA <<,所以2π3A =. (2)由(1)得,2π3A =,因为3BAD CAD ∠=∠,所以π6CAD ∠=,如图,在ACD △中,由余弦定理,得2222cos 31647CD AD AC AD AC DAC =+−⋅∠=+−=,即CD =,在ACD △中,由正弦定理sin sin CD AD DAC C =∠=,所以sin C =,因为π03C <<,故cos C ,在ABC △中,()1sin sin sin cos cos sin 2B A C A C A C =+=+=−.16.【解析】(1)在1A AC △中,由余弦定理可得2221111cos 2AC A A A C A AC AC A A +−∠=⋅⋅,则222112cos 60212A C +−°=××,解得213A C =, 由22211A C AC A A +=,则在1A AC △中,1A C AC ⊥,因为1,,A C AB AC AB ⊥⊂平面,ABC AC AB A = ,所以1A C ⊥平面ABC .(2)易知1,,A C AC BC 两两相互垂直,分别以1,,CA CB CA 为,,x y z 轴建立空间直角坐标系,如图,设BC k =,则(()()(11,0,,0,0,0,0,,A B k C C −(()(110,,0,,0,,BA k CB k CC −=−设平面11BCC B 的法向量(),,n x y z = ,则10,0,n CB n CC ⋅= ⋅=可得0,0,ky x = −+=令x =0,1y z ==,所以平面11BCC B的一个法向量)n =, 设直线1BA 与平面11BCC B 所成的角为θ,则11sin BA n BA n θ⋅=⋅,可得=1k =,易知(11BB CC ==−,设平面11A BB 的法向量()000,,m x y z = ,则110,0m BA m BB ⋅=⋅=可得00000,0,y x −+= −+=令01z =,则00x y =, 所以平面11A BB的一个法向量)m =,设平面11A BB 与平面11BCC B 的夹角为α,则cos n m n mα⋅==⋅17.【解析】(1)当3m =时,第一轮答题后累计得分X 所有取值为4,3,2,()()()1111111114,32,2,224222224P X P X P X ==×===××===×=所以第一轮答题后累计得分X 的分布列为:所以()1114323424E X =×+×+×=. (2)当4m =时,设“第六轮答题后,答题结束且挑战成功”为事件A ,此时情况有2种,分别为: 情况①:前5轮答题中,得1分的有3轮,得0分的有2轮,第6轮得1分; 情况②:前4轮答题中,得1分的有3轮,得—1分的有1轮,第5、6轮都得1分,所以()3232335411111111C C 4244441024P A =××+××= . 18.【解析】(1)由题意:22222,2,3, 1.a b a a c bc a b c ==+=⇒= = =+ 所以椭圆C 的标准方程为22143x y +=.4分(2)设过点R 的切线方程为()21y k x −=−,即()2y kx k =+−, 由()222,1,43y kx k x y =+− += 消去y ,整理得()()()222438242120k x k k x k ++−+−−=, 由()()()222206424434212kk k k ∆=⇒−=+−− ,整理得23410k k +−=,所以1213k k =−.(3)设()()000,0,R x y y RK >的延长线交x 轴于K ′点,如图:因为AI K K JB ′∥∥,则022IKAK x JKBK x ′+==′−. 设P ,Q 两点处切线斜率分别为12,k k ,过R 点的椭圆的切线方程为()00y y k x x −=−,即()00y kx y kx =+−,由()0022,143y kx y kx x y =+−+= 消去y ,化简整理,得()()()22200004384120kx k kx y x kx y +−−+−−=,由0∆=,得()()()2222000064443412kkx y k kx y −=+−−,化简整理,得()22200004230x k x y k y −−+−=, 由韦达定理,得20001212220023,44x y y k k k k x x −+==−−,所以()()1002002,2l J y k x y y k x y =−−+=−+, 所以要证明IK IA JKJB=,只需证明()()100002002222k x y x x k x y −−++=−−+,即()()()()()()()()22222000100012001201200042424242,k x y x k x y x k k x y k k x k k x x y −++=−+−⇔++=+⇔+−=因为00122024x y k k x +=−,所以上式成立,即IK IA JK JB =成立. 19.【解析】(1)当0a =时,()1ln 12f x x =+,其定义域为()0,+∞. 由()f x x =得1ln 102x x −+=. 设()1ln 12g x x x =−+,则()122xg x x −′=, 当10,2x∈ 时,()0g x ′>;当1,2x ∈+∞ 时,()0g x ′<, 所以()g x 在10,2上单调递增;在1,2 +∞上单调递减, 注意到()10g =,所以()g x 在 +∞上恰有一个零点1x =,且()1102g g>=, 又()22e e 0g −−=−<,所以()21e 02g g −<,所以()g x 在10,2 上恰有一个零点0x , 即()f x 在1,2 +∞上恰有一个不动点1,x =在10,2上恰有一个不动点0x x =, 所以{}0,1A x =,所以A 的元素个数为2,又因为01x <,所以max 1A =. (2)(i )当0a =时,由(1)知,A 有两个元素,不符合题意; 当0a >时,()21ln 12f x x ax a =++−,其定义域为()0,+∞, 由()f x x =得21ln 102x ax x a +−+−=. 设()()21ln 1,0,2h x x ax x a x =+−+−∈+∞,则()214212122ax x h x ax x x −+′=+−=, 设()2421F x ax x =−+,则416a ∆=−,①当14a ≥时,()()0,0,0F x h x ′∆≤≥≥,所以()h x 在()0,+∞上单调递增, 又()10h =,所以()h x 在()0,+∞上恰有一个零点1x =, 即()f x 在()0,+∞上恰有一个不动点1x =,符合题意; ②当104a <<时,0∆>,故()F x 恰有两个零点()1212,x x x x <. 又因为()()010,1410F F a =>=−<,所以1201x x <<<, 当()10,x x ∈时,()()0,0F x h x ′>>; 当()12,x x x ∈时,()()0,0F x h x ′<<; 当()2,x x ∈+∞时,()()0,0F x h x ′>>,所以()h x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,注意到()10h =,所以()h x 在()12,x x 上恰有一个零点1x =,且()()()()1210,10h x h h x h >=<=, 又0x →时,()h x →−∞,所以()h x 在()10,x 上恰有一个零点0x ′,从而()f x 至少有两个不动点,不符合题意;所以a 的取值范围为1,4 +∞ ,即集合1,4B=+∞ .(ii )由(i )知,1,4B=+∞ ,所以1min 4aB =, 此时,()()22113113ln ,ln 244244f x x x h x x x x +++−+, 由(i )知,()h x 在()0,+∞上单调递增,所以,当1x >时,()()10h x h >=,所以()f x x >,即()1f x x>,故若1n a >,则11n a +>,因为,若存在正整数N 使得1N a ≤,则11N a −≤,从而21N a −≤,重复这一过程有限次后可得11a ≤,与12a =矛盾,从而,*,1n n a ∀∈>N , 下面我们先证明当1x >时,()3ln 12x x <−, 设()()33ln ,1,22G x x x x =−+∈+∞,所以()1323022x G x x x ′−=−=<, 所以()G x 在()1,+∞上单调递减,所以()()10G x G <=,即当1x >时,()3ln 12x x <−,从而当1x >时,2211311ln 24444x x x x x ++−<−, 从而()2113ln 1244114xx x x x ++−<−,即()()1114f x x x −<−,故()()1114n nn f a a a −<−, 即()11114n n a a +−<−,由于11,1n n a a +>>, 所以110,10n n a a +−>−>,故11114n n a a +−<−,故2n ≥时,121211111111114444n n n n n a a a a −−−−−<−<−<<−= ,所以*1111114144,111434314n n nk k n k k n a −==− ∀∈−≤==−< −∑∑N ,故4max 3n C =.。

江苏省徐州高级中学2023届高三下学期3月月考数学试题

江苏省徐州高级中学2023届高三下学期3月月考数学试题

江苏省徐州高级中学2023届高三下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________.2017-2021年,普通本专科招生人数逐年增加.普通本专科招生人数在2017-2018年增长最多.2017-2021年,普通高中招生人数在普通本专科、中等职业教育及普通高中招生总人数中所占比例逐年下降.2017-2021年,中等职业教育平均招生人数大约为608万10.一般地,如果一个凸n面体共有m个面是直角三角形,那么我们称这个凸n面体的直度为mn,则以下结论正确的是().三棱锥的直度的最大值为1.直度为34的三棱锥只有一种.四棱锥的直度的最大值为1(2)若()0EF DB l l =>uuu r uuu r ,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.20.随着5G 网络信号的不断完善,5G 手机已经成为手机销售市场的明星.某地区手机专卖商场对已售出的1000部5G 手机的价格数据进行分析得到如图所示的频率分布直方图:(1)某夫妻两人到该商场准备购买价位在4500元以下的手机各一部,商场工作人员应顾客的要求按照分层抽样的方式提供了14部手机让其从中购买,假定选择每部手机是等可能的,求这两人至少选择一部价位在3500~4500元的手机的概率;(2)该商场在春节期间推出为期三天的“中奖打折”活动,活动规则如下:在一个不透明的容器中装有一白一黄两个除颜色外完全相同的乒乓球,顾客每次限抽一球,抽完后放回容器中摇晃均匀后再抽取下一次.若抽中白球得2分,抽中黄球得1分,得分为9分或10分时停止抽取,其中得9分为中奖,享受标价打n 折(*N n Î)优惠,得10分则未中奖按标价购买.设得i 分的概率为i P (1i =,2,…,10),其中01P =.(i )证明{}1ii P P--(10i <,且*N i Î)是等比数列;(ii )假定厂家在出售手机时的标价为进价的2倍,则厂家至少打几折才不致亏损?21.如图,在平面直角坐标系xOy 中,已知点()1,0F ,直线l :=1x -,P 为平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,分别以PQ ,PF 为直径作圆1C 和圆2C ,且圆1C 和圆2C 交于P ,R 两点,且PQR PFR Ð=Ð.。

2024-2025学年江西师大附中高三(上)第三次月考数学试卷(含答案)

2024-2025学年江西师大附中高三(上)第三次月考数学试卷(含答案)

2024-2025学年江西师大附中高三(上)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.复数z 满足|z−i|=2,z 在复平面内对应的点为(x,y),则( )A. (x−1)2+y 2=4B. (x−1)2+y 2=2C. x 2+(y−1)2=4D. x 2+(y−1)2=22.如图,在△ABC 中,点D 在BC 的延长线上,|BD|=3|DC|,如果AD =x AB +y AC ,那么( )A. x =12,y =32B. x =−12,y =32C. x =−12,y =−32D. x =12,y =−323.纯洁的冰雪,激情的约会,2030年冬奥会预计在印度孟买举行.按常理,该次冬奥会共有7个大项,如冰球、冰壶、滑冰、滑雪、雪车等;一个大项又包含多个小项,如滑冰又分为花样滑冰、短道速滑、速度滑冰三个小项.若集合U 代表所有项目的集合,一个大项看作是几个小项组成的集合,其中集合A 为滑冰三个小项构成的集合,下列说法不正确的是( )A. “短道速滑”不属于集合A 相对于全集U 的补集B. “雪车”与“滑雪”交集为空集C. “速度滑冰”与“冰壶”交集不为空集D. 集合U 包含“滑冰”4.已知直线l :x +y−3=0上的两点A ,B ,且|AB|=1,点P 为圆D :x 2+y 2+2x−3=0上任一点,则△PAB 的面积的最大值为( )A.2+1B. 22+2C.2−1D. 22−25.已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为( )A. f(x)=xcosπx B. f(x)=(x−1)sinπx C. f(x)=xcos[π(x +1)]D. f(x)=(x−1)cosπx6.已知正数a ,b ,c 满足2022a =2023,2023b =2022,c =ln2,下列说法正确的是( )A. log a c >log b cB. log c a >log c bC. a c <b cD. c a <c b7.已知抛物线C 1:y =x 2+2x 和C 2:y =−x 2+a ,若C 1和C 2有且仅有两条公切线l 1和l 2,l 1和C 1、C 2分别相切于M ,N 点,l 2与C 1、C 2分别相切于P ,Q 两点,则线段PQ 与MN ( )A. 总是互相垂直 B. 总是互相平分C. 总是互相垂直且平分D. 上述说法均不正确8.在平面四边形ABCD 中,AB ⊥AC ,且AB =AC ,AD = 2CD =22,则BD 的最大值为( )A. 27B. 6C. 25 D. 23二、多选题:本题共3小题,共18分。

黑龙江大庆市第三十五中学2024届高三下学期第三次月考(5月)数学试题试卷

黑龙江大庆市第三十五中学2024届高三下学期第三次月考(5月)数学试题试卷

黑龙江大庆市第三十五中学2024届高三下学期第三次月考(5月)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数22cos 128x y π⎛⎫=+- ⎪⎝⎭的图像向左平移()0m m >个单位长度后,得到的图像关于坐标原点对称,则m 的最小值为( ) A .3πB .4π C .2π D .π2.函数()y f x =在区间,22ππ⎛⎫- ⎪⎝⎭上的大致图象如图所示,则()f x 可能是( )A .()ln sin f x x =B .()()ln cos f x x =C .()sin tan f x x =-D .()tan cos f x x =-3.设a ,b 都是不等于1的正数,则“22a b log log <”是“222a b >>”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .B .2C .1-D .15.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( ) A .33B .23C .22D .16.双曲线C :22221x y a b-=(0a >,0b >)的离心率是3,焦点到渐近线的距离为2,则双曲线C 的焦距为( )A .3B .32C .6D .627.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8 B .−6 C .6 D .88.函数52sin ()([,0)(0,])33x xx xf x x -+=∈-ππ-的大致图象为A .B .C .D .9.已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( ) A .(,1)-∞B .(,1]-∞C .(1,)+∞D .[1,)+∞10.设椭圆E :()222210x y a b a b+=>>的右顶点为A ,右焦点为F ,B 、C 为椭圆上关于原点对称的两点,直线BF交直线AC 于M ,且M 为AC 的中点,则椭圆E 的离心率是( ) A .23B .12C .13D .1411.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则M N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞12.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A .21+B .31+C .2D .5二、填空题:本题共4小题,每小题5分,共20分。

2024-2025学年陕西省西安市铁一中学高三(上)第三次月考数学试卷(含答案)

2024-2025学年陕西省西安市铁一中学高三(上)第三次月考数学试卷(含答案)

2024-2025学年陕西省西安市铁一中学高三(上)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.定义差集M−N ={x|x ∈M 且x ∉N}.已知集合A ={2,3,5},B ={3,5,8},则A−(A ∩B)=( )A. ⌀B. {2}C. {8}D. {3,5}2.已知复数z 满足z =−1+i1+i ,则复数z 的共轭复数的模|−z |=( )A.102B.22C.24D. 123.已知sinα+cosβ=22,cosα−sinβ=−12,则cos (2α−2β)=( )A. 732B. −732C.5 3932D. −539324.已知点M 在抛物线C :y 2=4x 上,抛物线C 的准线与x 轴交于点K ,线段MK 的中点N 也在抛物线C 上,抛物线C 的焦点为F ,则线段MF 的长为( )A. 1B. 2C. 3D. 45.已知a =sin0.5,b =30.5,c =log 0.30.5,则a ,b ,c 的大小关系是( )A. a <b <cB. a <c <bC. c <a <bD. c <b <a6.折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为( )A. 5023π B. 9π C. 7πD. 1423π7.已知△ABC 中,AB =2,AC =1,AB ⋅AC =1,O 为△ABC 所在平面内一点,且满足OA +2OB +3OC =0,则AO ⋅BC 的值为( )A. −4B. −1C. 1D. 48.已知可导函数f (x )的定义域为R ,f (x2−1)为奇函数,设g (x )是f (x )的导函数,若g (2x +1)为奇函数,且g (0)=12,则∑10k =1kg (2k )=( )A. 132B. −132C. 112D. −112二、多选题:本题共3小题,共18分。

炎德英才大联考雅礼中学2025届高三月考试卷(三)数学

炎德英才大联考雅礼中学2025届高三月考试卷(三)数学

炎德英才大联考雅礼中学2025届高三月考试卷(三)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在x ∈Z ,220x x m ++”的否定是()A.存在x ∈Z ,220x x m ++> B.不存在x ∈Z ,220x x m ++>C.任意x ∈Z ,220x x m ++ D.任意x ∈Z ,220x x m ++>2.若集合{}2341,i ,i ,i A =(i 是虚数单位),{}1,1B =-,则A B ⋂等于()A.{}1- B.{}1 C.{}1,1- D.∅3.已知奇函数()()22cos x x f x m x -=+⋅,则m =()A.-1B.0C.1D.124.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是()A.m l ⊥,m β⊂,l α⊥B.m l ⊥,l αβ⋂=,m α⊂C.m l ,m α⊥,l β⊥ D.l α⊥,m l ,m β5.已知函数()()4cos (0)f x x ωϕω=+>图象的一个最高点与相邻的对称中心之间的距离为5,则6f ϕπ⎛⎫-=⎪⎝⎭()A.0B.2ϕC.4D.2ϕ6.已知M 是圆22:1C x y +=上一个动点,且直线1:30l mx ny m n --+=与直线2:30l nx my m n +--=(m ,n ∈R ,220m n +≠)相交于点P ,则PM 的取值范围为()A.1,1⎤-⎦B.1⎤⎦C.1,1⎤-⎦D.1⎤-+⎦7.P 是椭圆2222:1(0)x y C a b a b+=>>上一点,1F ,2F 是C 的两个焦点,120PF PF ⋅= ,点Q 在12F PF ∠的角平分线上,O 为原点,1OQ PF ,且OQ b =.则C 的离心率为()A.12B.33C.63D.328.设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“”的元素个数为()A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是()A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数()f x 满足()()22f x f x ππ+=-,()()0f x f x ππ++-=,并且当()0,x π∈时,()cos f x x =,则下列关于函数()f x 说法正确的是()A.302f π⎛⎫= ⎪⎝⎭B.最小正周期2T π=C.()f x 的图象关于直线x π=对称D.()f x 的图象关于(),0π-对称11.若双曲线22:145x y C -=,1F ,2F 分别为左、右焦点,设点P 是在双曲线上且在第一象限的动点,点I为12PF F △的内心,()0,4A ,则下列说法不正确的是()A.双曲线C 的渐近线方程为045x y±=B.点I 的运动轨迹为双曲线的一部分C.若122PF PF =,12PI xPF yPF =+,则29y x -=D.不存在点P ,使得1PA PF +取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为________.13.ABC△各角的对应边分别为a ,b ,c ,满足1b ca c a b+++,则角A 的取值范围为________.14.对任意的*n ∈N ,不等式(其中e 是自然对数的底)恒成立,则a 的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设n S 为正项等比数列{}n a 的前n 项和,21332S a a =+,416a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足11b =,1222log log n nn n b a b a ++=,求数列{}n b 的前n 项和n T .16.(本小题满分15分)如图,在四棱锥P ABCD -,BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2DE PE ==.(1)若F 为线段PE 的中点,求证:BF平面PCD ;(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 所成夹角的余弦值.17.(本小题满分15分)已知函数()21ln 2f x x x ax =+-有两个极值点为1x ,()212x x x <,a ∈R .(1)当52a =时,求()()21f x f x -的值;(2)若x 2≥ex 1(e 为自然对数的底数),求()()21f x f x -的最大值.18.(本小题满分17分)已知抛物线2:2(0)E x py p =>的焦点为F ,H 为E 上任意一点,且HF 的最小值为1.(1)求抛物线E 的方程;(2)已知P 为平面上一动点,且过P 能向E 作两条切线,切点为M ,N ,记直线PM ,PN ,PF 的斜率分别为1k ,2k ,3k ,且满足123112k k k +=.①求点P 的轨迹方程;②试探究:是否存在一个圆心为()0,(0)Q λλ>,半径为1的圆,使得过P 可以作圆Q 的两条切线1l ,2l ,切线1l ,2l 分别交抛物线E 于不同的两点()11,A s t ,()22,B s t 和点()33,C s t ,()44,D s t ,且1234s s s s 为定值?若存在,求圆Q 的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量1a ,2a ,3a ,…,n a (N n ∈且3n ),令123n n S a a a a =++++,如果存在{}()1,2,3,,p a p n ∈,使得pn p a S a - ,那么称p a是该向量组的“长向量”.(1)设(),2n a n x n =+,n ∈N 且0n >,若3a是向量组1a,2a,3a的“长向量”,求实数x 的取值范围;(2)若sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭,n ∈N 且0n >,向量组1a ,2a ,3a ,…,7a 是否存在“长向量”?给出你的结论并说明理由;(3)已知1a ,2a ,3a 均是向量组1a ,2a ,3a 的“长向量”,其中()1sin ,cos a x x = ,()22cos ,2sin a x x =.设在平面直角坐标系中有一点列1P ,2P ,3P ,…,n P ,满足1P 为坐标原点,2P 为3a的位置向量的终点,且21k P +与2k P 关于点1P 对称,22k P +与21k P +(k ∈N 且0k >)关于点2P 对称,求10151016P P的最小值.。

湖南师大附中高三第三次月考数学试卷

湖南师大附中高三第三次月考数学试卷

1、已知集合A = {x | 1 ≤ x ≤ 5},B = {x | 3 < x < 7},则A ∩ B =A、{x | 1 ≤ x < 7}B、{x | 3 < x ≤ 5}C、{x | 3 ≤ x ≤ 5}D、{x | 1 < x < 7}(答案)B。

解析:集合A和B的交集是同时满足A和B条件的x的集合。

A的范围是1到5(包括1和5),B的范围是3到7(不包括3和7),所以它们的交集是3到5(包括3但不包括7),即3 < x ≤ 5。

2、若复数z满足(1 - i)z = 2i,则z =A、1 - iB、1 + iC、-1 - iD、-1 + i(答案)B。

解析:为了求出z,我们需要将等式两边同时除以(1 - i),即z = 2i / (1 - i)。

通过乘以共轭复数(1 + i)的分子和分母,得到z = (2i(1 + i)) / ((1 - i)(1 + i)) = (2i + 2i²) / (1 - i²) = (2i - 2) / 2 = -1 + i。

3、设等差数列{an}的前n项和为Sn,若a1 = 1,S3 = -3,则S_n / 2n的最大值为A、-1B、-1/2C、1/4D、1/2(答案)C。

解析:由等差数列的前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入a1 = 1,S3 = -3,解得公差d = -2。

因此,Sn = n - n(n-1) = -n² + 2n。

考虑Sn / 2n = (-n² + 2n) / 2n,通过比较相邻两项的大小,可以发现当n=2时,Sn / 2n取得最大值1/4。

4、已知向量a = (1, 2),b = (3, 4),则a与b的夹角θ的余弦值为A、√5/5B、2/5C、√2/2D、0(答案)C。

解析:两向量的点积为a · b = 13 + 24 = 11,两向量的模分别为|a| = √(1² + 2²) = √5,|b| = √(3² + 4²) = 5。

湖北省黄冈高级中学2024届高三3月月考数学试题(B卷)试卷

湖北省黄冈高级中学2024届高三3月月考数学试题(B卷)试卷

湖北省黄冈高级中学2024届高三3月月考数学试题(B 卷)试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为1223F F ,、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2B .2,3⎡⎤⎣⎦C .2,4⎡⎤⎣⎦D .[]1,42.观察下列各式:2x y ⊗=,224x y ⊗=,339x y ⊗=,4417x y ⊗=,5531x y ⊗=,6654x y ⊗=,7792x y ⊗=,,根据以上规律,则1010x y ⊗=( )A .255B .419C .414D .2533.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( ) A .13±B .223±C .±1D . 3±4.已知点P 在椭圆τ:2222x y a b+=1(a>b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设34PD PQ =,直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e =( ) A .12B .22C .32D .335.计算2543log sin cosππ⎛⎫⎪⎝⎭等于( ) A .32-B .32C .23-D .236.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .7.已知函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像与一条平行于x 轴的直线有两个交点,其横坐标分别为12,x x ,则12x x +=( ) A .34π B .23π C .3π D .6π 8.已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =( ) A .16B .17C .18D .199.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .3824310.已知函数()sin(2)f x x ϕ=+,其中(0,)2πϕ∈,若,()6x R f x f π⎛⎫∀∈≤ ⎪⎝⎭恒成立,则函数()f x 的单调递增区间为( ) A .,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦B .2,()33k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦D .2,()3k k k Z πππ⎡⎤+⎢⎥⎣∈⎦11.在ABC 中,D 为BC 边上的中点,且||1,|2,120AB AC BAC ==∠=︒,则||=AD ( )A .32B .12C .34D 7 12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计π的值:先用计算机产生2000个数对(),x y ,其中x ,y 都是区间()0,1上的均匀随机数,再统计x ,y 能与1构成锐角三角形三边长的数对(),x y 的个数m ﹔最后根据统计数m 来估计π的值.若435m =,则π的估计值为( ) A .3.12B .3.13C .3.14D .3.15二、填空题:本题共4小题,每小题5分,共20分。

高三上学期第三次月考数学试卷(附答案解析)

高三上学期第三次月考数学试卷(附答案解析)

高三上学期第三次月考数学试卷(附答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________第I卷(选择题)一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,0,1,2,},B={x∈Z|x−2x≤0},则A∩B=( )A. {0,1}B. {1,2}C. {−1,1,2}D. {0,1,2}2. 若复数z=a+2i2−i(a∈R)为纯虚数,则a=( )A. −4B. −2C. −1D. 13. 已知向量a=(1,−1),b=(1,t),若〈a,b〉=π3,则t=( )A. 2−3B. 2+3C. 2+3或2−3D. −14. 若函数f(x)=1−cosxsinx(x∈[π3,π2]),则f(x)的值域为( )A. [3,+∞)B. [33,+∞)C. [1,3]D. [33,1]5. 正四面体S−ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为( )A. 64B. 33C. 263D. 36. 在给某小区的花园绿化时,绿化工人需要将6棵高矮不同的小树在花园中栽成前后两排,每排3棵,则后排的每棵小树都对应比它前排每棵小树高的概率是( )A. 13B. 16C. 18D. 1127. 如图,圆内接四边形ABCD中,DA⊥AB,∠D=45°,AB=2,BC=22,AD=6.现将该四边形沿AD旋转一周,则旋转形成的几何体的体积为( )A. 84π3B. 30πC. 92π3D. 40π8. 函数f(x)的定义域为R,且f(x)−f(x+4)=0,当−2≤x<0时,f(x)=(x+1)2,当0≤x<2时,f(x)=1−x,则n=12022f(n)=( )A. 1010B. 1011C. 1012D. 1013二、多选题(本大题共4小题,共20分。

湖南省永州市第一中学2022-2023学年高三上学期第三次月考数学答案解析

湖南省永州市第一中学2022-2023学年高三上学期第三次月考数学答案解析

永州一中高三第三次月考数学试卷一、单选题1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A .(M ∩P)∩SB .(M ∩P)∪SC .(M ∩P)∩SD .(M ∩P)∪S【答案】C【分析】根据Venn 图表示的集合运算作答.【详解】阴影部分在集合M,P 的公共部分,但不在集合S 内,表示为(M ∩P)∩S , 故选:C .2.若z (1+i )=1−i ,则z =( ) A .1–i B .1+i C .–i D .iA .12 B .−12C .1D .−1【答案】A【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12.故选:A .4.如图是标准对数远视力表的一部分.最左边一列“五分记录”为标准对数视力记录,这组数据从上至下为等差数列,公差为0.1;最右边一列“小数记录”为国际标准视力记录的近似值,这组数据从上至下为等比数列,公比为√1010.已知标准对数视力5.0对应的国际标准视力准确值为1.0,则标准对数视力4.8对应的国际标准视力精确到小数点后两位约为( ) (参考数据:√105≈1.58,√1010≈1.26)A .0.57B .0.59C .0.61D .0.63PA ⃑⃑⃑⃑⃑ ⋅PB ⃑⃑⃑⃑⃑ 的取值范围是( ) A .[−5,3] B .[−3,5]C .[−6,4]D .[−4,6]【答案】D【分析】依题意建立平面直角坐标系,设P (cosθ,sinθ),表示出PA ⃑⃑⃑⃑⃑ ,PB ⃑⃑⃑⃑⃑ ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则C (0,0),A (3,0),B (0,4),因为PC =1,所以P 在以C 为圆心,1为半径的圆上运动, 设P (cosθ,sinθ),θ∈[0,2π],所以PA⃑⃑⃑⃑⃑ =(3−cosθ,−sinθ),PB ⃑⃑⃑⃑⃑ =(−cosθ,4−sinθ), 所以PA⃑⃑⃑⃑⃑ ⋅PB ⃑⃑⃑⃑⃑ =(−cosθ)×(3−cosθ)+(4−sinθ)×(−sinθ) =cos 2θ−3cosθ−4sinθ+sin 2θ=1−3cosθ−4sinθ=1−5sin (θ+φ),其中sinφ=35,cosφ=45,因为−1≤sin (θ+φ)≤1,所以−4≤1−5sin (θ+φ)≤6,即PA ⃑⃑⃑⃑⃑ ⋅PB ⃑⃑⃑⃑⃑ ∈[−4,6]; 故选:D6.已知函数f(x)=2sinωxcos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π3,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值,则ω的取值范围是( ) A .(0,35] B .[12,35]C .[12,52]D .(0,52)A .(0,2e ]B .(0,e ]C .[2e,+∞)D .(e,2e ]8.已知双曲线x 2−a 2=1,若过点(2,2)能作该双曲线的两条切线,则该双曲线离心率e 取值范围为( ) A .(√213,+∞) B .(1,√213) C .(1,√2) D .以上选项均不正确【答案】D【分析】设切线方程为y −2=k(x −2),代入双曲线方程后,方程应为一元二次方程,二次项系数不能为0,然后由Δ=0判别式得关于k 的方程,此方程有两个不等的实根,由此可得a 2的范围,从而求得e 的范围,注意满足二次项系数不为0的条件,即可得结论. 【详解】设切线方程是y −2=k(x −2),由{y −2=k(x −2)x 2−y 2a 2=1 得(a 2−k 2)x 2+4k(k −1)x −4(k −1)2−a 2=0, 显然a 2−k 2=0时,所得直线不是双曲线的切线,所以k ≠±a ,二、多选题9.已知向量a=(1,sinθ),b⃑=(cosθ,√2),则下列命题正确的是()A.存在θ,使得a //b⃑B.当tanθ=−√2时,a与b⃑垂直2C.对任意θ,都有|a |≠|b⃑|D.当a⋅b⃑=−√3时,tanθ=√2事件A为“第一次向下的数字为偶数”,事件B为“两次向下的数字之和为奇数”,则下列说法正确的是()A.P(A)=12B.事件A和事件B互为对立事件C.P(B|A)=12D.事件A和事件B相互独立11.在正方体ABCD−A1111中,点P满足BP1,其中λ∈[0,1],μ∈[0,1],则()A.当λ=μ时,A1P//平面ACD1B.当μ=1时,三棱锥P−A1BC的体积为定值C.当λ=1时,△PBD的面积为定值D.当λ+μ=1时,直线A1D与D1P所成角的范围为[π3,π2 ]【答案】ABD【分析】对于A选项,确定P点在面对角线BC1上,通过证明面面平行,得线面平行;对于B选项,确定P点在棱B1C1上,由等体积法,说明三棱锥P−A1BC的体积为定值;对于C选项,确定P点在棱CC1上,△PBD的底BD不变,高PE随点P的变化而变化;对于D选项,通过平移直线A1D,找到异面直线A1D与D1P所成的角,在正△D1B1C中,确定其范围.【详解】对于A选项,如下图,当λ=μ时,P点在面对角线BC1上运动,又P∈平面A1C1B,所以A1P⊂平面A1C1B,在正方体ABCD−A1B1C1D1中,∵AB//C1D1且AB=C1D1,则四边形ABC1D1为平行四边形,所以,AD1//BC1,∵AD1⊄平面A1BC1,BC1⊂平面A1BC1,∴AD1//平面A1BC1,同理可证AC//平面A1BC1,∵AD1∩AC=A,所以,平面A1C1B//平面ACD1,∵A1P⊂平面A1BC1,所以,A1P//平面ACD1,A正确;对于B选项,当μ=1时,如下图,P点在棱B1C1上运动,三棱锥P−A1BC的体积V P−A1BC =V A1−PBC=13⋅S PBC⋅A1B1为定值,B正确;对于C选项,当λ=1时,如图,P点在棱CC1上运动,过P作PE⊥BD于E点,则S△PBD=12BD⋅PE,其大小随着PE的变化而变化,C错误;对于D选项,如图所示,当λ+μ=1时,P,C,B1三点共线,因为A1B1//CD且A1B1=CD,所以四边形A1B1CD为平行四边形,所以A1D//B1C,所以∠D1PB1或其补角是直线A1D与D1P所成角,在正△D1B1C中,∠D1PB1的取值范围为[π3,π2],D正确.故选:ABD.12.已知函数f(x)=(ax+lnx)(x−lnx)−x2恰有三个零点x1,x2,x3(x1<x2<x3),则下列结论中正确的是()A.1<a≤1+1e2−e B.1<a<1+1e2−eC.x1+x2>3−a D.x2+x3>2e2lnx=x三、填空题)6的展开式中常数项是__________(用数字作答).13.(x2+2x【答案】240)6二项式展开通项,即可求得常数项.【分析】写出(x2+2x)6【详解】∵(x2+2x其二项式展开通项:T r+1=C6r⋅(x2)6−r⋅(2 x )r=C6r⋅x12−2r(2)r⋅x−r=C6r(2)r⋅x12−3r当12−3r=0,解得r=4∴(x2+2x)6的展开式中常数项是:C64⋅24=C62⋅16=15×16=240.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握(a+b)n的展开通项公式T r+1=C n r a n−r b r,考查了分析能力和计算能力,属于基础题. 14.某大学一寝室4人参加疫情防控讲座,4人就坐在一排有13个空位的座位上,根据防疫要求,任意两人之间需间隔1米以上(两个空位),则不同的就坐方法有_______种.【答案】840【分析】先假设每人坐一个位置相当于去掉4个位置,再将4人中间任意两人之间放进2个空位,此时空位一共还剩3个,再将这三个分成一组、两组、三组讨论,利用分类计数原理计算可得答案.【详解】先假设每人坐一个位置相当于去掉4个位置,再将4人中间任意两人之间放进2个空位,此时空位一共还剩3个,若将这三个连在一起插入4人之间和两侧的空位上,有5种放法;若将这三个分成两组,一组两个,一组一个,插入4人之间和两侧的空位上,有A52种放法;若将这三个分成三组插入4人之间和两侧的空位上,有C53种放法,故不同的就坐方法为A44×(5+A52+C53)=840种.故答案为:840.15.已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是_______.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).16.在三棱锥P−ABC中,顶点P在底面ABC的投影为O,点O到侧面PAB,侧面PAC,侧面PBC的距离均为d,若PO=2d,AB=2.CA+CB=4,且△ABC是锐角三角形,则三棱锥P−ABC体积的取值范围为________.由AB=2,CA+CB=4可知,点C轨迹为以A,B为焦点的椭圆,a=2,c=1⇒b=√3,4√3√3√3四、解答题17.在①ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,B=45°.(1)求sinC的值;,求tan∠DAC的值.(2)在边BC上取一点D,使得cos∠ADC=−45(2)[方法一]:两角和的正弦公式法在(1)的方法二中可得AE=1,CE=2,AC=√5.当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得∠DAC 的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有∠DAC 的直角三角形,进而求解,也是很优美的方法.18.已知数列{a n }是公比为q 的等比数列,前n 项和为S n ,且满足a 1+a 3=2q +1,S 3=3a 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n ={a n+1−a n ,n 为奇数3a n4a n2−5a n+1,n 为偶数 ,求数列{b n }的前2n 项和T 2n .(1)当F在线段BD上移动时,判断AC与EF是否垂直,并说明理由;(2)若AB=AC=BD=2,AD=√2,试确定点F在线段BD上的位置,使CF与平面ABD 所成角的正弦值为4√37.【答案】(1)AC⊥EF,理由见解析;(2)点F在线段BD上靠D点四等分点处.【分析】(1)证明AC⊥EF转化成证明AC⊥平面DEB;(2)先证得BE⊥DE,从而建立以E为原点的空间坐标系,利用空间向量求解即可.【详解】(1)证明:连接ED、EB,如下图所示,∵AD=CD且E为AC中点,∴DE⊥AC,在△DAB和△DCB中,{DA=DC∠ADB=∠BDCDB=DB,∴△DAB≌△DCB,∴AB=BC,∴BE⊥AC,∵DE∩EB=E,DE、EB⊂平面DEB,∴AC⊥平面DEB,又EF⊂平面DEB,∴AC ⊥EF .(2)解:∵AC 2=4,AD 2+DC 2=4, 即AC 2=AD 2+DC 2, ∴△ADC 为直角三角形, 又E 是AC 的中点, ① DE =12AC =1,结合(1)知:可建立E 为原点,分别以EA ⃑⃑⃑⃑⃑ 、EB⃑⃑⃑⃑⃑ 、ED ⃑⃑⃑⃑⃑ 方向为x 、y 、z 轴的空间坐标系,则A(1,0,0),D(0,0,1),C(−1,0,0), AD⃑⃑⃑⃑⃑ =(−1,0,1), 结合(1)知△ABC 为等边三角形, ∴BE =2×√32=√3,∴B(0,√3,0), ∴AB⃑⃑⃑⃑⃑ =(−1,√3,0), 设DF ⃑⃑⃑⃑⃑ =λDB⃑⃑⃑⃑⃑⃑ (0≤λ≤1),F(x,y,z), 则DF ⃑⃑⃑⃑⃑ =(x,y,z −1), DB⃑⃑⃑⃑⃑⃑ =(0,√3,−1), ∴x =0,y =√3λ,z =1−λ, ∴F(0,√3λ,1−λ), ∴CF⃑⃑⃑⃑⃑ =(1,√3λ,1−λ), 设n ⃑ =(1,y,z)为平面ABD 的法向量, 则{n ⃑ ⋅AB ⃑⃑⃑⃑⃑ =0n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =0,负责攻击蓝方舰队.假设甲距离蓝方舰队100海里,且未被发现,若此时发射导弹,命中蓝方战舰概率是0.2,并可安全返回.若甲继续飞行进入到蓝方方圆50海里的范围内,有0.5的概率被敌方发现,若被发现将失去攻击机会,且此时自身被击落的概率是0.6.若没被发现,则发射导弹击中蓝方战舰概率是0.8,并可安全返回.命中战舰红方得10分,蓝方不得分;击落战机蓝方得6分,红方不得分.(1)从期望角度分析,甲是否应继续飞行进入到蓝方方圆50海里的范围内?(2)若甲在返回途中发现敌方两架轰炸机,此时甲弹舱中还剩6枚导弹,每枚导弹命中轰炸机概率均为0.5.(i)若甲同时向每架轰炸机各发射三枚导弹,求恰有一架轰炸机被命中的概率;(ii)若甲随机向一架轰炸机发射一枚导弹,若命中,则向另一架轰炸机发射一枚导弹,若不命中,则继续向该轰炸机发射一枚导弹,直到两架轰炸机均被命中或导弹用完为止,求最终剩余导弹数量X的分布列.【答案】(1)甲应继续飞行进入到蓝方方圆50海里的范围内,详见解析;(2)(i)7;(ii)详见解析.32【分析】(1)根据题意分别计算不进入50 海里及进入50 海里时甲相对得分的期望值,进而即得;(2)(i)根据对立事件概率公式及独立重复事件概率公式即得;(ii)由题可得X的可能取值,然后分别计算概率,进而可得分布列.【详解】(1)由题可知,若不进入50 海里,甲相对得分的期望为0.2 × 10 = 2,若进入50 海里,甲相对得分的期望为0.5 × 0.8 × 10 + 0.5 × 0.6 × (−6) = 2.2,所以甲应继续飞行进入到蓝方方圆50海里的范围内;(2)(i)因为每枚导弹命中轰炸机概率均为0.5,21.已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1) 联立直线方程和椭圆方程得(1+2k2)x2−8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1−2√2⋅y2x2−2√2计算即可得证;(2)由题意可得直线l的方程为y=k(x−2),联立直线方程与椭圆方程得(1+2k2)x2−8k2x+8(k2−1)=0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:{y=kxx2+2y2−8=0,得(1+2k2)x2−8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=−81+2k2,所以y1y2=k2x1x2=−8k21+2k2,故x轴上存在定点P(4,0),使得点F到直线NP的距离与点F到直线MP的距离相等.22.已知函数f(x)=e x−ax e+1在(1,f(1))处的切线过点(0,e),a为常数.(1)求a的值;(2)证明:f(x)≥x e(1−elnx).【答案】(1)a=1(2)证明见解析.【分析】(1)先对函数求导,然后求出f′(1)和f(1),再由题意可得f′(1)=e−a(e+1)=f(1)−e1−0,从而可求出a的值;(2)根据题意将问题转化为e x−elnx−(x−elnx)−1≥0,令t(x)=x−elnx,x∈(0,+∞),利用导数可得t(x)≥0恒成立,令ℎ(t)=e t−t−1,t≥0,再利用导数可得ℎ(t)取得最小值0,从而可证得结论.【详解】(1)由f(x)=e x−ax e+1,得f′(x)=e x−a(e+1)x e+1,所以f′(1)=e−a(e+1),f(1)=e−a,因为f(x)=e x−ax e+1在(1,f(1))处的切线过点(0,e),所以f′(1)=e−a(e+1)=f(1)−e1−0,所以e−a(e+1)=e−a−e1−0=−a,解得a=1,(2)证明:要证f(x)≥x e(1−elnx),即证e x−x e+1≥x e(1−elnx),即证e x−x e+1−x e(1−elnx)≥0,即证e xx e−x−(1−elnx)≥0,因为x e=e elnx,所以即证e x−elnx−(x−elnx)−1≥0,令t(x)=x−elnx,x∈(0,+∞),则t′(x)=1−ex =x−ex,当0<x<e时,t′(x)<0,当x>e时,t′(x)>0,所以t(x)在(0,e)上递减,在(e,+∞)上递增,所以t(x)min=t(e)=0,所以t(x)≥0恒成立,令ℎ(t)=e t−t−1,t≥0,则ℎ′(t)=e t−1≥0,所以ℎ(t)在[0,+∞)递增,所以当t=0时,ℎ(t)取得最小值0,所以原不等式成立.【点睛】关键点点睛:此题考查导数的综合应用,考查导数的几何意义,考查利用导数证明不等式,解题的关键是根据题意将问题转化为e x−x e+1−x e(1−elnx)≥0,再次转化为e x−elnx−(x−elnx)−1≥0,然后通过两次构造函数,利用导数可证得结论,考查数学转化思想和计算能力,属于难题.。

2024-2025学年山东省济南市山东省实验中学高三(上)第三次月考数学试卷(含答案)

2024-2025学年山东省济南市山东省实验中学高三(上)第三次月考数学试卷(含答案)

2024-2025学年山东省实验中学高三(上)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x||x|≤2,x ∈Z},B ={x|y =ln (3x−x 2)},则A ∩B =( )A. {x|0<x <2}B. {x|−2<x <3}C. {1}D. {1,2}2.若复数z 满足z(1−i)=1+i ,则z 3=( )A. 1B. −1C. iD. −i3.农科院专家李教授对新品种蔬菜种子进行发芽率试验,每个试验组5个坑,每个坑种1粒种子.经过大量试验,每个试验组没有发芽的坑数的平均数为13,则每粒种子发芽的概率p =( )A. 23B. 13C. 1415D. 1154.锐角α、β满足sin β=cos (α+β)sin α,若tan α=12,则cos (α+β)=( )A. 12B.22C.32D. −225.已知P(A)=35,P(AB )=15,P(A|B)=12,则P(B)=( )A. 45B. 35C. 25D. 156.把函数f(x)=sin (ωx +π4)(ω>0)的图象向右平移π4个单位长度,得到的函数图象关于点(π2,0)对称,则当ω取最小值时,曲线y =f(x)与y =ln x 的交点个数为( )A. 1B. 2C. 3D. 47.已知函数f(x)=e x +x,g(x)=ln x +x ,若f (x 1)=g (x 2),则x 1x 2的最小值为( )A. −eB. −1eC. −1D. −e 28.定义域为R 的函数f(x)满足f(x +2)=2f(x)−2,当x ∈(0,2]时,f(x)={x 2−x,0<x <11x,1⩽x⩽2,若x ∈(0,4]时,t 2−7t 2≤f(x)≤52−t 恒成立,则实数t 的取值范围是( )A. [1,+∞)B. [32,2]C. [2,52]D. [1,32]二、多选题:本题共3小题,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省杭州高中 高三年级第三次月考数学试卷(文科)注意事项:1.本卷答题时间120分钟,满分150分。

2.本卷不得使用计算器,答案一律做在答卷页上。

一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目) 1.函数的图象的两条相邻对称轴间的距离为 ( ) A .B .C .D .2.若数列的前项和为:,则数列的通项公式为( )A .B .C .D .3.已知直线 a 与b( )A .相交B .异面C .平行D .共面或异面4.在△ABC 中,A=60°,AB=2,且△ABC 的面积则边BC 的长为 ( )A .B .3C .D .75.设则的值为( )A .B .C .、中较小的数D .、中较大的数 6.化简的结果为( )A .B .C .D .17.不等式的解集是( )A .B .C .D .2sin(4)6y x π=+8π4π2ππ{}n a n 221n S n =-{}n a 42n a n =-42n a n =+1 14 2 2n n a n n =⎧=⎨+≥⎩ 1 14 2 2n n a n n =⎧=⎨-≥⎩则平面平面,,//,//b a a =βαβα ,23=∆ABC S 37⎩⎨⎧<>-=)0(1)0(1)(x x x f )(2)()()(b a b a f b a b a ≠-⋅--+a b a b a b 22cos 1cos 2sin 2cos 2αααα-⋅tan αtan 2α1tan 2α||22>++x xx x (2,0)-(2,0]-R (,2)(0,)-∞-+∞211俯视图左视图正视图8.函数 (x R ),若f(a)=2,则f(-a)的值为 ( )A .3B .0C .-1D .-29.设函数,则下列不等式一定成立的是( )A .B .C .D .10.已知非零向量与满足且 则为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形 二、填空题:(本大题共7小题,每小题4分,共28分.) 11.如图,函数的图象是折线段,其中的坐标分别为, 则 ;函数在处的导数 .12.已知集合,,则则等于__________.13.若则 .14.如图所示为一几何体的三视图,那么这个几何体的体积为___________________.15.设是一次函数,,且成等比数列,则______________.16.已知向量则的取值范围是 . 17.已知关于x 的二次方程对一切恒有实数解,则点在平面ab 上的区域面积为______________.三、解答题:(本大题共5小题,共72分,要写出详细的解答过程或证明过程) 18.(本小题14分)已知数列是等差数列,是等比数列,31xf (x)x ln 11x+=++-∈)()(],2,2[,sin )(21x f x f x x x x f >-∈=若ππ021>+x x 2221x x >21x x >2221x x <AB AC ().0AB AC BC AB AC +=1..2AB AC AB AC =ABC ∆()f x ABC A B C ,,(04)(20)(64),,,,,((0))f f =()f x 1x =(1)f '={}2,0xM y y x ==>{N y y ==MN 1sin(),63πα-=2cos(2)3πα+=)(x f y =1)0(=f )13(),4(),1(f f f f (2)f (4)f (2n)+++=a (x,1),b (2,3x),==22a b|a ||b |⋅+22(x 1)(x 2)m(x a b )--=--m R ∈(a,b){}n a {}n b且,. (1) 求数列的通项公式; (2)求数列的前10项和.19.(本小题14分)已知向量, 向量,且与的夹角为,其中A 、B 、C 是的内角. (1)求角B 的大小;(2)求 的取值范围.20.(本小题15分)如图所示,四棱锥中,底面为正方形,平面,,,,分别为、、的中点. (1)求证:PA //平面; (2)求证:; (3)求三棱锥的体积.21.(本小题14分)已知在上是增函数,在[0,3]上是减函数,且方程有三个实根. (1)求b 的值;(2)求实数的取值范围.112,a b ==454b =12323a a a b b ++=+{}n b {}n a 10S ()m sin B,1cos B =-()n 2,0=m n 3πABC ∆C A sin sin +P ABCD -ABCD PD ⊥ABCD 2PD AB ==E F G PC PD BC EFG GC PEF ⊥平面P EFG -()()32f x ax x bx c a,b,c R a 0=-++∈≠且()0,∞-()0=x f a22.(本小题15分)已知二次函数满足:对任意实数x ,都有,且当时,有成立. (1)证明:;(2)若的表达式; (3)设 ,,若图上的点都位于直线的上方,求实数m 的取值范围.参考答案一、选择题(每小题5分,共50分)二、填空题(每小题4分,共28分)11.__2_____ ____-2___ 12._________________ 13._______________ 14.____________ 15.____________ 16.________ 17.___________________三、解答题(共72分) 18.(本题满分14分)解(1)(2) 19.(本题满分14分)),,(,)(2R c b a c bxax x f ∈++=x x f ≥)(()13,∈x 2)2(81)(+≤x x f 2)2(=f )(,0)2(x f f =-x m x f x g 2)()(-=),0[+∞∈x )(x g 41=y φ79-328π+22n 3n +[,44-π132-⨯=n n b 29010=S解:(1) m =,且与向量n = (2,0)所成角为,又(2)由(1)知,,A+C==== ,,20.(本题满分15分)解(1)证法1:如图,取的中点,连接, ∵分别为的中点, ∴.∵分别为的中点, ∴.∴.()B B cos 1,sin -3π∴3sin cos 1=-BB∴cos 1B B +=∴21)6sin(=+πB π<<B 0∴6766πππ<+<B ∴656ππ=+B ∴32π=B 32π=B ∴3π∴C A sin sin +)3sin(sin A A -+πA A cos 23sin 21+)3sin(A +π30π<<A ∴3233πππ<+<A ∴)3sin(A +π⎥⎦⎤⎝⎛∈1,23∴C A sin sin +⎥⎦⎤⎝⎛∈1,23AD H ,GH FH ,E F ,PC PD EFCD ,G H ,BC AD GH CD EFGH∴四点共面. ∵分别为的中点, ∴.∵平面,平面, ∴平面.证法2:∵分别为的中点, ∴,.∵, ∴.∵,,∴平面平面.∵平面, ∴平面.(2)解:∵平面,平面, ∴.∵为正方形,∴. ∵, ∴平面.∵,, ∴.∵,∴21.(本题满分14分)解: (1)∵在上是增函数,在[0,3]上是减函数.∴ 当x=0时取得极小值.∴. ∴b=0 (2) ∵方程有三个实根, ∴a ≠0,,,E F H G ,F H ,DP DA PAFH PA ⊄EFG FH ⊂EFG PAEFG ,,E F G ,,PC PD BC EF CD EG PB CD AB EF AB PBAB B =EF EG E =EFG PAB PA ⊂PAB PAEFG PD ⊥ABCD GC ⊂ABCD GC PD ⊥ABCD GC CD ⊥PD CD D =GC ⊥PCD 112PF PD ==112EF CD ==1122PEF S EF PF ∆=⨯=112GC BC ==111113326P EFG G PEF PEF V V S GC --∆==⋅=⨯⨯=()b x ax x f +-='232()x f ()0,∞-()x f ()00='f ()0=x f∴=0的两根分别为 又在上是增函数,在[0,3]上是减函数.∴在时恒成立,在时恒成立 由二次函数的性质可知 ∴. 故实数的取值范围为 ∵方程有三个实根∴由前面知: ∴当当时,22.(本题满分15分)解:(1)由条件知恒成立 又∵取x =2时,与恒成立,∴. (2)∵∴ ∴. 又 恒成立,即恒成立. ∴,解出:, ∴.(3)由分析条件知道,只要图象(在y 轴右侧)总在直线 上方即可,也就是直线的斜率小于直线与抛物线相切时的斜率位置,于是: ()b x ax x f +-='232.32,021ax x ==()x f ()0,∞-()0>'x f ()0,∞-∈x ()0≤'x f []3,0∈x 3320≥>a a 且920≤<a a 2(0,]9()0=x f f |0f |0>>极大值极小值且2f |f (0)c 024f |f ()c 03a 27a ==>⎧⎪⎨==-+<⎪⎩极大值极小值0c <≤20a 9<≤c >0a 9c <≤224)2(≥++=c b a f 2)22(8124)2(2=+≤++=c b a f 2)2(=f ⎩⎨⎧=+-=++024224c b a c b a ,124==+b c a 1142,==-b c a x x f ≥)(0)1(2≥+-+c x b ax 0)41(4)121(,02≤---=∆>a a a 21,21,81===c b a 212181)(2++=x x x f )(x f 412+=x m y 2m∴. 解法2:必须恒成立, 即 恒成立.①△<0,即 [4(1-m)]2-8<0,解得: ; ② 解出:.⎪⎪⎩⎪⎪⎨⎧+=++=4122121812x m y x x y 221-≤m ),0[4121)221(81)(2+∞∈>+-+=x x m x x g 在),0[02)1(42+∞∈>+-+x x m x 在221221+<<-m ⎪⎩⎪⎨⎧>=≤--≥∆02)0(0)1(20f m 221-≤m。

相关文档
最新文档