空间向量运算的坐标表示PPT优秀课件
合集下载
空间向量运算的坐标表示ppt课件
我们已经学过平面向量运算的坐标表示:
向量相加:
a+b
向量相减:
a-b
向量的数乘:
λa
空间向量运算的坐标
表示是怎样的呢?
向量的数量积:a•b
向量的模:
|a|
向量的夹角:
cos<a,b>
向量a在平面上可用有序实数对(x,y)表示,在空
间则用有序实数组(x,y,z)表示.
类比
平面向量运算的坐标表示
空间向量运算的坐标表示
a1=λb1,a2=λb2,
a·b=0
a1b1+a2b2=0
设a=(a1,a2,a3), b=(b1,b2,b3) ( ≠ 0 )
a//b
a=λ b
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a⊥b
a ·b=0
a1b1+a2b2+a3b3=0
题型二:向量平行和垂直的坐标表示
1、已知a=(1,-5,6),b=(0,6,5),则a与b ( A )
a1b1+a2b2+a3b3=0
|| =
·=
1 2 + 2 2 + 3 2
d AB | AB | (a 2 a1 )2 (b2 b1 )2 (c2 c1 )2
a
b
a
b
a
b
·
1
1
2
2
3
2 2 2 2 32 2
cos < , >=
a
a
a
b
b
1
A.垂直
B.不垂直也不平行
C.平行且同向
D.平行且反向
2、设a=(1,y,-2),b=(-2,-4,z),若
向量相加:
a+b
向量相减:
a-b
向量的数乘:
λa
空间向量运算的坐标
表示是怎样的呢?
向量的数量积:a•b
向量的模:
|a|
向量的夹角:
cos<a,b>
向量a在平面上可用有序实数对(x,y)表示,在空
间则用有序实数组(x,y,z)表示.
类比
平面向量运算的坐标表示
空间向量运算的坐标表示
a1=λb1,a2=λb2,
a·b=0
a1b1+a2b2=0
设a=(a1,a2,a3), b=(b1,b2,b3) ( ≠ 0 )
a//b
a=λ b
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a⊥b
a ·b=0
a1b1+a2b2+a3b3=0
题型二:向量平行和垂直的坐标表示
1、已知a=(1,-5,6),b=(0,6,5),则a与b ( A )
a1b1+a2b2+a3b3=0
|| =
·=
1 2 + 2 2 + 3 2
d AB | AB | (a 2 a1 )2 (b2 b1 )2 (c2 c1 )2
a
b
a
b
a
b
·
1
1
2
2
3
2 2 2 2 32 2
cos < , >=
a
a
a
b
b
1
A.垂直
B.不垂直也不平行
C.平行且同向
D.平行且反向
2、设a=(1,y,-2),b=(-2,-4,z),若
空间向量运算的坐标表示ppt课件
新知探究
1.设=(a1,a2,a3),=(b1,b2,b3),有
向量运算
向量表示
坐标表示
加法
+
(a1+b1,a2+b2,a3+b3)
+=_______________________
减法
-
(a1-b1,a2-b2,a3-b3)
-=_______________________
数乘
λ
(λa1,λa2,λa3)
λ=______________,λ∈R
数量积
·
a1b1+a2b2+a3b3
·=________________
下面我们来证明空间向量的
的坐标表示:
设{i, j, k}为空间向量的正交基底,则
a=a1i+a2 j+a3k ,
b=b1i+b2 j+b3k
∴a ∙ b=(a1i+a2 j+a3k) ∙ (b1i+b2 j+b3k)
∵i∙i=j∙ j=k∙ k=1
i∙j=j∙ k=k∙ i=0
∴a∙b=a1b1+a2b2+a3b3
2.设=(a1,a2,a3),=(b1,b2,b3),则有
①b1,b2,b3≠0时,∥⇔a1=λb1,a2=λb2,a3=λb3(λ∈R)⇔
②⊥⇔·=0⇔a1b1+a2b2+a3b3=0;
【练习7 】点P(1,3,5)关于点M(2,﹣1,﹣4)的对称点的坐标是__________.
8.在棱长为1的正方体ABCDA1B1C1D1中,E,F分别是D1D,BD的中点,
G在棱CD上,且CG= CD,H是C1G的中点.
(1)求FH的长;
空间向量运算的坐标表示(20张PPT)——高中数学人教A版选择性必修第一册1
向量运算
向量表示
坐标表示
加法
a+b
减法
a—b
数乘
λa
λ∈R
数量积
空间向量的坐标运算a2,
知 识 点1设a=(a₁,
有
做一做:设{i,j,k} 是空间向量的一个单位正交基底,a= 2i—4j+5k,b=i+2j—3k, 则a+b 的坐标是(3,—2,2) _.
[解析] a=(2,—4,5),b=(1,2,—3),故a+b=(3,—2,2).
设P₁(x₁,y₁,z₁),P₂(x₂,y₂,z₂) 是空间中任意两点,则|P ₁ P₂ I=IP₁ P₂ I(x₂-x₁)²+(y₂-y₁)²+(z₂-z₁)² .思考2: 已知点A(x,y,z), 则 点A 到原点的距离是多少?提示:| OAI=10A|= √x²+y²+z.
(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算 公式是应用的关键.(3)运用公式可以简化运算:(a±b)²=a²± 2a.b+b²;(a+b)·(a—b)=a²—b2.
空间向量的坐标运算注意以下几点:
[规律方法]
[规律方法] 向量平行与垂直问题主要题型(1)平行与垂直的判断.(2)利用平行与垂直求参数或解其他问题,即平行与垂直的应用.解 题时要注意:①适当引入参数(比如向量a,b 平行,可设a=λb), 建立关 于参数的方程;②最好选择坐标形式,以达到简化运算的目的.
第一章空间向量与立体几何
1.3 空间向量及其运算的坐标表示1.3.2 空间向量运算的坐标表示
课程目标1. 掌握空间向量的线性运算的坐标表示.2.掌握空间向量的数量积的坐标表示.教学目标1.会利用空间向量的坐标运算解决简单的运算问题. (数学运算)2.掌握空间向量运算的坐标表示,并会判断两个向量是否共线或 垂直. (逻辑推理、数学运算)3.掌握空间向量的模、夹角公式和两点间的距离公式,并能运用 这些公式解决简单几何体中的问题. (逻辑推理、数学运算)
向量表示
坐标表示
加法
a+b
减法
a—b
数乘
λa
λ∈R
数量积
空间向量的坐标运算a2,
知 识 点1设a=(a₁,
有
做一做:设{i,j,k} 是空间向量的一个单位正交基底,a= 2i—4j+5k,b=i+2j—3k, 则a+b 的坐标是(3,—2,2) _.
[解析] a=(2,—4,5),b=(1,2,—3),故a+b=(3,—2,2).
设P₁(x₁,y₁,z₁),P₂(x₂,y₂,z₂) 是空间中任意两点,则|P ₁ P₂ I=IP₁ P₂ I(x₂-x₁)²+(y₂-y₁)²+(z₂-z₁)² .思考2: 已知点A(x,y,z), 则 点A 到原点的距离是多少?提示:| OAI=10A|= √x²+y²+z.
(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算 公式是应用的关键.(3)运用公式可以简化运算:(a±b)²=a²± 2a.b+b²;(a+b)·(a—b)=a²—b2.
空间向量的坐标运算注意以下几点:
[规律方法]
[规律方法] 向量平行与垂直问题主要题型(1)平行与垂直的判断.(2)利用平行与垂直求参数或解其他问题,即平行与垂直的应用.解 题时要注意:①适当引入参数(比如向量a,b 平行,可设a=λb), 建立关 于参数的方程;②最好选择坐标形式,以达到简化运算的目的.
第一章空间向量与立体几何
1.3 空间向量及其运算的坐标表示1.3.2 空间向量运算的坐标表示
课程目标1. 掌握空间向量的线性运算的坐标表示.2.掌握空间向量的数量积的坐标表示.教学目标1.会利用空间向量的坐标运算解决简单的运算问题. (数学运算)2.掌握空间向量运算的坐标表示,并会判断两个向量是否共线或 垂直. (逻辑推理、数学运算)3.掌握空间向量的模、夹角公式和两点间的距离公式,并能运用 这些公式解决简单几何体中的问题. (逻辑推理、数学运算)
1.3 空间向量的坐标表示及其运算(共47张PPT)
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
1.3 空间向量及其运算的坐标表示 课件(共45张PPT)
[解] (1)建立如图所示的空间直角坐标 系.点 E 在 z 轴上,它的 x 坐标、y 坐标均为 0,而 E 为 DD1 的中点,故其坐标为0,0,12.
由 F 作 FM⊥AD,FN⊥DC,垂足分别为 M,N, 由平面几何知识知 FM=12,FN=12, 故 F 点坐标为12,12,0. 点 G 在 y 轴上,其 x、z 轴坐标均为 0,
解决空间向量垂直、平行问题的有关思路 (1)若有关向量已知时,通常需要设出向量的坐标.例如, 设向量 a=(x,y,z). (2)在有关平行的问题中,通常需要引入参数.例如,已 知 a∥b,则引入参数 λ,有 a=λb,再转化为方程组求解. (3)选择向量的坐标形式,可以达到简化运算的目的.
利用坐标运算解决夹角、距离问题
1.建立空间直角坐标系时,要考虑如何建系才能使点的 坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.
2.已知空间点的坐标、A(x1,y1,z1),B(x2,y2,z2)向 量―A→B 的坐标等于终点坐标减起点坐标.即―A→B =(x2-x1, y2-y1,z2-z1).
[跟踪训练] 1.(2019·福建三明高二期末质量检测)已知 A(1,-2,0)和向量
空间向量的坐标表示
[ 例 1] ( 链 接 教 材 P18 例 1) 在 棱 长 为 1 的 正 方 体 ABCD-A1B1C1D1 中,E,F 分别是 D1D,BD 的中点,G 在棱 CD 上,且 CG=14CD,H 为 C1G 的中点,建立适当的坐标系.
(1)写出 E,F,G,H 的坐标; (2)写出向量―E→F ,―G→H 的坐标.
又 GD=34,故 G 点坐标为0,34,0. 由 H 作 HK⊥CG 于 K,由于 H 为 C1G 的中点. 故 HK=12,CK=18,∴DK=78, 故 H 点坐标为0,78,12. (2)―E→F =―O→F -―O→E =12,12,-12, ―G→H =―O→H -―O→G =0,18,12.
空间向量运算的坐标表示优质课公开课一等奖课件省赛课获奖课件
x
Cy
D(0 , 0 , 0)
,
F1
0
,
1 4
,1 .
B
BE1
1 ,
3 4
, 1
(1
,
1
,
0)
0
,
1 4
, 1
,
例题解说
例3 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1 所成的角的余弦值。
z
D 1 F 1
C 1
DF1
0
,
1 4
,1 (0
,
第三章 空间向量与立体几何
3.1 空间向量及其运算 3.1.5空间向量运算的坐标
表达
温故知新
向量的直角坐标系
p 给定一种空间坐标系和向量 ,且设e1,e2,
e3为坐标向量,由空间向量基本定理,存在唯一 的有序实数组(x,y, z)使
p = xe1+ye2+ze3 有序数组( x, y, z)叫做p在空间直角坐标系O--xyz 中的坐标,记作p=(x,y,z).
讲授新知 向量的直角坐标运算
设 a (a1, a2, a3),b (b1,b2,b3) 则
a b (a1 b1, a2 b2,a3 b3);
a b (a1 b1, a2 b2, a3 b3);
a (a1,a2,a3)( R); x1 y1 z1
a b a1b1 a2b2 a3b3;
P98 第7、8、9、10题
X
例题解说
例3 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
Cy
D(0 , 0 , 0)
,
F1
0
,
1 4
,1 .
B
BE1
1 ,
3 4
, 1
(1
,
1
,
0)
0
,
1 4
, 1
,
例题解说
例3 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1 所成的角的余弦值。
z
D 1 F 1
C 1
DF1
0
,
1 4
,1 (0
,
第三章 空间向量与立体几何
3.1 空间向量及其运算 3.1.5空间向量运算的坐标
表达
温故知新
向量的直角坐标系
p 给定一种空间坐标系和向量 ,且设e1,e2,
e3为坐标向量,由空间向量基本定理,存在唯一 的有序实数组(x,y, z)使
p = xe1+ye2+ze3 有序数组( x, y, z)叫做p在空间直角坐标系O--xyz 中的坐标,记作p=(x,y,z).
讲授新知 向量的直角坐标运算
设 a (a1, a2, a3),b (b1,b2,b3) 则
a b (a1 b1, a2 b2,a3 b3);
a b (a1 b1, a2 b2, a3 b3);
a (a1,a2,a3)( R); x1 y1 z1
a b a1b1 a2b2 a3b3;
P98 第7、8、9、10题
X
例题解说
例3 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
空间向量及其运算的坐标表示(15张PPT)——高中数学人教A版选择性必修第一册
深度探究
点的位置
向量位置
坐标
特点
x轴上
平行于x轴
(x,0,0)
纵、竖坐标均为0
y轴上
平行于y轴
(0,y,0)
横、竖坐标均为0
z轴上
平行于z轴
(0,0,z)
横、纵坐标均为0
Oxy平面上
平行于Oxy平面
(x,y,0)
竖坐标为0
Oyz平面上
平行于Oyz平面
(0,y,z)
横坐标为0
Ozx平面上
平行于Ozx平面
典例分析
例4如图,在正方体ABCD-A₁B₁C₁D₁ 中 ,E,F分别是BB₁ ,D₁B₁ 的中点,求证:EF⊥DA₁证明:不妨设正方体的棱长为1,建立如图所示的空间直角坐标系Oxyz, 则
典例分析
所以EF ·所以EF⊥DA₁,即EF⊥DA₁
,又A₁(1,0,1),D(0,0,0),
所以DA₁=(1,0,1)
深度探究
空间向量的坐标:在空间直角坐标系0xyz 中,给定向量a,作 0A=a,
由空间向量基本定理,
(1) 垂面法:过点A作三个平面分别垂直于x轴 ,y 轴 ,z轴于B,C,D三点,点B,C,D在x轴 ,y 轴 ,z 轴上的坐标分别为x,y,z,则(x,y,z)就是点 A的坐标。(2) 垂线段法:先确定点A在0xy平面内的射影A₁,由A₁A的长度及与z轴正方向的异同,确定竖坐标z, 再在0xy平面内确定点A₁ 的横坐标x 和纵坐标y, 那么点A的坐标就是(x,y,z).(3) 向量法:当向量的起点是原点时,向量坐标与向量终点的坐标相同。
例 1 如图,在长方体OABC-D'A'B'C′中 ,OA=3,0C=4,0D'=2,以为单位正交基底,建立如图所示的直角坐标系Oxyz。
点的位置
向量位置
坐标
特点
x轴上
平行于x轴
(x,0,0)
纵、竖坐标均为0
y轴上
平行于y轴
(0,y,0)
横、竖坐标均为0
z轴上
平行于z轴
(0,0,z)
横、纵坐标均为0
Oxy平面上
平行于Oxy平面
(x,y,0)
竖坐标为0
Oyz平面上
平行于Oyz平面
(0,y,z)
横坐标为0
Ozx平面上
平行于Ozx平面
典例分析
例4如图,在正方体ABCD-A₁B₁C₁D₁ 中 ,E,F分别是BB₁ ,D₁B₁ 的中点,求证:EF⊥DA₁证明:不妨设正方体的棱长为1,建立如图所示的空间直角坐标系Oxyz, 则
典例分析
所以EF ·所以EF⊥DA₁,即EF⊥DA₁
,又A₁(1,0,1),D(0,0,0),
所以DA₁=(1,0,1)
深度探究
空间向量的坐标:在空间直角坐标系0xyz 中,给定向量a,作 0A=a,
由空间向量基本定理,
(1) 垂面法:过点A作三个平面分别垂直于x轴 ,y 轴 ,z轴于B,C,D三点,点B,C,D在x轴 ,y 轴 ,z 轴上的坐标分别为x,y,z,则(x,y,z)就是点 A的坐标。(2) 垂线段法:先确定点A在0xy平面内的射影A₁,由A₁A的长度及与z轴正方向的异同,确定竖坐标z, 再在0xy平面内确定点A₁ 的横坐标x 和纵坐标y, 那么点A的坐标就是(x,y,z).(3) 向量法:当向量的起点是原点时,向量坐标与向量终点的坐标相同。
例 1 如图,在长方体OABC-D'A'B'C′中 ,OA=3,0C=4,0D'=2,以为单位正交基底,建立如图所示的直角坐标系Oxyz。
高中数学选择性必修一(人教版)《1.3.2空间向量运算的坐标表示》课件
对空间向量坐标运算的两点说明 (1)类比平面向量坐标运算:空间向量的加法、减法、数乘和 数量积与平面向量的类似,学习中可以类比推广.推广时注意利 用向量的坐标表示,即向量在平面上是用唯一确定的有序实数对
表示,即 a=(x,y).而在空间中则表示为 a=(x,y,z).
(2)运算结果:空间向量的加法、减法、数乘坐标运算结果依 然是一个向量;空间向量的数量积坐标运算的结果是一个实数.
∴―BA→1 =(1,-1,2), ―CB→1 =(0,1,2),
∴―BA→1 ·―CB→1 =1×0+(-1)×1+2×2=3.
又|―BA→1 |= 6,|―CB→1 |= 5,
∴cos〈―BA→1 ,―CB→1 〉=
―→ ―→ BA1 ·CB1 ―→ ―→
=
30 10 .
| BA1 || CB1 |
[对点练清] 1.[变条件]将本例(2)中“若 ka+b 与 ka-2b 互相垂直”改为
“若 ka+b 与 a+kb 互相平行”,其他条件不变,求 k 的值.
解:因为 a=(-1+2,1-0,2-2)=(1,1,0),
b=(-3+2,0-0,4-2)=(-1,0,2),
所以 ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2).
故
A1B
与
B1C
所成角的余弦值为
30 10 .
[方法技巧] 1.利用向量坐标求异面直线所成角的步骤 (1)根据几何图形的特点建立适当的空间直角坐标系; (2)利用已知条件写出有关点的坐标,进而获得相关向量的 坐标; (3)利用向量数量积的坐标公式求得异面直线上有关向量的 夹角,并将它转化为异面直线所成的角. 2.利用向量坐标求空间中线段的长度的步骤 (1)建立适当的空间直角坐标系; (2)求出线段端点的坐标; (3)利用两点间的距离公式求出线段的长.
表示,即 a=(x,y).而在空间中则表示为 a=(x,y,z).
(2)运算结果:空间向量的加法、减法、数乘坐标运算结果依 然是一个向量;空间向量的数量积坐标运算的结果是一个实数.
∴―BA→1 =(1,-1,2), ―CB→1 =(0,1,2),
∴―BA→1 ·―CB→1 =1×0+(-1)×1+2×2=3.
又|―BA→1 |= 6,|―CB→1 |= 5,
∴cos〈―BA→1 ,―CB→1 〉=
―→ ―→ BA1 ·CB1 ―→ ―→
=
30 10 .
| BA1 || CB1 |
[对点练清] 1.[变条件]将本例(2)中“若 ka+b 与 ka-2b 互相垂直”改为
“若 ka+b 与 a+kb 互相平行”,其他条件不变,求 k 的值.
解:因为 a=(-1+2,1-0,2-2)=(1,1,0),
b=(-3+2,0-0,4-2)=(-1,0,2),
所以 ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2).
故
A1B
与
B1C
所成角的余弦值为
30 10 .
[方法技巧] 1.利用向量坐标求异面直线所成角的步骤 (1)根据几何图形的特点建立适当的空间直角坐标系; (2)利用已知条件写出有关点的坐标,进而获得相关向量的 坐标; (3)利用向量数量积的坐标公式求得异面直线上有关向量的 夹角,并将它转化为异面直线所成的角. 2.利用向量坐标求空间中线段的长度的步骤 (1)建立适当的空间直角坐标系; (2)求出线段端点的坐标; (3)利用两点间的距离公式求出线段的长.
1.3空间向量及其运算的坐标表示 课件(共19张PPT)
巩固练习
练习2(课本P22上面练习T4、5)
17
课堂小结
一、空间向量的坐标运算法则
(1)加法:
(2)减法:
(3)数乘:
(4)数量积:
二、空间向量的坐标与其端点坐标的关系
三、空间向量的平行、垂直、模与夹角的坐标表示
18
1.3空间向量及其运算的坐标表示
谢
谢
听
THANKS
FOR聆YOUR
WATCHING
.
(2)垂直(a⊥b):
a⊥b⇔a·b=0⇔ a1b1+a2b2+a3b3=0
.(a,b 均为非零向量)
(3)模:|a|= ·= 12 + 22 + 32
.
(4)夹角公式:
·
=
||||
cos<a,b>=
1 1 + 2 2 + 3 3
AB ( x2 x1 , y2 y1 , z2 z1 )
第一章 空间向量与立体几何
1.3空间向量及其运算的坐标表示
教师:XXX
1
1.3.1空间直角坐标系
新知讲授
空间直角坐标系
3
在空间选定一点O和一个单位正交基底 {i, j, k} ,以O为原点,分
别以 i, j , k 的方向为正方向,以他们的长为单位长度建立三条数轴:
x轴,y轴,z轴,它们都叫做坐标轴.
D1 B1 中点,求证: EF DA1
15
16
例题讲解
例 3 如图1.3-9,在棱长为1的正方体ABCD- A1B1C1D1
中,M为BC1的中点,E1,F1分别在棱 A1B1,C1D1上,
B1E1= A1B1,D1F1= C1D1.
空间向量运算的坐标表示空间向量平行线和垂直的条件课件
-3b=( )
A.(6,3,-7) B.(-2,-1,-1) C.(2,1,-5) D.(14,7,-11)
2.若 a=(2,3,-1) ,b=(2,0,3) ,c=(0,2,2) ,则 a·(b+c) 的
值为( )
A.(4,6,-5) B.5
C.7
D.36
3.若向量 a,b 的坐标满足 a+b=(-2,-1,2) ,a-b=(4,-3,-2) ,
所以( (- -xx, ,1--yy,,2- -zz) )= =mn( (- -11, ,01, ,20) ), ,
x=-1, 解得y=1, 即 D(-1,1,2).
z=2,
(2)依题意,得A→B =(-1,1,0),A→C =(-1,0,2),B→C =(0,-1,2).假设
存在实数α,β,使得A→C =αA→B +βB→C 成立,则有(-1,0,2)=α(-1,1,
空间向量运算的坐标表示及应用 第1课时 空间向量运算的坐标表示、空 间向量平行(共线)和垂直的条件
必备知识·自主学习
1.空间向量的坐标运算 设a=(a1,a2,a3),b=(b1,b2,b3), ①a+b=_(_a_1_+__b_1,__a_2_+__b_2_,__a_3+__b_3_)_, ②a-b=_(_a_1_-__b_1,__a_2_-__b_2_,__a_3-__b_3_)_, ③λa=_(_λ__a_1_,__λ__a_2,__λ__a_3_)_, ④a·b=_a_1_b_1+__a_2_b_2_+__a_3b_3_.
关键能力·合作学习 类型一 用坐标表示空间向量(直观想象)
【典例】(1)已知点 A 在基{a,b,c}下的坐标为(8,6,4),其中 a=i+j,b=j +k,c=k+i,则点 A 在基{i,j,k}下的坐标是( ) A.(12,14,10) B.(10,12,14) C.(14,12,10) D.(4,3,2) (2)在棱长为 1 的正方体 ABCDA′B′C′D′中,E,F,G 分别为棱 DD′,D′C ′,BC 的中点,以{A→B ,A→D , AA' }为基,求向量A→E ,A→G ,A→F 的坐标.
A.(6,3,-7) B.(-2,-1,-1) C.(2,1,-5) D.(14,7,-11)
2.若 a=(2,3,-1) ,b=(2,0,3) ,c=(0,2,2) ,则 a·(b+c) 的
值为( )
A.(4,6,-5) B.5
C.7
D.36
3.若向量 a,b 的坐标满足 a+b=(-2,-1,2) ,a-b=(4,-3,-2) ,
所以( (- -xx, ,1--yy,,2- -zz) )= =mn( (- -11, ,01, ,20) ), ,
x=-1, 解得y=1, 即 D(-1,1,2).
z=2,
(2)依题意,得A→B =(-1,1,0),A→C =(-1,0,2),B→C =(0,-1,2).假设
存在实数α,β,使得A→C =αA→B +βB→C 成立,则有(-1,0,2)=α(-1,1,
空间向量运算的坐标表示及应用 第1课时 空间向量运算的坐标表示、空 间向量平行(共线)和垂直的条件
必备知识·自主学习
1.空间向量的坐标运算 设a=(a1,a2,a3),b=(b1,b2,b3), ①a+b=_(_a_1_+__b_1,__a_2_+__b_2_,__a_3+__b_3_)_, ②a-b=_(_a_1_-__b_1,__a_2_-__b_2_,__a_3-__b_3_)_, ③λa=_(_λ__a_1_,__λ__a_2,__λ__a_3_)_, ④a·b=_a_1_b_1+__a_2_b_2_+__a_3b_3_.
关键能力·合作学习 类型一 用坐标表示空间向量(直观想象)
【典例】(1)已知点 A 在基{a,b,c}下的坐标为(8,6,4),其中 a=i+j,b=j +k,c=k+i,则点 A 在基{i,j,k}下的坐标是( ) A.(12,14,10) B.(10,12,14) C.(14,12,10) D.(4,3,2) (2)在棱长为 1 的正方体 ABCDA′B′C′D′中,E,F,G 分别为棱 DD′,D′C ′,BC 的中点,以{A→B ,A→D , AA' }为基,求向量A→E ,A→G ,A→F 的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
aba1b1a2b2a3b3 ;
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R );
a 1/b 1a2/b 2a2/b 2 . a b a1b1a2b2a3b30;
二、距离与夹角
1.距离公式 (1)向量的长度(模)公式
|A B |A BA B(x 2x 1)2 (y2y 1)2 (z2 z1 )2
d A ,B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
2.两个向量夹角公式
cosa,b ab
a1b1a2b2a3b3
;
|a||b| a12a22a32 b12b22b32
D(0,0,0) , F10,14,1.
B
B E 1 1,3 4,1 (1,1,0 ) 0,1 4,1 ,
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1 E1
D1F1
A1B1 4
,求
B
E1
与
D
F1
所成的角的余弦值。
z
D1
F1
C1
D F 1 0 , 1 4, 1 (0 ,0 ,0 ) 0 , 1 4, 1 .
A1
E1 B1
B E 1D F 1 0 0 1 4 1 4 1 1 1 1 6 5,
D
O
A
x
C
y
|BE1|
1 47,|DF1|
三、应用举例
例1 已知 A(3 , 3 ,1)、B(1, 0 , 5) ,求:A
(1)线段 A B 的中点坐标和长度; 解:设 M(x, y, z)是 A B 的中点,则
M
B
O M 1 2 ( O A O B ) 1 2 ( 3 ,3 ,1 ) 1 ,0 ,5 2 ,2 3 ,3 ,O
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
作业
P107:1
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
一、向量的直角坐标运算
设 a (a 1 ,a 2 ,a 3 )b , (b 1 ,b 2 ,b 3 )则 a b (a1 b 1,a 2 b 2,a 3 b 3);
a b (a1 b 1,a2b 2,a3b 3);
a(a 1,a2,a 3),( R );
17. 4 15
B
cosBE1,DF1|BB EE 11|D |D FF 11|
16 15. 17 17 17
44
练习二:
正方A 体1B1C1D1-ABC, DE、F分别C是 1C
D1A1的中点 1)求,AB,EF
2)求点 A到直E线F的距离。D 1
(用向量方法)
F A1
C1 B1
|a |2 a a a 1 2 a 2 2 a 3 2
|b |2 b b b 1 2 b 2 2 b 3 2
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式 在空间直角坐标系中,已知 A(x1 , y1 , z1) 、
B(x2 , y2 ,z2),则 A B (x 2 x 1,y 2 y 1,z2 z1 )
∴点 M
的坐标是
2
,
3 2
,
3
.
d A ,B (1 3 )2 (0 3 )2 (5 1 )22 9 .
(2)到 A 、 B 两点距离相等的点 P(x , y , z) 的
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、 B 的距离相等,则
E
D A
C B
练习三:
如图:直三棱柱ABC A1B1C1, 底面ABC中,
CA=CB=1,BCA=90o,棱AA1=2,M、
N分别为A1B1、AA1的中点,
Байду номын сангаас
C1
1)求BN的长;
A1
B1
M
2)求cos BA1, CB1 的值; N
3)求证:A1B C1M。
C
A
B
思考题:
已A 知 ( 0,2,3)、 B ( 2,1,6)C ,(1,1,5)用 , 向 方法 A求 B 的 C面 S。积
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1 E1
D1F1
A1B1 4
,求
B
E1
与
D
F1
所成的角的余弦值。
z
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
E1 B1
B(1,1,0) , E11,34,1,
D
O
A
x
Cy
( x 3 ) 2 ( y 3 ) 2 ( z 1 ) 2 ( x 1 ) 2 ( y 0 ) 2 ( z 5 ) 2 ,
化简整理,得 4x6y8z70 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x6y8z70
注意:
(1)当 cosa,b1时,a 与 b 同向; (2)当 cosa,b1时,a 与 b 反向;
(3)当cosa,b0时,a b 。
思考:当 0co sa,b 1 及 1 c o s a ,b 0 时,
的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1 )a (2 , 3 , 3 ), b (1 ,0 ,0 ); ( 2 ) a ( 1 , 1 ,1 ),b ( 1 ,0 ,1 );
2.求下列两点间的距离:
(1 )A (1 ,1 ,0 ), B (1 ,1 ,1 );
( 2 )C ( 3 ,1 ,5 ),D ( 0 , 2 ,3 ).
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R );
a 1/b 1a2/b 2a2/b 2 . a b a1b1a2b2a3b30;
二、距离与夹角
1.距离公式 (1)向量的长度(模)公式
|A B |A BA B(x 2x 1)2 (y2y 1)2 (z2 z1 )2
d A ,B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
2.两个向量夹角公式
cosa,b ab
a1b1a2b2a3b3
;
|a||b| a12a22a32 b12b22b32
D(0,0,0) , F10,14,1.
B
B E 1 1,3 4,1 (1,1,0 ) 0,1 4,1 ,
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1 E1
D1F1
A1B1 4
,求
B
E1
与
D
F1
所成的角的余弦值。
z
D1
F1
C1
D F 1 0 , 1 4, 1 (0 ,0 ,0 ) 0 , 1 4, 1 .
A1
E1 B1
B E 1D F 1 0 0 1 4 1 4 1 1 1 1 6 5,
D
O
A
x
C
y
|BE1|
1 47,|DF1|
三、应用举例
例1 已知 A(3 , 3 ,1)、B(1, 0 , 5) ,求:A
(1)线段 A B 的中点坐标和长度; 解:设 M(x, y, z)是 A B 的中点,则
M
B
O M 1 2 ( O A O B ) 1 2 ( 3 ,3 ,1 ) 1 ,0 ,5 2 ,2 3 ,3 ,O
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
作业
P107:1
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
一、向量的直角坐标运算
设 a (a 1 ,a 2 ,a 3 )b , (b 1 ,b 2 ,b 3 )则 a b (a1 b 1,a 2 b 2,a 3 b 3);
a b (a1 b 1,a2b 2,a3b 3);
a(a 1,a2,a 3),( R );
17. 4 15
B
cosBE1,DF1|BB EE 11|D |D FF 11|
16 15. 17 17 17
44
练习二:
正方A 体1B1C1D1-ABC, DE、F分别C是 1C
D1A1的中点 1)求,AB,EF
2)求点 A到直E线F的距离。D 1
(用向量方法)
F A1
C1 B1
|a |2 a a a 1 2 a 2 2 a 3 2
|b |2 b b b 1 2 b 2 2 b 3 2
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式 在空间直角坐标系中,已知 A(x1 , y1 , z1) 、
B(x2 , y2 ,z2),则 A B (x 2 x 1,y 2 y 1,z2 z1 )
∴点 M
的坐标是
2
,
3 2
,
3
.
d A ,B (1 3 )2 (0 3 )2 (5 1 )22 9 .
(2)到 A 、 B 两点距离相等的点 P(x , y , z) 的
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、 B 的距离相等,则
E
D A
C B
练习三:
如图:直三棱柱ABC A1B1C1, 底面ABC中,
CA=CB=1,BCA=90o,棱AA1=2,M、
N分别为A1B1、AA1的中点,
Байду номын сангаас
C1
1)求BN的长;
A1
B1
M
2)求cos BA1, CB1 的值; N
3)求证:A1B C1M。
C
A
B
思考题:
已A 知 ( 0,2,3)、 B ( 2,1,6)C ,(1,1,5)用 , 向 方法 A求 B 的 C面 S。积
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1 E1
D1F1
A1B1 4
,求
B
E1
与
D
F1
所成的角的余弦值。
z
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
E1 B1
B(1,1,0) , E11,34,1,
D
O
A
x
Cy
( x 3 ) 2 ( y 3 ) 2 ( z 1 ) 2 ( x 1 ) 2 ( y 0 ) 2 ( z 5 ) 2 ,
化简整理,得 4x6y8z70 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x6y8z70
注意:
(1)当 cosa,b1时,a 与 b 同向; (2)当 cosa,b1时,a 与 b 反向;
(3)当cosa,b0时,a b 。
思考:当 0co sa,b 1 及 1 c o s a ,b 0 时,
的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1 )a (2 , 3 , 3 ), b (1 ,0 ,0 ); ( 2 ) a ( 1 , 1 ,1 ),b ( 1 ,0 ,1 );
2.求下列两点间的距离:
(1 )A (1 ,1 ,0 ), B (1 ,1 ,1 );
( 2 )C ( 3 ,1 ,5 ),D ( 0 , 2 ,3 ).