第五讲:太阳能电池效率极限

合集下载

3.3 太阳能电池效率的极限、损失与测量解析

3.3 太阳能电池效率的极限、损失与测量解析
2.开路电压Voc的考虑:
• 饱和电流越小开路电压越大,尽可能使饱和电流小。 Eg • 由 2 ni N C N V exp( ) kT • 将高品质电池参数代入,可得:
Eg I 0 1.5 10 exp( )A / cm 2 kT
5
• 由上式可看到,开路电压随着禁带宽度的减小而减小。 • 而短路电流是随着宽度的减小而增加,那么总存在一 个最佳禁带宽度使效率最大。
开路电压Voc的最大值,在理想情况下有下式决定:
影响因素:光强、温度、材料特性 2.开路电压Voc的考虑:
IL kT Voc ln( 1) q I0
式中IL是光生电流,Io是二极管反向饱和电流,其满足:
qDn ni2 qDh ni2 I 0 A( ) N A Ln N D Lh
Eg
黄淮学院
3.4太阳能电池效率的极限、损失与测量
1
复旦大学
一、太阳电池转换效率的理论上限
太阳能电池的理论效率
太阳能电池的理论效率由下式决定:
VOC I SC FF Pin
当入射太阳光谱AM0或AM1.5确定以后,其值就取 决于开路电压Voc、短路电流Isc和填充因子FF的最大 值。
2018/10/10
Voc ln(Voc 0.72) FF Voc 1
oc Voc
kt q
这样,当开路电压Voc的最大值确定后,就可计 算得到FF的最大值。
2018/10/10
9/27
世界主要太阳电池新纪录
电池种类
单晶硅电池 GaAs多结电池 多晶硅电池
转换效率 (%)
24.7±0.5 34.7±1.7 20.3±0.5
如何进一步提高太阳能电池的转换效 率是当前的研究课题,这也就是所谓 的高效率化技术的开发。

有机太阳能电池sq极限 -回复

有机太阳能电池sq极限 -回复

有机太阳能电池sq极限-回复有机太阳能电池(简称有机光伏)是近年来备受关注的一种新型太阳能转换设备。

它是由有机材料制成的光伏电池,相对于传统的硅基光伏电池具有许多优势,如成本低、生产简单、柔性可折叠等。

然而,有机太阳能电池的效率一直以来是一个挑战,因此研究人员一直致力于提高其效率和稳定性。

接下来,本文将一步一步回答关于有机太阳能电池效率的极限问题。

首先,我们需要了解有机太阳能电池是如何工作的。

有机太阳能电池由两个主要部分组成:光吸收层和电荷传输层。

光吸收层是由有机半导体材料制成,它的主要功能是吸收入射光的能量并将其转化为电荷。

电荷传输层则负责将产生的电荷转移到外部电路,以供电器使用。

为了提高有机太阳能电池的效率,首要任务是提高光吸收层的光吸收效率。

当太阳光照射在光吸收层上时,能量会通过光吸收层的分子发生跃迁,并产生电子空穴对。

然而,由于有机材料的特性,电子空穴对在短时间内会迅速重新结合,从而导致能量的损失。

因此,降低电子空穴对的再复合率是提高光吸收层效率的关键。

现有的方法是添加不同的添加剂到光吸收层中,以抑制电子空穴对的再复合。

例如,在光吸收层中掺入一定量的有机小分子,可以增加电子和空穴之间的空间隔离,从而阻碍它们再结合。

此外,还可以引入能够捕获自由电子或空穴的材料,以更好地分离电子和空穴,并提高光吸收层的效率。

另一个提高有机太阳能电池效率的关键因素是提高电荷传输效率。

传统的有机太阳能电池中,电荷传输速度较慢,导致一部分电子空穴对再次结合,使能量损失增加。

为了解决这个问题,研究人员可以通过优化电荷传输层的性质来提高电荷传输效率。

例如,设计合适的电荷传输层材料和结构,可以提高电荷的迁移速度,减少电子空穴对的再结合。

此外,改善光吸收层和电荷传输层之间的接触也是提高有机太阳能电池效率的关键。

优化接触界面可以提供更好的电子和空穴传输通道,减少能量损失。

研究人员可以通过界面工程技术,如添加中间层或使用化学吸附剂来改善接触界面的性质。

第五讲 太阳能电池效率极限课件

第五讲 太阳能电池效率极限课件
• 然而,能量比带隙能量大的光子(Egh>Eg)会与形成共 价键的电子相作用,用它自身所具有的能量去破坏共 价键,形成可以自有流动的电子-空穴对。
导带
Eg (禁带宽)
价带
光照时电子-空穴对的产生
• 光子的能量越高,被吸收的位置就越接近半导体表面, 较低能量的光子则在距半导体表面较深处被吸收。
光的能量与电子-空穴对产生的位置间的联系
1.2 光照的影响
• 在无光照的情况下,描述二极管电流I和电压V间 函数关系的特征曲线(I-V曲线)为:
I I0[exp(nqkVT)1]
• 光线的照射对太阳电池的作用,可以认为是在原 有的二极管暗电流基础之上叠加了一个电流增量, 于是二极管公式变为:
II0[exp(nqkVT)1]IL
电压电流 方向?
voltage axis.
• 用于衡量在一定照射强度、工作温度以及面积条件 下,太阳能电池电力输出的两个主要制约参数为:
• 短路电流(Isc, Short circuit current ) 当电压为零时电池输出的最大电流,Isc=IL。Isc与 所接受到的光照强度成正比。
• 开路电压(Voc, Open circuit voltage ) 电流为零时,电池输出的最大电压。Voc的值随辐 照强度的增加成对数方式增长。
Cell
Equivalent circuit for a solar cell with load. Internal resistances RS and RSH represent
power loss mechanisms inside the cell.
RS = 0 ISC
does the energy originate?

有机太阳能电池转换效率的理论极限值约为21%

有机太阳能电池转换效率的理论极限值约为21%

有机太阳能电池转换效率的理论极限值约为21%电荷分离时存在0.4 eV能量损失的情况下,光电转换效率的理论极限值与太阳能电池可吸收的光能的最小值(光吸收端能量)之间的关系。

红线表示无机太阳能电池的理论极限值,蓝线表示有机太阳能电池的新的理论极限值在作为新一代太阳能电池备受关注的“有机太阳能电池”方面,日本产业技术综合研究所(产综研)对这种电池将阳光转换成电力的能力——“光电转换效率”(以下简称转换效率)的理论极限进行了模拟计算,得出气数值约为21%。

日本正以产综研太阳能发电工学研究中心为核心,汇集环境能源、测量计量标准、纳米技术材料制造等多领域研究人员组成有机太阳能电池极限效率研讨会,开展有机太阳能电池转换效率的理论极限方面的研究。

此次在理论上计算出的约21%的极限值高出目前所能实现的10~12%实际效率许多,表明今后通过选择及改进材料并优化结构,还有望使转换效率进一步提高。

目前主流的晶体硅太阳能电池等无机太阳能电池的转换效率理论极限已获知。

此次便是以此为基础,并将无机太阳能电池与有机太阳能电池在吸收光后产生电力的机理方面的不同纳入考虑因素,计算出了有机太阳能电池的转换效率理论极限值。

该成果有望成为有机太阳能电池的转换效率“能够提高到何种程度”的研发指南。

上述成果将于近期在应用物理学会杂志《Applied Physics Letters》的在线版上公开。

有机太阳能电池拥有有机材料所特有的薄轻软柔特性,可安装在以往的晶体硅太阳能电池板难以设置的场所,作为新一代太阳能电池备受期待。

不过,与晶体硅太阳能电池相比,有机太阳能电池在提高转换效率及耐久性方面还存在技术课题。

但近年来其转换效率快速提高,有研究称已超过10%,达到了与非晶硅太阳能电池相当的水平。

因此,业界对有机太阳能电池的转换效率“能够提高至何种程度”颇为关注。

在无机半导体太阳能电池方面,Shockley和Queisser于1961年宣布其转换效率的理论极限值约为30%,近年的实际效率已接近这一数值,无机太阳能电池的研发最近正朝着通过采用多结型及集光型等Shockley-Queisser理论中未曾考虑的构造来提高效率的方向发展。

硅太阳能电池极限效率

硅太阳能电池极限效率

硅太阳能电池极限效率
硅太阳能电池的理论极限效率是由爱因斯坦的光电效应方程和量子理论计算得出的,约为29.4%。

这意味着,当光照射到硅材料上,电子从材料内部跃迁到材料外部时,会产生一定的能量损失。

这个能量损失是由于电子在跃迁时需要克服材料内部的束缚能和材料与外部电路之间的界面能等因素造成的。

目前,硅太阳能电池的商业化最高效率已经达到了26%左右,但科学家们仍在不断研究和探索提高硅太阳能电池效率的方法。

其中,一些研究方向包括:
1. 提高材料纯度:硅太阳能电池的效率受到杂质和缺陷的影响,提高材料纯度可以减少这些影响,从而提高电池效率。

2. 优化电池结构:通过优化硅太阳能电池的结构,例如增加电极面积、改变电极材料等,可以减少能量损失,提高电池效率。

3. 引入新材料:研究和开发新型半导体材料,例如有机太阳能电池、钙钛矿太阳能电池等,可以提高太阳能电池的效率和稳定性。

总之,硅太阳能电池的理论极限效率是29.4%,但科学家们正在不断探索和研究提高电池效率的方法,未来有望实
现更高的效率。

有机太阳能电池sq极限

有机太阳能电池sq极限

有机太阳能电池(Organic Solar Cells,简称OSCs)是一种基于有机材料的太阳能电池,其特点包括轻薄柔性和低成本制备。

然而,相比于硅基太阳能电池,有机太阳能电池的效率目前仍较低。

目前有机太阳能电池的效率SQ(Shockley-Queisser limit)仍然较低,远低于硅基太阳能电池。

SQ极限是指在光照条件下,太阳能电池最大理论转换效率。

传统的硅太阳能电池的SQ 极限约为31%,而有机太阳能电池的SQ极限则较低,通常在10%以下。

有机太阳能电池的低效率与有机半导体材料的光伏性能有关。

虽然有机太阳能电池具有生产成本低、柔性好等优点,但其在光电转换效率上仍面临挑战。

科研人员不断探索新型有机材料、提升光电转换效率的技术,但要实现更高效率的有机太阳能电池仍需要更多的技术突破和创新。

太阳能电池极限效率的原理

太阳能电池极限效率的原理

太阳能电池极限效率的原理一、细致平衡原理的提出细致平衡原理是考量太阳能电池极限理论效率最重要和最常用的手段。

Detailed balance这个概念是1954年Roosbroeck和Shockley在在应用物理(Journal of Applied Physics)杂志上发的一篇文章提出来的。

1961年William Shockley, Hans J. Queisser在应用物理上发了Detailed balance limit of efficiency of p-n junction solar cells的文章,在这篇文章中提出了细致平衡效率极限(detailed balance limit of efficiency)的概念,在一些假设的基础上推导出一个公式用来计算效率极限,得出单结太阳电池效率极限为31%。

其中这几个假设为:1、太阳和电池被假设为温度分别为6000K和300K的黑体。

2、电子和空穴的复合只有一种辐射复合(radiative recombination),这是detailed balance 原理所要求的。

3、radiative recombination只是总复合的特定的一小部分,其余的都是非辐射(nonradiative)的。

温度为6000K(Tsource)和300K(Tsink)的两个热库之间的能量转换效率受卡诺循环限制为95%。

这个数值没有考虑电池光子发射损失,模型假设这些损失能量又回到了太阳,使太阳保持自身的温度。

修正模型考虑这些光子损失,并假设过程是可逆的,满足卡诺循环的条件,由此得到的转换效率是93.3%。

二、所有的因素都最优化,太阳能电池最终能够达到怎么样的极限效率如果所有的因素都最优化,包括电学的,光学的,材料的,那么太阳能电池最终能够达到怎么样的极限效率?这是人们最关心的问题之一,也是各种优化期望达到的方向。

细致平衡原理的重要性就在于它是人们现今发现的最低的理论极限,低于卡洛效率,低于朗斯堡(Landsberg)极限,它是客观上能达的最高效率。

太阳能电池效率的上限或被突破

太阳能电池效率的上限或被突破

太阳能电池效率的上限或被突破
佚名
【期刊名称】《技术与市场》
【年(卷),期】2010(017)012
【摘要】@@ 虽然研究人员一直在稳步提高太阳能电池的发电量,但他们却面临根本的限制,这是因为物理学涉及到把光子转换为电子,而且是在半导体材料中进行的.现在,美国怀俄明大学研究人员已证明,采用被称作量子粒的新型纳米材料,有可能超越这些极限,生产超效能太阳能电池.
【总页数】1页(P177)
【正文语种】中文
【相关文献】
1.美国:突破太阳能电池效率的上限 [J],
2.Innovalight硅墨太阳能电池效率突破纪录 [J],
3.美国太阳能电池效率研究获新突破 [J], 卢利平
4.硅墨太阳能电池效率获突破性进展 [J],
5.中科院黑硅多晶太阳能电池效率突破18.3% [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

第五章 效率的极限、损失和测量

第五章 效率的极限、损失和测量

5.4 黑体电池的效率极限
黑体太阳能电池吸收所有入射的阳光。
同时以辐射复合的形式释放能量大于禁带宽度的光子。 I0与复合率有关。 从而得到I0的最小值。 此时, Voc为850mV,效率极限超过了30%。
12
5.2 温度的影响
13
太阳能电池对温度非常敏感。温度T的升高使得半导体 的禁带宽度Eg降低,相当于材料中的电子能量提高,这 影响了大多数的半导体材料参数。
温度
Isc
Voc FF
光吸收 增加
温度对开路电压的影响
短路电流Isc和开路电压Voc的关系:
14
I sc I 0 eqVoc /kT 1
-Eg0


pn结两边的I0的方程为
I 0 AT e kT 式中A与温度无关,γ包含了其余与温度有关的参数,它的数 值一般在1~4之间,Eg0为半导体材料在绝对零度时的禁带宽 度。
20
如果考虑耗尽区的复合,那么在无光照时,pn结的IV关系为:
式中: 或者写成:
I I 0 eqV / nkT 1
相当于增 加了I0
Voc降低
5.3.3 填充因子FF损失
21
1.耗尽区的复合
2.寄生的串联电阻和分流电阻
21
1. 耗尽区的复合
22
耗尽区的复合将会降低填充因子FF。对于非理想二极管, n>1,则voc变为 q voc Voc , nkT 同样的,当voc>10时,有:
15
温度对短路电流的影响
16
当温度升高时,禁带宽度Eg减小,将有更多的光子有能力 激发电子-空穴对,短路电流Isc会轻微上升。硅太阳能电池中 短路电流受温度影响程度:
1 dI sc 0.0006/C Isc dT

太阳能电池效率的极限、损失与测量

太阳能电池效率的极限、损失与测量
电池厚度对Isc的影响
间接带隙半导体要求材料的厚度比直接带隙的厚。
2015-6-26 18/27
二、效率的损失
1、短路电流损失
短流损失的另外一个原因是半导体体内 及表面的复合,有效收集区域只在耗尽 区及两侧扩散长度内。 体内其它位置产生的空穴电子对,很难 达到器件输出端。
2015-6-26
19/27
2015-6-26
29/27
思考题
1.试分析太阳电池最高效率较低的原因。 2.试分析禁带宽度对太阳电池效率的影响。 3.试分析温度对太阳电池效率的影响。 4. 短路电流的损失途径。 5.电池厚度是影响太阳电池的能量转换效率的原因之一, Si和GaAs的最小厚度比较是( )需要更大的厚度。
2015-6-26
二、效率的损失
2、开路电压损失 决定光生伏特大小的因素,是在耗尽区两边所 堆积的光生非平衡载流子的多少,而非子的多 少和复合速度有关系。 复合率越大,开压越小。
2015-6-26
20/27
二、效率的损失
3.填充因子损失
当考虑串联电阻Rs时:
Voc 特征电阻: Rch I sc Rs 归一化串联电阻: rs Rch
30/27
10/27
一、太阳电池转换效率的理论上限
3.填充因子FF的考虑:
在理想情况下,填充因子FF仅是开路电压Voc的 函数,可用以下经验公式表示:
Voc ln(Voc 0.72) FF Voc 1
oc Voc
kt q
这样,当开路电压Voc的最大值确定后,就可计 算得到FF的最大值。
2015-6-26 8/27
一、太阳电池转换效率的理论上限
2.开路电压Voc的考虑: 为什么最高效率比较低? 最高效率较低的主要原因是由于吸收一个光子, 不管它的能量多么大,最多只能产生一对电子 一空穴对。电子和空穴迅速跳回到带隙边缘, 同时放出声子。即使光子能量比禁带宽度大很 多,实际上所产生的电子和空穴也仅仅相隔一 个禁带宽度。仅这一效应就将限制了就能获得 的最高效率只有约44%。

第五讲:太阳能电池效率极限解析

第五讲:太阳能电池效率极限解析

第一讲太阳能电池和太阳光
• 单位体积内电子-空穴对的产生率可用下式表示:
G Nex
• N为光子的流量(每秒流过单位面积的光子数量 ),α是吸收系数,x是到表面的距离。
α物理意义 α相当于某波长的光在媒质中传播1/α距离时能量减弱到 原来能量的1/e。一般用吸收系数的倒数1/α来表征该波 长的光在材料中的透入深度。
Region
Dark Characteristic
I V
Power Generating
Region
江西L工ig业h工t程职Ch业a技r术a学c院t电er子i系st林i梅c
第一讲太阳能电池和太阳光
• 光照能使电池的I-V曲线向下平移到第四象限,于 是二极管的电能可以被获取。
• 为便于讨论,太阳电池的I-V特性曲线通常被上下
翻转,将输出曲线置于第一象限,并用下式表示

I
ILI0[ex Nhomakorabea(qV nkT
)
1]
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
The VI characteristic of a solar cell is usually displayed like this: I V
I
V
The coordinate system is flipped around the
江西工业工程职业技术学院电子系林梅
1.2 光照的影响 第一讲太阳能电池和太阳光
• 在无光照的情况下,描述二极管电流I和电压V间 函数关系的特征曲线(I-V曲线)为:
I
qV I0[exp( nkT
)
1]
• 光线的照射对太阳电池的作用,可以认为是在原
有的二极管暗电流基础之上叠加了一个电流增量

太阳能电池的等效电路和转化效率理论上限

太阳能电池的等效电路和转化效率理论上限

光生电流的光学损失:
太阳能电池的效率损失中,有三种是属于光学损失, 其主要影响是降低了光生电流值。
反射损失:从空气(或真空) 垂直入射到半导体材料的光 的反射。以硅为例,在感兴 趣的太阳光谱中,超过30% 的光能被裸露的硅表面发射 掉了。
栅指电极遮光损失c:定义 为栅指电极遮光面积在太 阳能总面积中所占的百分 比(见下图)。对一般电 池来说,c约为4%-15%。
影响开路电压的实际因素:
决定开路电压Voc大小的主要物理过程是半导体的复 合。半导体复合率越高,少子扩散长度越短, Voc也就越 低。体复合和表面复合都是重要的。
在p-Si衬底中,影响非平衡少子总复合率的三种复合 机理是:复合中心复合、俄歇复合及直接辐射复合。总复 合率主要取决三种复合中复合率最大的一个。例如:对于 高质量的硅单晶,当掺杂浓度高于 1017cm-3时,则俄歇复 合产生影响,使少子寿命降低。
FF =
Uoc-ln(Uoc+0.72) Uoc+1
Uoc = Voc(kT/q)1/2
这样,当开路电压Voc的最大值确定后,就可计 算得到FF的最大值。
综合上述结果,可得到作为带隙Eg的函数的最大转 换效率,其结果示于下图中。
2、影响太阳能电池转换效率的一些因素
我们前面介绍了太阳能电池转换效率的 理论值,这些理论值都是在理想情况下得到 的。而太阳能电池在光电能量转换过程中, 由于存在各种附加的能量损失,实际效率比 上述的理论极限效率低。下面以pn结硅电池 为例,介绍一些影响太阳能电池转换效率的 因素。
短路电流Isc的考虑:
我们假设在太阳光谱中波长大于长波限的光对太阳 能电池没有贡献,其中长波限满足:
max = 1.24(m)/Eg(eV)

3.3 太阳能电池效率的极限、损失与测量解读

3.3 太阳能电池效率的极限、损失与测量解读

ILmax=qNph(Eg)
式中Nph(Eg)为每秒钟投射到电池上能量大于Eg的总光子数 。 2019/2/22 3/27
一、太阳电池转换效率的理论上限
1.短路电流Isc的考虑: 在AMO和AM1.5光照射下的最大短路电流值。
当禁带宽度减小时,短路电流密度增加。
2019/2/22 4/27
一、太阳电池转换效率的理论上限
下面我们就来分别考虑开路电压 Voc、短路电流Isc和填充因子FF的 最大值。
2/27
一、太阳电池转换效率的理论上限
1.短路电流Isc的考虑: 影响因素:面积、光强、温度
我们假设在太阳光谱中波长大于长波限的光对太阳 能电池没有贡献,其中长波限满足:
max
1.24 (um) Eg (eV )
而其余部分的光子,因其能量hν 大于材料的禁带宽度Eg,被 材料吸收而激发电子-空穴对。假设其量子产额为1,而且被激 发出的光生少子在最理想的情况下,百分之百地被收集起来。 光生载流子的定向运动形成光生电流IL最大光生电流值为:
开路电压Voc的最大值,在理想情况下有下式决定:
影响因素:光强、温度、材料特性 2.开路电压Voc的考虑:
IL kT Voc ln( 1) q I0
式中IL是光生电流,Io是二极管反向饱和电流,其满足:
qDn ni2 qDh ni2 I 0 A( ) N A Ln N D Lh
Eg
2019/2/22 6/27
一、太阳电池转换效率的理论上限
2.开路电压Voc的考Байду номын сангаас: 为什么最高效率比较低?
2019/2/22
7/27
一、太阳电池转换效率的理论上限
2.开路电压Voc的考虑:

太阳能电池极限效率的原理

太阳能电池极限效率的原理

太陽能電池極限效率的原理一、細緻平衡原理的提出細緻平衡原理是考量太陽能電池極限理論效率最重要和最常用的手段。

Detailed balance這個概念是1954年Roosbroeck和Shockley在在應用物理(Journal of Applied Physics)雜誌上發的一篇文章提出來的。

1961年William Shockley, Hans J. Queisser在應用物理上發了Detailed balance limit of efficiency of p-n junction solar cells的文章,在這篇文章中提出了細緻平衡效率極限(detailed balance limit of efficiency)的概念,在一些假設的基礎上推導出一個公式用來計算效率極限,得出單結太陽電池效率極限為31%。

其中這幾個假設為:1、太陽和電池被假設為溫度分別為6000K和300K的黑體。

2、電子和空穴的複合只有一種輻射複合(radiative recombination),這是detailed balance原理所要求的。

3、radiative recombination只是總複合的特定的一小部分,其餘的都是非輻射(nonradiative)的。

溫度為6000K(Tsource)和300K(Tsink)的兩個熱庫之間的能量轉換效率受卡諾迴圈限制為95%。

這個數值沒有考慮電池光子發射損失,模型假設這些損失能量又回到了太陽,使太陽保持自身的溫度。

修正模型考慮這些光子損失,並假設過程是可逆的,滿足卡諾迴圈的條件,由此得到的轉換效率是93.3%。

二、所有的因素都最優化,太陽能電池最終能夠達到怎麼樣的極限效率如果所有的因素都最優化,包括電學的,光學的,材料的,那麼太陽能電池最終能夠達到怎麼樣的極限效率?這是人們最關心的問題之一,也是各種優化期望達到的方向。

細緻平衡原理的重要性就在於它是人們現今發現的最低的理論極限,低於卡洛效率,低於朗斯堡(Landsberg)極限,它是客觀上能達的最高效率。

太阳能电池效率的上限或突破

太阳能电池效率的上限或突破

这 一 进展很 重要 , 因有两 个 。首 先 , 原 它表 明 , 有
可能 使 用 多余 电子促 进 产 生 电流 , 这是 必要 的 , 如果 这些 电子 要在太 阳能 电池 中有 任何 作 用 的话 。第二 ,
测量表明 , 量子粒可更有效地产生多余 电子 , 超过一
些 研 究者 的想 象 , 某 些波 长 的光 而言 , 效 果 大约 对 其 是 三倍 。 克孙使用 硫 化铅量 子粒 和水 晶二 氧化 钛 电 帕 极, 研究 人员 们需 要 尝试量 子粒 和 电极材 料 的其 它组 合, 以发 现 一些 组 合 , 以把更 多 光 子转 换 成许 多 电 可 于直接测 试其 他一 些组 合 。 研 究 人员 认 为 还需 要 提 高量 子 粒 太 阳能 电池所
体来 确 定肿 瘤 的位 置 , 当纳 米 粒 子 到达 肿 瘤 后 , 直 会 接附着 在上 面 。此时 , 通过 外部 磁 场使 其在 特定 部位 发 热 即可定 向杀死 癌细 胞 。治疗 结束 后 , 米粒 子会 纳
杀死癌细胞 , 围健康组织受到的影响很小 , 周 因此 , 有
很 大 的应用 前 景 。现 此项 研究 仍处 于早 期 阶段 , 们 他

该方 法 对 治 疗癌 症 是 有效 的 , 理 论 上讲 , 从 只要 能 找 到特 定 的生物 标记 和抗 体 ,即可 用 于治疗 各种 癌症 。 通 过 反馈程 序 , 医生还 可 根据 不 同患者 确定 个性 化治 传统放射性治疗是 目前治疗癌
这 种新 疗 法用 一种 经 特殊 混 合 的 纳米 粒 子 和 抗 症 的主 要方 法 ,但 这种 方法 在杀 死 癌细胞 的 同时 , 也 会 使健 康 细 胞受 损 ,患者 接 受 治疗 后 常 常会 产 生 恶 心、 头发脱 落 、 疲惫 等副 作用 。 他们 研发 的技 术能定 向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲太阳能电池和太阳光
RS = 0 ISC RSH = RLOAD
The ideal solar cell would have no internal losses at all! What would the VI characteristic of THIS cell look like? 江西工业工程职业技术学院电子系林梅
I
I The coordinate system is flipped around the voltage axis. 江西工业工程职业技术学院电子系林梅
V
第一讲太阳能电池和太阳光
• 用于衡量在一定照射强度、工作温度以及面积条件 下,太阳能电池电力输出的两个主要制约参数为: • 短路电流(Isc, Short circuit current ) 当电压为零时电池输出的最大电流,Isc=IL。Isc与 所接受到的光照强度成正比。 • 开路电压(Voc, Open circuit voltage ) 电流为零时,电池输出的最大电压。Voc的值随辐 照强度的增加成对数方式增长。
RS
江西工业工程职业技术学院电子系林梅
Cell RS ISC
第一讲太阳能电池和太阳光
RSH
RLOAD
Cell Equivalent circuit for a solar cell with load. Internal resistances RS and RSH represent power loss mechanisms inside the cell. 江西工业工程职业技术学院电子系林梅
电子空穴对复合的一些可能模式,以及未复合的载流子被收集的情况
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
• 总体来说,在P-N结越近的地方产生的电子空穴对 越容易被收集。当V=0时,那些被收集的载流子将 会产生一定大小的电流。如果电子空穴对在P-N结 附近小于一个扩散长度的范围内产生,收集的几 率就比较大。
所以:
P mp Voc I sc FF
江西工业工程职业技术学院电子系林梅
ISC , PMAX , VOC
第一讲太阳能电池和太阳光
ISC
(0V, 150 mA) V I = 0 mW (0.43 V, 142 mA) V I = 61 mW
PMAX
Some typical values
江西工业工程职业技术学院电子系林梅
光谱响应度
第一讲太阳能电池和太阳光
• 然而,在短波长辐射下,电池无法利用光子的全部能量 ,长波长辐射下,电池对光线的吸收作用较弱,导致大 部分光子在远离P-N结的区域被吸收。 • 半导体材料的有限扩散长度也限制了电池对光的响应。
典型的实际太阳电池的外部量子效率和光谱响应 江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
恒定的电池温度下,不同的辐照度对光生电流密度 和电压输出特性曲线的影响 江西工业工程职业技术学院电子系林梅
1.4 温度的影响
第一讲太阳能电池和太阳光
• 温度的影响包括:短路电流随温度上升而增加, 因为带隙能量下降了,更多的光子具有足够的能 量来产生电子空穴对,但是,这是一个比较微弱 的影响。 • 对硅电池来说,温度的上升主要致使开路电压和 填充因子下降,因而导致了输出电功率下降。 • 对硅电池而言,温度对最大输出功率的影响如下 1 dPmm (0.004 ~ 0.005)C1 Pmm dT
第一讲太阳能电池和太阳光
• 当单个光子的能量比半导体材料的禁带宽度大时 ,太阳电池就会吸收这个光子并产生一个电子空 穴对,在这种情况下,太阳能电池对入射光的光 子产生响应。光子能量超出禁带宽度的部分以热 量形式散失。
电子空穴对的产生与超过带隙部分能量的散失 江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
• 然而,能量比带隙能量大的光子(Egh>Eg)会与形成 共价键的电子相作用,用它自身所具有的能量去破坏 共价键,形成可以自有流动的电子-空穴对。
导带 Eg
(禁带宽) 价带
光照时电子-空穴对的产生 江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
• 光子的能量越高,被吸收的位置就越接近半导体表面 ,较低能量的光子则在距半导体表面较深处被吸收。
第一讲太阳能电池和太阳光
• 在P-N结电场E的作用下,电子受力向N型一侧移动,空穴 受力向P型一侧移动。短路时,在外电路产生光电流。
理想短路情况下P-N结区域电子与空穴的流动(电子、空穴产生、定向移 动、被收集、外电路流动) 江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
• 尽管如此,一部分电子和空穴在被收集之前就已 经消失了。
第一讲太阳能电池和太阳光
• 单位体积内电子-空穴对的产生率可用下式表示:
G Ne
x
• N为光子的流量(每秒流过单位面积的光子数量 ),α是吸收系数,x是到表面的距离。
α物理意义 α相当于某波长的光在媒质中传播1/α距离时能量减弱到 原来能量的1/e。一般用吸收系数的倒数1/α来表征该波 长的光在材料中的透入深度。
光的能量与电子-空穴对产生的位置间的联系
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
Resource Characteristics ——地面附近太阳辐射光谱图 江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
The absorption depths of silicon 江西工业工程职业技术学院电子系林梅
Power Generating Region
Power Dissipating Region
V
Dark Characteristic
江西工业工程职业技术学院电子系林梅
Light Characteristic
第一讲太阳能电池和太阳光
• 光照能使电池的I-V曲线向下平移到第四象限,于 是二极管的电能可以被获取。
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
• 类似的,载流子的扩散长度就是载流子从产生到 复合所能移动的平均距离。对于硅,扩散长度一 般是100~300μm。 • 这两个参数为太阳能电池应用的材料提出参考。 • 如果没有一个使电子定向移动的方法,半导体就 无法输出能量。因此,一个功能完善的太阳能电 池,通常需要增加一个整流P-N结来实现。
1.1 光的吸收与载流子复合
第一讲太阳能电池和太阳光
1.2 光照的影响
1.3 光谱响应
1.4 温度的影响
1.5 寄生电阻的影响
江西工业工程职业技术学院电子系林梅
1.1 光的吸收与载流子复合
第一讲太阳能电池和太阳光
• 当光照射到半导体材料时,拥有比禁带宽(Eg)还小 的能量(Eph)的光子与半导体的相互左右极弱,于是 顺利地穿透半导体,就如半导体是透明的一样。
江西工业工程职业技术学院电子系林梅
1.1 光的吸收与载流子复合
第一讲太阳能电池和太阳光
• 当光源被关掉后,系统势必会回到一个平衡状态 。在没有外界能量来源的情况下,电子和空穴会 无规则运动直到他们相遇并复合。 • 任何表面或内部的缺陷、杂质都会促进复合的产 生。 • 材料的载流子寿命可以定义为电子空穴对从产生 到复合的平均存在时间。对于硅,典型的载流子 寿命约为1μs。
• 为便于讨论,太阳电池的I-V特性曲线通常被上下 翻转,将输出曲线置于第一象限,并用下式表示 :
qV I I L I 0 [exp( ) 1] nkT
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
The VI characteristic of a solar cell is usually displayed like this: V
qV I I 0 [exp( ) 1] I L nkT
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
电压电流 方向?
光的照射对P-N结电流-电压间函数特性的影响
江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
I
Power Dissipating Region
I
V
江西工业工程职业技术学院电子系林梅
VOC
第一讲太阳能电池和太阳光
• 对于I-V曲线上的每一点,都可取该点上电流与电 压的乘积,以反映此工作情形下的输出电功率。 • 填充因子(FF,Fill Factor)是衡量电池P-N结的质 量以及串联电阻的参数。 填充因子定义为: FF
Vmp Imp Voc I sc
太阳能电池 工作原理、技术和系统应用
作者:马丁.格林
江西工业工程职业技术学院电子工程系林梅课件 江西工业工程职业技术学院电子系林梅
第一讲太阳能电池和太阳光
第 四讲 效率极限
江西工业工程职业技术学院电子系林梅
2
第一讲太阳能电池和太阳光
• 复习
江西工业工程职业技术学院电子系林梅
1 太阳能发电原理和影响因素
VOC
江西工业工程职业技术学院电子系林梅
补充:最大转换效率为带隙Eg的函数
第一讲太阳能电池和太阳光
P mp Voc I sc FF
定性结论:
短路电流随Eg的增大而减小; 开路电压随Eg的增大而增大; 在Eg为1.4eV时出现太阳电池的最大转换效率
江西工业工程职业技术学院电子系林梅
1.3 光谱响应
江西工业工程职业技术学院电子系林梅
1.2 光照的影响
第一讲太阳能电池和太阳光
• 照射到电池上的光可呈现多种不同的情形。为了使太 阳能电池的能量转换效率最大化,必须设计使之得到 最大的直接吸收以及反射后的吸收。
1-顶电极上的反射与吸收;2-在电池表面的反射;3-可用的吸收; 4-电池底部的反射(仅对吸收较弱的光线有效);5-反射后的吸收; 江西工业工程职业技术学院电子系林梅 6-背电极处的吸收
相关文档
最新文档