新人教全等三角形全章课件

合集下载

全等三角形ppt课件

全等三角形ppt课件

三、概念剖析
为了方便书写,我们可以用符号表示两个三角形的全等.
例如△ABC与△DEF是全等的,
A
D
可以记作:“△ABC ≌△DEF”,
读作:“△ABC 全等于△DEF”. B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.
例如,△ABC与△DEF全等,点A 与点D、点B 与点E、点C 与点F为对应
三、概念剖析
猜想:全等三角形对应边和对应角有什么关系呢? 全等三角形的性质:全等三角形的对应边相等,对应角相等.
应用格式 ∵△ABC≌△DEF,
A
D
∴AB=DE,BC=EF,AC=DF
∠A=∠D,∠B=∠E,∠C=∠F B
CE
F
四、典型例题
例1.如图△OCA≌△OBD,点C和点B,点A和点D是对应点.
在我们的周围,经常可以看到形状、大小完全相同的图形, 这样的图形叫做全等形.研究全等形的性质和判定两个图形全等 的方法,是几何学的一个重要内容,本章将以三角形为例,对这 些问题进行研究.
同一种剪纸
风扇的叶片
上一章我们通过推理论证得到了三角形内角和定理等重要结 论.本章中,推理论证将发挥更大的作用.我们将通过证明三角 形全等来证明线段或角相等,利用全等三角形证明角的平分线的 性质.通过本章学习,你对三角形的认识会更加深入,推理论证 能力会进一步提高.
新知一览
全等三角形
“边边边”


三角形全等
“边角边”

的判定
“角边角”“角角边”

“斜边、直角边”
形 角平分线的性质
角平分线的性质
角平分线的判定
第十二章 全等三角形

《全等三角形》ppt课件人教版初中数学3

《全等三角形》ppt课件人教版初中数学3
(3):要记住“有三个角对应相等”或“有两边及 其中一边的对角对应相等”的两个三角形不一定全等;
(4):时刻注意图形中的隐含条件,如 “公共角” 、 “公共边”、“对顶角”
二.角的平分线:
1.角平分线的性质: 角的平分线上的点到角的两边的距离相等.
用法:∵ QD⊥OA,QE⊥OB, 点Q在∠AOB的平分线上 ∴ QD=QE
用法:∵ QD⊥OA,QE⊥OB, ∴ △EBC≌△EBD (AAS)
(可简写成“ASA”) 如图,在R△ABC中,∠ACB=450,∠BAC=900,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且
平分DE. 用法:∵ QD⊥OA,QE⊥OB,
(1):要正确区分“对应边”与“对边”,“对应角”与
“对角”的不同含义;
如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。
D AC=DF
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
∴ △ABC≌△ABD (SAS)
(1)全等三角形的对应边相等、对应角相等。
2.角平分线的判定:
角的内部到角的两边的距离相等的点 在角的平分线上。
用法: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
三.练习:
1、如图:在△ABC中,∠C =900,AD 平分∠ BAC,DE⊥AB交AB于E, BC=30,BD:CD=3:2,则 DE= 12 。
c
第12章全等三角形复习 课
全章知识结构图
三角形全等 (全等的判定)
S.S.S. S.A.S. A.S.A. A.A.S. H.L.(RtΔ)

人教版八年级上册数学《全等三角形》PPT教学课件

人教版八年级上册数学《全等三角形》PPT教学课件
点评
一个图形经过平移、翻折、旋转后,图形的位置变化了,但形状、大 小没变,即平移、翻折、旋转前后的图形全等,其中重合的顶点叫对 应点,重合的边叫对应边,重合的角叫对应角。(注意:书写全等三 角形时对应顶点的字母写在对应的位置上)
【例1】如图所示,图中有两个三角形全等,根据已知条件, △ABC ≌ △ ADC。写出其全等的对应边和对应角。 A
全等三角形
1 教学目标
目录
CON
2 教学重难点 3 教学过程
4 教学反思
教学目标
理解全等形,全等三角形的概念,会找全等 三角形的对应边,对应角和对应顶点。
掌握全等三角形的性质,并进行简单的推理和 计算。 通过图形变换,培养学生动态观点,研究几 何图形。
教学重难点

全等三角形的性质
难 找全等三角形的对应边、
点评归纳
全等三角形的对应边相等,全等三角形的对应角相等。
【例2】如图所示, △ABD ≌ △EBC,
D
AB=3cm,BC=5cm,求DE的长
E
A
B
C
教师导引:求DE的长只需求DB、BE的长,这可由△ABD △EBC得到。
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
对应角
教学过程
一、情景引入
请同学们观察下列各组图片,想一想,他们有什么共同特征?
结论
每组图片的大小和形状都相同
二、新知探究,合作交流 探究一:全等形及全等三角形的概念
你能举一些生活中类似于上面的图形吗?

把一块三角尺在纸板上,画下图形,照图形裁下来的 纸板与三角形的形状、大小是否完全一样?

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

人教版八年级数学上册《全等三角形》PPT优质课件

人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐

标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△

重合,则△△

;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.

最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件

最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件

追问1 请同学们将问题2 的两个三角形分别 标为△ABC、△DEF,观察这两个三角形有何对 应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
练习6 如图,已知△ABE≌△ACD, ∠ADE=∠AED,∠B=∠C,指出其他的对应边 和对应角.若BD=2cm,DE=3cm,你能求出DC的 长吗?
解:AB = AC,AE = AD, BE =CD,∠BAE =∠CAD. DC = BE = BD+DE = 5cm.
随堂演练 基础巩固 1.判断题:
△ABC和△DEF全等, 记作:“△ABC ≌△DEF”, 读作:“△ABC 全等于△DEF”.
问题4 请同学们拿出问题2 准备的素材,按 照教材第32 页图12.1-2 进行平移、翻折、旋转, 变换前后的两个三角形还全等吗?
(1) △ABC ≌△DEF
(2) △ABC ≌△DBC
(3)△ABC ≌△ADE
(2)判断线段EH 与NG 的大小关系,并说明理由.
E
(1)平行;理由略.
H
(2)相等.
M
F
G
N
练习5 如图,△OCA≌△OBD,C和B,A 和D是对应顶点,说出这两个三角形中相等的边 和角.若∠A=20°,∠AOC=75°,你能求出∠B 的度数吗?
解:OC=OB,OA=OD,CA=BD, ∠COA=∠BOD,∠C=∠B,∠A=∠D. ∠B=∠C=180°-∠A-∠AOC=85°.
Thank you!

人教版《全等三角形》优秀课件

人教版《全等三角形》优秀课件

(1)
记两个三角形全等时, 通常把表示对应顶点 的字母写在对应的位 置上.
△ABC和△DEF全等,记做△ABC≌△DEF. 符号“≌”表示全等,读作“全等于”.
练习
同学们再试着在图(2)(3)中,找到对应顶点、对应边
和对应角,并写成△***≌△***的形式.
A
B
C
E A
D
B
CD
(2)
(3)
△ABC≌△DBC
对应边为:EF与MN,EG与NH
方法3 从图形的生成过程出发,动态思考一个三角形是怎样与另一个三角形重合的.
(全等三角形的对应边相等)
E 符号“≌”表示全等,读作“全等于”. 1.1 H 生活中存在丰富的全等形,从哪种全等形开始研究呢?
M
的,是它们之间的一种特2.殊1 的关系,即全等关系.
在图(1)中,把△ABC 在图(2)中,把△ABC
利用全等三角形 ∴ AB=DE, BC=EF, CA=FD,
图(1)中,△ABC≌△DEF,对应边有什么关系?对应角呢?
54°
a
c
b1 c
的性质求解 ∠B与∠D.
对应角: ∠BAC与∠DCA,∠BCA与∠DAC,
60°
△ABC和△DEF全等,记做△ABC≌△DEF. ∵△ABC≌△DEF, 对应角: ∠BAC与∠DCA,∠BCA与∠DAC, 例 如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?
字母排列的位置对应寻找;
方法2 如果题目中没有明确的符号表示,可以 B
D
从边的长短、角的大小出发.只有长度相同的边才 C
有可能成为对应边,大小相等的角,才有可能成为对应角;
方法3 从图形的生成过程出发,动态思考一个三角形是怎样

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A

随堂练习:
B
CE

第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,

人教版《全等三角形》PPT完美课件

人教版《全等三角形》PPT完美课件

例 如图,AB和CD相交于E,AE=EC,EB=ED.
求证:△AED≌△CEB.
D
分析:根据条件两组边对应 A
E
相等找夹角或者找第三边.
C
B
已知两边,找直角(HL).
AB=AD, 已知两边,找直角(HL).
如何根据需要寻找条件证明三角形全等,进而利
用全等三角形的性质证明线段相等、角相等、直线 已知一边一角,边为角的一边,找这边上另一角(ASA).
在△ABC与△ADE中, 只要证Rt△ABO≌Rt△ACO. ∠BAC=∠DAE=90°,
已知两边,找另一边(SSS).
具备一般三角形的判定方法;
已知一边一角,边为角的对边,找任一角(AAS).
全等三角形全章复习(第一课时)
分析:根据条件两组角对应相等找夹边或者一个角的对边.
例 如图,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.
E
C
例 如图,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.
求证:AM=AN.
证明:∵ BA⊥AC,DA⊥AE,
A
∴∠BAC=∠DAE=90°.
在△ABC与△ADE中, B AB=AD,
MN
D
∠BAC=∠DAE=90°,
AC=AE,
∴ △ABC≌△ADE.
E
C
∴∠B=∠D.
例 如图,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.
斜边、直角边
全等形
全等三角形 全等三角形的应用
对应边相等、对应角相等
全等三角形这一章我们学习了哪些知识呢? 1.全等形的相关概念
全等形、对应顶点、对应边、对应角.
2.全等三角形的相关概念
全等三角形、对应顶点、对应边、对应角.

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

人教版八年级数学上册课件第十二章-全等三角形

人教版八年级数学上册课件第十二章-全等三角形
证明: 在△ABD和△ACD中, AB=AC (已知), BD=CD (已知), AD=AD (公共边),
∴△ABD≌△ACD(SSS).
∴ ∠BAD=∠CAD,
变式2
已知:如图,AB=AC, BD=CD,E为AD上一点, 求证: BE=CE.
证明: 在△ABD和△ACD中, AB=AC (已知), BD=CD(已知), AD=AD(公共边),
已知:如图, AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.
证明:∵ ∠1=∠2(已知),
∴∠1+∠DBC= ∠2+ ∠DBC(等式的性质),
即∠ABC=∠DBE. 在△ABC和△DBE中,
AB=DB(已知), ∠ABC=∠DBE(已证), CB=EB(已知),
A
D
1
B2
C
∴△ABC≌△DBE(SAS).
A
D
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知)B,
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
例2 如图,点D在AB上,点E在AC上,AB=AC,
∠B=∠C,求证:AD=AE.
分析:证明△ACD≌△ABE,就可以得出AD=AE.
分析: △ ABD ≌△ CBD.
A
(SAS)
边:AB=CB(已知),
B
角:∠ABD= ∠CBD(已知),
边: BD=BD(公共边). ?
D C
证明:在△ABD 和△ CBD中,
AB=CB(已知),
∠ABD= ∠CBD(已知),∴ △ ABD≌△CBD ( SAS)
BD=BD(公共边),

人教版《全等三角形》优秀课件

人教版《全等三角形》优秀课件

全等三角形的性质的运用
边AB 与DE、边BC 与EF、
∠ABC=∠DBC,
已知:如图,△ABC ≌△DEF. ∴相等的边为:OC=OB,OA=OD,
3 cm,求MN和HG的长度.
请观察下面两组图形,它们是不是全等图形?为什么?与同伴进行交流。
(1)若DF =10 cm,则AC 的长为 (1)写出相等的线段与角.
∴相等的边为:AB=DB,BC=BC,
∠A 与∠D、∠B 与∠E、
∠AOC=∠DOB. (3)有对顶角的,对顶角是对应角.
AC=DC.
解:∵△ABC≌△DBF.
∴相等的角为:∠BAC=∠BDC, ∠C 与∠F 重合,称为对应角.
活动一:请同学们和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?
∠ACB=∠DCB.
的度数为
能够完全重合 的两个图形叫做全等形.
___5_0_°________. C.58° D.50°
如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是( )
如图,已知△EFG≌△NMH,∠F与∠M
点A 与点D、点B 与点E、 解:∵△ABC≌△DBC.
A
D
∵ △ABC ≌△DEF,
注意:书写全等式时要求把对应顶点字母放在对应的位置上。
全等三角形的定义: 能够完全重合的两个三角形叫做全等三角形.
点A 与点D、点B 与点E、
A
点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、
B
C
边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、
∠C 与∠F 重合,称为对应角.
D
你能用符号表示出这两个全等三角形吗?

人教版八年级数学上册全等三角形精品课件PPT

人教版八年级数学上册全等三角形精品课件PPT


2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件

全等三角形ppt课件

全等三角形ppt课件
解: △ABD≌△ACD,BD=CD,∠B=∠C,理由如下: 由AD平分∠BAC,知∠1=∠2. 因此,将图1沿AD对折时,射线AC与射线AB重合. ∵AB=AC, ∴点C与点B重合,也就是△ACD与△ABD重合(图2)
∴ △ABD≌△ACD(全__等__三__角__形__的__定__义__)_________
解:∵∠A=50°,∠B=48°, ∴∠C=180°-50°-48°=82°. 又∵△ABC≌△DEF, ∴∠C=∠F,∴∠F=82°. ∵DE的对应边为AB,所以DE=AB, ∴AB=10 cm.
【点悟】利用全等三角形的对应角相等、对应边相等解决问 题时,应注意不要将对应边(对应角)弄错,也就是要求在表 示两个三角形全等时书写规范.
寻找对应边、角的规律:
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,最小的边是对应边; (5)两个全等三角形最大的角是对应角,最小的角是对应角;
例2 如图,AD平分∠BAC,AB=AC.△ABD与△ACD全等吗?
起可以重合
能够完全重合的 两个图形叫做全
等图形
A
B′
A′
B
C
C′
1.它们重合时,能互相重合的顶点叫做全等三角形的对应顶点:如A和A′、B和 B′、C和C′; 2.互相重合的边叫做全等三角形的对应边:如AB和A′B′、BC和B′C′、CA和C′A′; 3.互相重合的角叫做全等三角形的对应角:如∠A和∠A′、 ∠B和∠B′、 ∠C和 ∠C′.
怎样判断两个图形是不是全等图形?
确定两个图形全等要符合两个条件: ①形状相同,②大小相同; 是否是全等图形与位置无关. 判断两个图形是否全等还可以通过平移、旋转、翻折等方法把两 个图形叠合在一起,看它们能否完全重合,即用叠合法判断.

人教版八年级上册数学《全等三角形》全章说课课件(共20张PPT)

人教版八年级上册数学《全等三角形》全章说课课件(共20张PPT)
在学习过程中继续体验数学思想 及方法的应用 尝试从不同角度寻求解决问题 的方法并能有效地解决问题; 体会在解决问题的过程中与他 认识通过观察、实验、归纳、类 人合作的重要性; 比、推断可以获得数学猜想;体 验数学活动充满着探索性和创造 性;感受证明过程的严谨性以及 结论的确定性。来自目课 标程内容标准
课程资源的开发与利用。
教材资源 利用教材现有的思考、探究活动、信息技术应用,以及数 学教参的知识拓展与延伸等资料,教师可以充分利用,有序的 引导学生观察、分析、动手实践、分组讨论,得出结论,完成 认识上的飞跃 课外资源 数学课外活动小组 充分利用课外学习小组进行一系列的实 际操作活动,比如寻找超市的位置,测量河的宽度,激发学生 探究知识的欲望; 计算机、多媒体 可以充分发挥计算机的作用,通过演示三 角形平移、翻折、旋转的过程让学生体会对应边、对应角的概 念;
人教版八年级上册数学 《全等三角形》全章说 课课件
目 录
课程目标
说课程标准
内容标准 教材编写特点
说教材
教材编写体例及目的 内容结构 立体整合
教学建议
说建议
评价建议 课程资源的开发与利用建议
课程目标
探索并掌握全等三角 形的性质与判定以及 角平分线的性质与判 定定理;掌握基本的 作图技巧以及推理证 明的格式及基本的推 理技能;体会证明的 必要性;
评价建议
对于课堂的评价方式采取学生自评和教师评价相结合的方式 进行。但是评价的方向不是结果的对错,引导学生通过这道题所 得到的方法技巧是什么,即总结的“副产品”。 课下的评价,借助后黑板,有“谁是数学状元”的活动。同 时可借助作业本、章节测试来了解学生的学习情况。 课堂结束不进行当堂检测,我习惯于课前检测,这样可以留 给学生一天的缓冲时间解决问题,同时通过课前检测很好把学生 的注意力拉过来。

全等三角形PPT精品课件人教版1

全等三角形PPT精品课件人教版1
(2)关于全等三角形的性质,要正确区分对应边与对边,对应 角与对角的概念.一般地,对应边、对应角是对两个三角形而 言,而对边、对角是对同一个三角形的边和角而言,对边是指 角的对边,对角是指边的对角.
全等三角形PPT精品课件人教版1(精 品课件 )
对点训练
1.已知△ABC≌△A1B1C1,A 和 A1 对应,B 和 B1 对应,∠A
全等三角形PPT精品课件人教版1(精 品课件 )
全等三角形PPT精品课件人教版1(精 品课件 )
3.如图,已知∠1=∠2,添加一个条件,使得△ABC≌△ADC,
下列条件添加错误的是( B )
A.∠B=∠D B.BC=DC C.AB=AD D.∠3=∠4
全等三角形PPT精品课件人教版1(精 品课件 )
∠CBD=26°,则∠A 的度数为( D )
A.40° C.36°
B.34° D.38°
全等三角形PPT精品课件人教版1(精 品课件 )
全等三角形PPT精品课件人教版1(精 品课件 )
7.如图,在 Rt△ABC 中,∠C=90°,∠BAC 的平分线 AD
交 BC 于点 D,若△ABD 的面积为 8,AB=8,则 CD= 2 .
其中正确结论的序号是 ①② .
全等三角形PPT精品课件人教版1(精 品课件 )
全等三角形PPT精品课件人教版1(精 品课件 )
知识点二:全等三角形的判定 (1)判定定理 1:三条边分别对应相等的两个三角形全等.简称 为“ SSS ”. (2)判定定理 2:两边及其夹角分别对应相等的两个三角形全 等.简称为“ SAS ”.
全等三角形PPT精品课件人教版1(精 品课件 )
4.如图,在△ABC 中,AC=BC,过点 A,B 分别作过点 C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 全等三角形
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
每组的两个图 形有什么特点?
完全重合
∴∠A=∠D,∠CBA=∠F,∠C= ∠DEF.
先写出全等式,再指
C
出它们的对应边和对应角
A
B
∵△ABC≌△ABD
D ∴AB=AB,BC=BD,AC=AD.
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D.
规律一:有公共边的,公共边是对应边
先写出全等式,再指出它们的
对应边和对应角
D
B
∵△AOC≌△BOD
D
△AOD≌△COD
A O
C
B
找出下列全等三角形的对应边、对应角 A △ABC≌△ADE
B D
E C
找出下列全等三角形的对应边、对应角
△ADE≌△CBF
A
E
B
D
F
C
找出下列全等三角形的对应边、对应角 A △△AABBNM≌≌△△AACCMN
B
M
N
C
找出下列全等三角形的对应边、对应角
A
D △AOB≌△DOC
对应的位置上。
A
E
B
CF
D
ABC ≌ DEF
ABC ≌ ΔEFD
寻找各图中两个全等
三角形的对应元素。
两个全等三角形的位置变化了,对应边、
对应角的大小有没有变化?由此你能得到
什么结论?
A
D
B
A
C EM
SF
C
O
O B
D
N
T
全等三角形的对应边相等, 全等三角形的对应角相等.
A
如图:∵△ABC≌ △DFE
把一块三角板按在纸上,画下图
形,照图形剪下纸板。剪下的纸板 与三角板大小、形状完全相同吗? 他们能够完全重合吗?
• 形状、大小相同的图形放在 一起能够完全重合。
• 能够完全重合的两个图形叫 做全等形
• 能够完全重合的两个三角形 叫做全等三角形
全等形包括规 则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
点重B合和的点角E叫,做点对C和应点角F。;
A
D
B
CE
F
“全等”你用能符否号直“接≌ 从”记表作示
图∆A中B的C△≌A∆BDC和EF△中DE判F全断等出,所 记读有对作作的应::△△对角AA应 ?BBCC顶≌全点△等D于、E△F对D应EF边和
记两个三角形全等时,通常 注意 把表示对应顶点的字母写在
例题讲解,掌握新知
图中△ABO≌△DCO, A 试写出这两个三角形中 相等的边和相等的角。
D O
B
C
解:∵△ABO≌△DCO
∴AB=DC,BO=CO,AO=DO
∠A=∠ D,∠ABO=∠DCO,
∠AOB=∠DOC
先写出全等式,再指出
它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF
∴AB=DF, CB=EF,AC=DE.
∴BE=3cm,BD=5cm
如图, △EFG≌△NMH
E H
M
F
G
1、请找出对应边和对应角。
N
2、如果EF=2.1cm,EH=1.1cm,
HN=3.3cm, 求NM、HG的长.
解:∵△EFG ≌ △NMH ∴NM=EF=2.1,EG=HN=3.3
∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°, 说出△ACE中各角的大小?
o
∴AO=BO,AC=BD,OC=OD.
∴∠A=∠B,∠C=∠D,
A
C
∠AOC= ∠BOD.
规律二:有对顶角的,对顶角是对应角
先写出全等式,再指出它 A 们的对应边和对应角
E
C
∵△ABC≌△ADE
∴AB=AD,AC=AE,
BC=DE
B
D
∴∠A=∠A,∠B=∠D,
∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
E B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
F
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
解:∵ △ABD≌△ACE, ∴∠AEC= ∠ADB=1000 ,
∠C= ∠B=300, 又∵∠A+∠AEC+∠C=180°
∴∠A=1800- ∠AEC- ∠C =1800-1000-300=500
如图,已知△ AOC ≌ △BOD 求证:AC∥BD
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角. 5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角
A
△ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角
B
C
∴ AB=DF, BC=FE, AC=DE
D
∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
例题讲解,掌握新知
如图, △ABC≌△DCB,A
D
指出所有的对应边和
对应角。
O
B
C
解:∵△ABC≌△DCB
∴AB与DC,BC与CB,
AC与BD是对应边
∠A与∠ D,∠ABC与∠DCB,
∠ACB与∠DBC是对应角
△ABC≌△DCB
O
B
C
如图, △ABD ≌ △EBC
1、请找出对应边和对应角。
AB 与 EB、BC BD、AD EC,
C
∠A ∠BEC、∠D ∠C、∠ABDm,
求BE、BD的长.
DE
B
解:∵△ABD ≌ △EBC
∴AB=EB,BC=BD
A
∵AB=3cm,BC=5cm
D
B
C
一个三角形经过平移、旋转、翻折 后所得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫全等三角形
A
D
B
CE
F
2、把对对两应应个角边三是是角∠A形AB和重和∠合DD到E,,一起.
重∠A合BC和的和∠顶DE点F,∠,叫CB和做C∠对和F应EF顶; 点,
对重应合顶的点边是叫点做A对和应点边D,,
形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
E
A PC M
D
A
BN
B
C
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B
D
A
B
C
D
C
E
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
相关文档
最新文档