随机信号分析(第3版)第二章 习题答案
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析课后习题答案
第一次作业:练习一之1、2、3题1.1离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=ii ix X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他201)](2π[cos 2)()(x x A dx x dF x f由 1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P 1.3试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x xx x F(3)0)]()([)(>--=a a x u x u ax x F (4)0)()()(>---=a a x u ax a x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;1)(0≤≤x F 成立; )()(x F x F =+也成立。
随机信号与分析课后答案 王琳DOC
第一章 随机过程基础本章要点概率论、随机变量、极限定理等等是随机信号分析与处理应用的理论基础。
本章主要内容:概率,随机变量及其概率分布,随机变量函数的分布,随机变量的数字特征,特征函数等概念。
基本内容一、概率论 1、古典概型用A 表示所观察的随机现象(事件),在A 中含有的样本点(基本事件)数为A n ,则定义事件A 出现的概率()P A 为 ()An P A n=(1-1)2、几何概型用A 表示所观察的随机现象(事件),它的度量大小为()L A ,则规定事件A 出现的概率()P A 为 ()()()E L A P A L S =(1-2)3、统计概率对n 次重复随机试验C E ,事件A 在这n 次试验中出现的次数()n f A 称为频数。
用事件A 发生的频数()n f A 与试验次数n 的比值()n F A 称为频率()()()n n f A P A F A n≈=(1-3)4、概率空间对随机试验E ,试验的各种可能结果(称基本事件、样本点)构成样本空间E S (也称基本事件空间),在样本空间中的一个样本点或若干个样本点之适当集合称为事件域A (A 中的每一个集合称为事件)。
若事件A ∈A ,则()P A 就是事件A 的概率。
并称{},,E S P A 为一个概率空间,而样本空间E S ,事件域A,概率P 是构成概率空间的三个要素。
二、随机变量1、随机变量的概念 设已知一个概率空间(),,E S P A ,对E s S ∈,()X s 是一个取实数值的单值函数,则对任意实数1x ,()1X s x ≤是一个随机事件,且(){}1:s X s x ≤∈A,则称()X s 为随机变量。
显然,随机变量()X s 总是联系着一个概率空间,这将使对随机事件的研究转化为对随机变量的研究。
为了方便,此后若无特别需要将随机变量()X s 简记为X 。
2、随机变量的概率密度函数定义随机变量X 的累积概率分布函数为()()F x P X x =≤而把它的导数定义为随机变量X 的概率密度函数。
随机信号分析[常建平 李海林]习题答案解析
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解:第①问 ()112f x dx k ∞-∞==⎰ 第②问 {}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
《随机信号分析》-高新波等-课后答案
C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。
随机信号分析习题答案(部分)
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
第3随机信号分析(0)
功率谱密度Pξ(ω) 性质:
(1)
( 2)
P ( ) 0
[非负性]
P ( ) P ( ) [偶函数]
因此,可定义单边谱密度 Pξ1(ω)为
2P ( ) P 1 ( ) 0
2014-3-9
0 0
55
[例]
某随机相位余弦波 (t ) A cos(ct ) ,其中A和 ωc均为常 数,θ是在(0, 2π )内均匀分布的随机变量。 (1) 求 ξ(t) 的自相关函数与功率谱密度;
2014-3-9
9
随机信号:信号参数具有随机性的信号
随机噪声:不能预测的噪声,简称噪声
随机过程:随机变量随时间变化的集合(或看成随机 的时间函数)
包括:随机信号、噪声
2014-3-9
10
随机过程特点:
①是时间的函数,但又不确定
②任一时刻 t0 取值为随机变量 ③随机过程是在时间进程中多维随机变量的集合。 ④随机过程是随机实验的样本函数集合。
5
2014-3-9
3.1 随机过程的一般表述
自然界中事物的变化过程可以大致分成为两类
• 确定性过程
• 随机过程
2014-3-9
6
确定性过程
– 其变化过程具有确定的形式,或者说具有必然的 变化规律。 – 用数学语言来说,其变化过程可以用一个或几个 时间 t 的确定函数来描述。
st 10 cos1000t
2014-3-9 36
什么是统计平均
E[ X (t )] x1 f1 ( x1 )dx1
需要知道随机过程的一维和二维分布函数 或概率密度函数,但通常是无法得到的
随机信号分析(第3版)课后习题解答
随机信号分析(第3版)课后习题解答《随机信号分析》课程(32学时)—— 2007年教学内容建议1 概率论基础 1.12 随机信号2.1 两条样本函数为:0)(0=t X 、wt t X cos 21)(1=;1)0,(=x f X 、2)4,(=w x f X π;)(0-)2,(x wx f X δπ= 2.2 3103532)2,(=++=X E 、)()()(5-313-312-31)2,(x x x x F X εεε++= 2.3 )()(1-2121)21,(x x x F X εε+=、)()(2-21121)1,(x x x F X εε++=;)()()()(2-,1411,1412-,411,41)1,21,,(21x x x x x x x x x x F X -++-+++=εεεε2.4 略2.5 )()(1-1.09.0)5,(x x x F X εε+=;)()(y x y x y x F ,11.0,9.0)0025.0,0,,(-+=εε;0因为其概率为0.9;1的概率为1(样本函数),它是可预测的,就是样本函数。
2.6 略 2.7 略 2.8 )()(121121),(-++=x x n x f X δδ、0121)1(21)(=?+-?=n X E 、{})()]()([)]()()][()([),(2121221121n n n X n X E n m n X n m n X En n Cov X X -==--=δ;不可预测2.9 (2.19)10103523)()(),(2111=?==t t t t Cov σσρ、所以(X,Y )满足10103;5,2;2,2的高斯分布。
其概率密度函数为:-+--?--?-=-+--?----=5)2(5)2)(2(32)2(5exp215)2(10)2)(2(1010322)2()10/91(21exp 21),(2222y y x x y y x x y x f XY ππ;特征函数为:++-+=)6)(5)(2(21)22(exp ),(21222121v v v v v v j y x XY φ3 平稳性与功率谱密度3.1 kk k u t t u u f-=)4exp(2*21),,;,,(211π ;因为k 阶概率密度函数与绝对时间无关,所以为严格平稳过程。
随机信号习题及答案
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:
随机信号分析_哈尔滨工程大学中国大学mooc课后章节答案期末考试题库2023年
随机信号分析_哈尔滨工程大学中国大学mooc课后章节答案期末考试题库2023年1.从随机过程的第二种定义出发,可以将随机过程看成()。
参考答案:随机变量族2.从随机过程的第一种定义出发,可以将随机过程看成()。
参考答案:样本函数族3.()是随机试验中的基本事件参考答案:随机试验的每一种可能结果4.若随机过程X(t),它的n维概率密度 (或n维分布函数)皆为正态分布则称之为高斯过程参考答案:正确5.正态随机过程的广义平稳与严平稳等价参考答案:正确6.平稳随机过程的相关时间,描述了平稳随机过程从完全相关到不相关所需要的时间,对吗?参考答案:正确7.两个平稳随机过程的互相关函数是偶函数,对吗?参考答案:错误8.平稳随机过程的自相关函数是一个奇函数,对吗?参考答案:错误9.对于一个遍历的噪声,可以通过均方值计算其总能量参考答案:错误10.偶函数的希尔伯特变换为参考答案:奇函数11.窄带高斯随机过程包络平方的一维概率密度为:参考答案:高斯函数12.白色随机过程中的“白色”,描述的是随机过程的()特征参考答案:频谱13.对于具有零均值的窄带高斯随机过程,以下哪个说法正确?参考答案:相位的一维概率密度为均匀分布_包络的一维概率密度为瑞利分布_包络和相位的一位概率密度是相互独立的14.一个实值函数的希尔伯特变换是将其与【图片】的卷积参考答案:正确15.对一个信号的希尔伯特变换,再做一次希尔伯特变换可以得到原信号本身。
参考答案:错误16.连续型随机变量X的概率密度函数fX(x)的最大取值是1?参考答案:错误17.随机变量数学期望值是随机变量取值的中值。
参考答案:错误18.问题:①客观世界中可以设计出理想带通滤波器,②理想白噪声也是存在的。
以上说参考答案:①②均错误19.具有平稳性和遍历性的双侧随机过程经过连续时不变线性系统后,输出随机过程参考答案:平稳、遍历20.正态随机过程具有以下那些性质?参考答案:若正态过程X(t)是宽平稳的,则它也是严平稳的_正态随机过程经过线性系统后其输出仍为正态随机过程。
随机信号分析(常建平+李海林)习题答案.
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f x dx k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
随机信号分析第3版习题及答案word资料18页
1. 有四批零件,第一批有2019个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
(2)发现次品后,它来自第二批的概率为, 2. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+- 3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
(北P181,T3) 解:(1)(2) X 的分布律为 Y 的分布律为(3)Z XY =的分布律为 (4)因为 则X 与Y 的相关系数0XY ρ=,可见它们无关。
5. 设随机变量()~0,1X N ,()~0,1Y N 且相互独立,U X YV X Y =+⎧⎨=-⎩。
(1) 随机变量(),U V 的联合概率密度(),UV f u v ;(2) 随机变量U 与V 是否相互独立? 解:(1)随机变量(),X Y 的联合概率密度为由反函数 22u v x u vy +⎧=⎪⎪⎨-⎪=⎪⎩,1112211222J ==--, (2)由于, 222244414uv u v e π+---⎛⎫⎛⎫=⨯⎪⎪⎪⎪⎭⎭所以随机变量U 与V 相互独立。
6. 已知对随机变量X 与Y ,有1EX =,3EY =,()4D X =,()16D Y =,0.5XY ρ=,又设3U X Y =+,2V X Y =-,试求EU ,EV ,()D U ,()D V 和(,)Cov U V 。
(1)设一数字传输系统传送二进制码元的速率为9600
第一章绪论一、选择题(1)设一数字传输系统传送二进制码元的速率为9600 Baud,那么该系统的信息速率为____________;若该系统改为十六进制信号码元,码元的速率为1200Baud,则这时系统的信息速率为________________。
(A) 9600b/s,19200b/s(B) 4800b/s,4800b/s(C) 19200b/s,300b/s(D) 9600b/s,4800b/s(2)模拟通信在信道中传输的信号频谱比较窄,因此可通过多路复用使信道的利用率提高,但它的缺点是:(A) 传输的信号是连续的,叠加噪声干扰后不易消除,即抗干扰能力较差(B) 不易保密通信(C) 设备不易大规模集成(D) 不适应飞速发展的计算机通信的要求(3)信息源的符号集由A,B,C,D 和E 组成,设每一符号独立出现,其出现的概率为16/3 , 8/1 , 8/1 , 4/1 和16/5 。
试求该信息源符号的平均信息量。
(A)2.23bit/符号(B)4.46bit/符号(C)6.69bit/符号(D)2.26bit/符号二、填空题(1)某离散信源由0,1,2,3四个符号组成,它们出现的概率分别为3/8,1/4,1/4,1/8,且每个符号的出现都是独立的。
那么消息:201020130213001203210100321010023102002010312032100120210的信息量为______________bit。
(2)一个由字母A、B、C、D组成的字,对于传输的每一个字母用二进制脉冲编码,00代替A,01代替B,10代替C,11代替D,每个脉冲宽度为5ms。
如果不同的字母等可能出现,那么传输的平均信息速率为___________________b/s。
三、简答题(1)一个由字母A,B,C,D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00 代替A,01 代替B,10 代替C,11 代替D。
信号系统第3版课后习题答案第二章
第2章习题答案2-1 绘出下列各时间函数的波形图。
(1)1()()2(1)(2)f t u t u t u t =--+- (2)3()(1)[()(1)]f t t u t u t =----解:2-4 已知()f t 波形如图题2-5所示,试画出下列信号的波形图。
图 题2-4(3)3()(36)f t f t =+ (5)511()36f t f t ⎛⎫=-- ⎪⎝⎭解:tt2-5 已知()ft 波形如图题2-5所示,试画出下列信号的波形图。
图 题2-5(4)4()(2)(2)f t f t u t =-- (6)6()(1)[()(2)]f t f t u t u t =--- 解:2-6 计算下列各式。
(1)0()()f t t t δ+ (2)24e (3)d tt t δ-+⎰(3)e sin (1)d t t t t δ∞-+⎰(4)d [e ()]d tt t δ- (5)00()(2)d t t u t t t δ∞-∞--⎰(6)j 0e [()()]d t t t t t Ωδδ∞--∞--⎰(7)'e [()()]d t t t t δδ∞--∞+⎰(8)(1cos )()(/2)d t u t t t δπ∞-∞--⎰解:(1) 原式0()()f t t δ=(2)原式2334(3)e t dt e δ---=+=⎰(3)原式1sin(1)(1)0(()1)e t t dt δδ+∞-=-++=⎰不在积分区间内 (4)原式)()](['0t t e dtd δδ==(5)原式⎩⎨⎧<>=-=--=⎰∞+∞-0100)()2()(000000t t t u dt t t u t t δ(6)原式000[()()]1j t j t e t e t t dt e δδ+∞-Ω-Ω-∞=--=-⎰ (7)原式'00()()2tt t tt t de e t dt e t dt e dtδδ-+∞+∞---=-∞-∞==+=-=⎰⎰(8)原式/2(1cos )()1t t u t π==-=2-8 已知()f t 的波形如图题2-13所示,求()f t '和()f t '',并分别画出()f t '和()f t ''的波形图。
随机信号分析(常建平,李林海)课后习题答案第二章习题讲解
A与 B独立 , f AB (a, b) f A (a) fB (b)
X (t) A Bt Y(t) A
A Y(t) X (t) Y (t)
B t
01 J1 1 1
t tt
1
xy 1
xy
f XY (x, y; t ) J f AB (a,b) t f AB ( y, t ) t f A ( y) f B ( t )
E X (t) E A cost XH cost EA XH
D X (t) E X 2 (t ) E2 X (t )
方法 2:
D X (t)
D Acost XH D Acost cos2 t DA cos2 t
12
D XH
公式: D aX+ bY a2 D X b2 D Y 2abC XY
RX (t1, t2 )=E Acost1 XH A cost2 XH
f X (x1;0)
1
x12 e 2,
2Байду номын сангаас
A
1
X (t)
~ N (0, )
t 30
2
4
f X ( x2; 3
)=
0
2 2
e
2
x2
2
,
X (t) t
=0,
f ( x3;2
)
0
20
( x3)
(离散型随机变量分布律 )
2-2 如图 2.23 所示,已知随机过程 X (t) 仅由四条样本函数组
成,出现的概率为
数 RX (t1, t2 ) ?②若已知随机变量相 A, B 互独立,
它们的概率密度分别为 f A (a) 和 f B (b) ,求 X (t) 的一
北邮随机信号分析与处理第2章习题解答_2
不满足严格平稳。
思考:是否满足广义平稳?
3
2.17
随机过程由下述三个样本函数组成,且等概率发生:
X (t, e1 ) 1, X (t, e2 ) sin t, X (t, e3 ) cos t (1)计算均值 mX (t ) 和自相关函数 RX (t1 , t2 );
(2)该过程是否为平稳随机过程? 解: 1 1 1
ftp服务器地址
ftp://10.108.142.57
用户名和密码均为:sjxhfx
包括每次课的课件和部分习题解答
1
2.14
广义平稳随机过程 Y (t ) 的自相关矩阵如下,试确定矩阵中用 表示的元素。 2 1.3 0.4 2 1.2 0.8 RY 0.4 1.2 1.1 0.9 2 解:由自相关函数的性质
2
2.15
根据掷骰子试验,定义随机过程为
K X (t ) cos t ( K 1, 2,3, 4,5,6) 3 (1)求 X (1) 、X (2) 的概率密度; (2) X (t ) 是否为平稳随机过程?
解:
1/ 2, K 1,5 1/ 2, K 2, 4 K X (1) cos 1, K 3 3 1, K 6
E[ A(t1 ) A(t2 )cos t1 cos t2 ] E[ A(t1 ) B(t2 )cos t1 sin t2 ] E[ B(t1 ) A(t2 )sin t1 cos t2 ] E[ B(t1 ) B(t2 )sin t1 sin t2 ] RA (t1, t2 )cos t1 cos t2 RB (t1, t2 )sin t1 sin t2 R( )cos t1 cos t2 R( )sin t1 sin t2 R( )cos(t1 t2 ) R( )cos( )
随机信号分析1-3部分答案
1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由 1)(=⎰∞∞-dx x f得2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A 21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
(仅供参考)随机信号分析与处理简明教程--第二章习题答案
证明:设τ = t2 − t1
Rz
(τ
)
=
E[z( t1 )z( t 2
)]
≤
E[
z2
(t1)
+ 2
z2
(t2
)]
=
1 2
E[z2
(t1 )
+
z2
(t2
)]
=
1 2
E[z
2
(t1
)]+
1 2
E[z2(t2 Nhomakorabea)]=
1 2
(R
z
(0)
+
R
z
(0))
=
R
z
(0)
(平稳过程)
所以, R z (0)
= σz2
+
可看作一个随机过程 X (t) = Acos(Ωt + Θ) ,其中 A, Ω, Θ 是相互独立的随机变量,且已知
f
A
(a)
=
⎧ ⎪ ⎨
2a A02
,
a ∈ (0, A0 ) ,
fΩ (ω) = ⎪⎨⎧1010 ,
ω
∈ (250,350) ,
fΘ (θ
)
=
⎪⎧ ⎨
1 2π
,
θ ∈ (0, 2π )
⎪⎩0, 其他
第 2 章习题解答
2.1 设有正弦波随机过程 X (t) = V cosωt ,其中 0 ≤ t < ∞ , ω 为常数,V 是均匀分布于 [0,1] 区间的随机变量。
(1)画出该过程两条样本函数;
(2)确定随机变量
X (ti ) 的概率密度,画出 ti
=
0,
π 4ω
随机信号分析第3版第二章 习题答案.pdf
k =0
k =0
如果将 4bit 串看作是一个随机向量,则随机向量的均值和方差为:
串平均: Ε ⎡⎣{B (n) , B (n +1) , B (n + 2) , B (n + 3)}⎤⎦ = {0.8, 0.8, 0.8, 0.8}
串方差:
Var ⎡⎣{B (n), B (n +1), B (n + 2) , B (n + 3)}⎤⎦ = {0.16, 0.16, 0.16, 0.16}
3
∑ 串(4bit 数据)为: X (n) = 2k B(n + k) ,其矩特性为: k =0
因为随机变量 B(n) 的矩为:
均值: E[B(n)] = 0× 0.2 +1× 0.8 = 0.8
{ } 方差:
Var
[
B(n)
]
=
Ε
⎡ ⎣
B
(
n
)2
⎤ ⎦
−
Ε ⎡⎣B (n)⎤⎦
2 = 02 × 0.2 +12 × 0.8 − 0.82
= E{[ X (s + a) − X (s)][X (t + a) − X (t)]} = E[ X (s + a) X (t + a)] − E[ X (s + a) X (t)] − E[ X (s) X (t + a)] + E[ X (s) X (t)] = RX (s + a, t + a) − RX (s + a, t) − RX ( s, t + a) + RX ( s, t)
P ⎡⎣{1011}⎤⎦ = P ⎡⎣B (n) = 1⎤⎦ × P ⎡⎣B (n) = 0⎤⎦ × P ⎡⎣B (n) = 1⎤⎦ × P ⎡⎣B (n) = 1⎤⎦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 = Ε [ A] Ε [ B] ⎡ ⎣cos (ω ( t1 − t2 ) ) ⎤ ⎦ −Ε⎡ ⎣cos (ω ( t1 + t2 ) + 2Θ ) ⎤ ⎦ 2
{
}
因为Θ为 0 至 2π均匀分布随机变量,所以 Ε ⎡ ⎣ cos ω ( t1 + t 2 ) + 2Θ ⎤ ⎦ = 0, 上式 RXY ( t1 , t2 ) =
2.4 解:
解: (1)由题已知 B(n,s)是贝努里随机序列,即 B(n,s)为独立的二进制随机数据序列, 利用其独立性可知所求概率为其分别概率之积,与数据是否连续并无关系, 所 以有:
P⎡ ⎣{1011}⎤ ⎦ = P⎡ ⎣ B ( n ) = 1⎤ ⎦×P⎡ ⎣ B ( n ) = 0⎤ ⎦×P ⎡ ⎣ B ( n ) = 1⎤ ⎦×P ⎡ ⎣ B ( n ) = 1⎤ ⎦
2.14 2.15 零均值高斯信号 X (t ) 的自相关函数为 RX (τ ) = 0.5 e 概率密度。
− t1 −t2
,求 X (t ) 的一维和二维
题 2.15 解:(1) 因为 mX (t ) = 0 , DX (t ) = C X (0) = RX (0) = 0.5 ,所以一维概率密度函数为:
2.4 假定二进制数据序列{B(n), n=1, 2, 3,….}是伯努利随机序列,其每一位数据对 应随机变量 B(n),并有概率 P[B(n)=0]=0.2 和 P[B(n)=1]=0.8。试问,
1
(1)连续 4 位构成的串为{1011}的概率是多少? (2)连续 4 位构成的串的平均串是什么? (3)连续 4 位构成的串中,概率最大的是什么? (4)该序列是可预测的吗?如果见到 10111 后,下一位可能是什么?
= 0.8 − 0.82 = 0.8 × (1 − 0.8 ) = 0.8 × 0.2 = 0.16
所以随机变量 X (n) 的矩为:
3 3
均值: E[ X (n)] =
∑ 2 k E[ B(n + k )] = ∑ 2 k × 0.8 = 12
k =0
3
k =0
3
方差: D[ X ( n)] =
∑ (2 k ) 2 D[ B(n + k )] = ∑ 4 k × 0.16 = 13.6
所以它的一维概率密度函数为: f X ( x ) = (2) 此信号是可预测随机信号
2.8 假定(-1,+1)的伯努利序列 { I n , n = 1, 2,...} 的取值具有等概特性。试问: (1) 它的一维概率密度函数、均值与协方差函数? (2) 它是可预测的随机信号吗?
1 2π (t 2 + 2)
C (ti , t j ) 为协方差,则 f X ( x, t ) =
2.16 2.17 2.18 某高斯的均值 mX (t ) = 2 ,协方差 C X (t1 , t 2 ) = 8 cos(t1 − t 2 ) ,写出当 t1 = 0 、
∑2
k =0
k
B (n + k ) ,其矩特性为:
因为随机变量 B( n) 的矩为: 均值: E[ B( n)] = 0 × 0.2 + 1× 0.8 = 0.8
2 方差: Var [ B( n) ] = Ε ⎡ B ( n ) ⎤ − Ε ⎡ ⎣ B ( n)⎤ ⎦ ⎣ ⎦
{
}
2
= 02 × 0.2 + 12 × 0.8 − 0.82
exp{−
( x − t)2 } 2(t 2 + 2)
2.8 解: (1) f X ( x ) = 0.5δ ( x + 1) + 0.5δ ( x − 1)
E[ I n ] = 0.5(1 − 1) = 0
⎧ ⎪ E[ I n1 ] E[ I n2 ] = 0 n1 ≠ n2 ⎤ C ( n1 , n2 ) = R( n1, n2 ) = E ⎡ I I = n n ⎣ 1 2 ⎦ ⎨ E[ X 2 ] = 1 , n = n n1 1 2 ⎪ ⎩ (2) 该随机信号不可预测
2.1 2.2 2.3 掷一枚硬币定义一个随机过程:
⎧cos π t X (t ) = ⎨ ⎩2t
出现正面 出现反面
设“出现正面”和“出现反面”的概率相等。试求: (1) X (t ) 的一维分布函数 FX ( x,1 2) , FX ( x,1) ; (2) X (t ) 的二维分布函数 FX ( x1 , x2 ;1 2 ,1) ; (3)画出上述分布函数的图形。
2.3 解: (1) X(0.5) P
0 0.5
1 0.5
X(1) P
-1 0.5
2 0.5 ⎧ 0, x < 0 ⎪ FX ( x, 0.5) = ⎨0.5, 0 ≤ x < 1 ⎪ 1, x ≥ 1 ⎩ ⎧ 0, x < −1 ⎪ FX ( x,1) = ⎨0.5, −1 ≤ x < 2 ⎪ 1, x ≥ 2 ⎩
2
没有任何关系。所以如果见到 1010 后,下一位仍为 0 或 1 ,而且仍然有概率 P[B(n)=0]=0.2 和 P[B(n)=1]=0.8。 2.5 2.6 2.7 设 质 点 运 动 的 位 置 如 直 线 过 程 X (t ) = Vt + X 0 , 其 中 V
N (1,1) 与
X0
N (0, 2) ,并彼此独立。试问:
4
服从均匀分布 U ( −π , +π ) ,它们彼此独立。如果信号施加到 RC 并联电路上,求总的电流信 号及其均方值。
题 2.13 解:由电路原理的相关知识可知: A 总电流 I 为 I = cos( wt + Θ) − ACw sin( wt + Θ) ,则 R
A E[ I 2 ] = E[( cos( wt + Θ) − ACw sin( wt + Θ)) 2 ] R A2 A2 C = E[ 2 cos 2 ( wt + Θ) − sin(2wt + 2Θ) + A2C 2 w 2 sin 2 ( wt + Θ)] R R 2 2 1 C w = 2+ 3R 3
= 0.8 × 0.2 × 0.8 × 0.8 = 0.1024
(2)设连续 4 位数据构成的串为 B(n),B(n+1),B(n+2),B(n+3),n=1, 2, 3,…. 其中 B(n)为离散随机变量,由题意可知,它们是相互独立,而且同分布的。 所以有:
3
串(4bit 数据)为: X (n) =
C XY ( t1 , t2 ) = RXY ( t1 , t2 ) − Ε ⎡ ⎣ X ( t1 )⎤ ⎦Ε⎡ ⎣Y ( t2 ) ⎤ ⎦ = RXY ( t1 , t2 ) ,
如果 E[A] 或 E[B]为 0,则 RXY ( t1 , t2 ) = C XY ( t1 , t2 ) = 0 ,X(t)与 Y(t)互不相 关; 如果 E[A] 与 E[B]均不为 0,则 RXY ( t1 , t2 ) = C XY ( t1 , t2 ) ≠ 0 ,X(t)与 Y(t)相 关; 综上,X(t)与 Y(t)的正交性与互不相关性等价; ③因为随机信号 X(t)与 Y(t)中都有随机变量Θ,所以 X(t)与 Y(t)一般不会 相互独立。 2.12 2.13 假定正弦电压信号 X (t ) = A cos (ω t + Θ ) , 其中, A 服从均匀分布 U ( −1, +1) , Θ
(1) t 时刻随机变量的一维概率密度函数、均值与方差? (2) 它是可预测的随机信号吗?
2.7 解: (1)独立高斯分布的线性组合依然是高斯分布
E[ X (t )] = E[Vt + X 0 ] = tE[V ] + E[ X 0 ] = t D[ X (t )] = D[Vt + X 0 ] = t 2 D[V ] + D[ X 0 ] = t 2 + 2
题 2.11 解 :( 1 ) RXY ( t1 , t2 ) = Ε ⎡ ⎣ X ( t1 ) Y ( t 2 ) ⎤ ⎦ = Ε⎡ ⎣ A sin (ω t1 + Θ ) × B sin (ω t2 + Θ ) ⎤ ⎦ 1 = Ε [ A] × Ε [ B ] × Ε ⎡ cos (ω ( t1 − t2 ) ) − cos (ω ( t1 + t2 ) + 2Θ ) ⎤ ⎦ 2 ⎣
2.9 2.10 给 定 随 机 过 程 X (t ) 和 常 数 a , 试 以 X (t ) 的 自 相 关 函 数 来 表 示 差 信 号
Y (t ) = X (t + a ) − X (t ) 的自相关函数。
2.10 解: 由题意可得:
RY ( s, t ) = E[Y ( s)Y (t )] = E{[ X ( s + a) − X ( s)][ X (t + a ) − X (t )]} = E[ X ( s + a) X (t + a)] − E[ X ( s + a) X (t )] − E[ X ( s) X ( t + a)] + E[ X ( s) X ( t)] = RX ( s + a, t + a) − RX ( s + a, t) − RX ( s, t + a) + RX ( s, t)