高等数学下册第九章习题答案

合集下载

第九章习题答案高数下

第九章习题答案高数下

作 业 9—1一.填空:1.已知D 是长方形域:,10;≤≤≤≤y b x a 且⎰⎰=Dd x yf 1)(σ,则⋅=b adx x f )(2 .解:⎰⎰=Dd x yf σ)(⎰⎰⋅=baydy dx x f 1)(21⎰⋅badx x f )( 故⎰⋅=badx x f )( 22.若D 是由1=+y x 和两个坐标轴围成的三角形域,且⎰⎰⎰⋅=Ddx x dxdy x f 1)()(ϕ,那么.=)(x ϕ)()1(x f x -解:⎰⎰=Ddxdy x f )(⎰⎰-⋅=xdy x f xdx 1010)(⎰⋅-10)()1(dx x f x ⎰⋅=1)(dx x ϕ二、单项选择题:1. 设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心在(-1,1)处,记1I =⎰⎰---12222D xy x y dxdy e;2I =⎰⎰---22222D xy x y dxdy e;3I =⎰⎰---32222D xy x y dxdy e.则1I ,2I ,3I 大小顺序为( B )。

A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤2I ≤1I D. 3I ≤1I ≤2I解:因为三个被积函数一样,均为正值,213D D D ⊃⊃,故2I ≤1I ≤3I 2. 设D 是第二象限的一个有界闭区域,且10<<y ,记1I =⎰⎰Dd yx σ3;2I =⎰⎰Dd x y σ32;3I =⎰⎰Dd x y σ321.1I ,2I ,3I 的大小顺序是( )。

A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤1I ≤2I D. 3I ≤2I ≤1I 解:因10<<y ,故212y y y <<,而03<x ,从而323321x y yx x y <<,选(C )。

三.利用二重积分定义证明: 1.σσ=⎰⎰Dd (其中σ为D 的面积)解:ini iiDf d σηξσλ∑⎰⎰=→∆=⋅10),(lim 1i ni σλ∑=→∆⋅=11limσσσλλ==∆=→=→∑01lim limini故 σσ=⎰⎰Dd (其中λ是各iσ∆的最大直径)2.k d y x kf D=⎰⎰σ),(⎰⎰Dd y x f σ),( (其中k 为常数)解:=⎰⎰Dd y x kf σ),( ini iif σηξλ∑=→∆1),(lim i ni i i f k σηξλ∑=→∆=1),(limi ni i i f k σηξλ∑=→∆=1),(lim ⎰⎰=Dd y x f k σ),( (k 为常数)四.利用二重积分的性质估计下列积分的值: 1.}10,10|),{(,)(⎰⎰≤≤≤≤=+=Dy x y x d y x xy I 其中Dσ解: 10,10≤≤≤≤y x∴2)(0≤+≤y x xy∴⎰⎰⎰⎰≤≤+≤DDd d y x xy 22)(0σσ2.}4|),{(,)49(22⎰⎰≤+=++=Dy x d y x I 22yx其中Dσ 解: 中在D ,422ππσ=⋅=,()22222249499yx y x y x ++≤++≤++2549922≤++≤y x∴ σσσ25)49(922≤++≤⎰⎰⎰⎰DDd y x d即 ππ10036≤≤I五.根据二重积分的性质比较下列积分的大小: 1.⎰⎰⎰⎰++DDd y x d y x σσ32)()(与其中积分区域D 是由圆周2)1()2(22=-+-y x 所围成。

高等数学下复旦大学出版社王中兴第九章课后答案

高等数学下复旦大学出版社王中兴第九章课后答案

习题9.1 1、略2、(1D ≥≡,故DDσ>σ⎰⎰⎰⎰(2)()2x y +和()3x y +在D 上连续且()()23x y x y +≤+,()()23x y x y +≡+,故()()23DDx y d x y d +σ<+σ⎰⎰⎰⎰。

(3)()0ln ln 2x y ≤+≤,()()2ln ln x y x y +≡+,()()()2ln ln x y x y +≥+,()ln x y +和()()2ln x y +,()ln x y +和()()2ln x y +在D上连续,故()()()2ln ln DDx y d x y d +σ>+σ⎰⎰⎰⎰(4)2,1,2,3ii D I d i =σ=⎰⎰,故213I I I <<3、(),f x y 在D 上连续,故(),f x y 在D 上有最大值M 和最小值m 。

(),DDDmd f x y d Md σ≤σ≤σ⎰⎰⎰⎰⎰⎰,(),DmS f x y d MS ≤σ≤⎰⎰。

(1)若0S =,则对任意的(),D ξη∈,()(),,Df x y d f S σ=ξη⎰⎰。

(2)若0S ≠,则()1,Dm f x y d M S ≤σ≤⎰⎰,由介值定理可知存在(),D ξη∈,()()1,,Df f x y d S ξη=σ⎰⎰,从而有()(),,Df x y d f S σ=ξη⎰⎰4、由中值定理可知存在(),t t f D ξη∈,()()2,,ttDf x y dxdy f t=ξηπ⎰⎰,从而由(),f x y 连续可得()()0=lim ,0,0t t t f f +→ξη=原式 5、由轮换对称性可知22cos cos DDy d x d σ=σ⎰⎰⎰⎰,21444x πππ≤+≤+,2sin4x π⎤⎛⎫+∈ ⎪⎥⎝⎭⎦,()222sin cos sin 4D Dx x d x d π⎛⎫+σ=+σ ⎪⎝⎭⎰⎰,因此,()()22221sin cos sin cos DDx y d x x d ≤+σ=+σ≤⎰⎰⎰⎰习题9.21、(1)()()()()2222220020=3232223x x dx x y dy xy y dx x x dx --+=+=+-=⎰⎰⎰⎰原式 (2)11220011=13412x dx dy y ππ=⨯=+⎰⎰原式(3))21122200514201=2133322140xdx x y dy x y y x x x dx ⎛+=+⎝⎛⎫=+-= ⎪⎝⎭⎰⎰⎰原式(4)()2222221112320000111221100011=3611112666yy y y y y y e dy x dx y e dy y de y ee dy e e e --------==-⎛⎫⎛⎫=--=-+=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰原式(5)=0原式(6)()2222240001=212r r d e r dr e e πθ=π=π-⎰⎰原式(7)()()()()11222200=ln 1ln 112ln 2144d r rdr r d r πππθ+=++=-⎰⎰⎰原式 (8)22242224401113=2264r d rdr d rdr πππθθθ=θθ==π⎰⎰⎰⎰原式 2、(1)()11=,xdx f x y dy ⎰⎰原式(2)()21=,x xdx f x y dy ⎰⎰原式(3)()120=,y y dyf x y dx -⎰⎰原式 (4)()()11111ln =,,e x xdx f x y dy dx f x y dy -+⎰⎰⎰⎰原式3、(1)()20=cos ,sin R d f r r rdr πθθθ⎰⎰原式(2)()2sin 20=cos ,sin R d f r r rdr πθθθθ⎰⎰原式(3)()1210cos sin =cos ,sin d f r r rdr πθ+θθθθ⎰⎰原式(4)()sec 40sec tan =cos ,sin d f r r rdr πθθθθθθ⎰⎰原式4、(1))asec 4400=sec ln1rd dr a d a rππθθ=θθ=⎰⎰⎰原式(2)a3420=8d r dr a ππθ=⎰⎰原式 5、()1112=04413xDx dxdy xdx dy x x dx -+==-=⎰⎰⎰⎰⎰原式 6、()623D V x y d =--σ⎰⎰,[][]0,10,1D =⨯11111111200621316235656257622xdx dy ydy dx xdx ydyxdx x =--=--=-=-=-=⎰⎰⎰⎰⎰⎰⎰7、()221DV xy d =++σ⎰⎰,[][]0,40,4D =⨯4444220442204423001116441685608161633x dx dy y dy dx x dx y dy x dx x =++=++=+=+=⎰⎰⎰⎰⎰⎰⎰8、2cos 42cos 3330165330=cos sin cos sin 41211394cos sin sin cos 14328416r d r dr d d d θππθππθθθ=θθθ⎛⎫⎛⎫=θθθ-θθθ=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰原式9、()()123222cos 332231=18cos 38161sin sin 183189d r dr d d ππππθππθ=-θθππ=--θθ=-+⎰⎰⎰⎰原式10、()()()()()1222220132301422233xxDM x y d dx xy dyx x x x dx -=+σ=+⎛⎫=-+--= ⎪⎝⎭⎰⎰⎰⎰⎰11、01r ≤≤,123316r r r r ⎛⎫-≤≤ ⎪⎝⎭202Dd πσ=θ=π⎰⎰⎰121114400021226r r dr r dr ⎛⎫π-≤π≤π ⎪⎝⎭⎰⎰⎰10971122225551025ππ⎛⎫=π-≤π≤ ⎪⎝⎭⎰ 9761255165ππ> 因此,6121655D ππ≤σ≤12、(1)令u xy y v x =⎧⎪⎨=⎪⎩,则11221122x u v y u v -⎧=⎪⎨⎪=⎩,()(),1,2x y u v v α=α 原式43221128ln 323u du dv v ==⎰⎰(2)令u x y v y x =+⎧⎨=-⎩,则()()1212x u v y u v ⎧=-⎪⎪⎨⎪=+⎪⎩,()(),1,2x y u v α=α()[][]()122211142240011,1,11,142122111214255945D u v dudv D du u u v v dv=+=-⨯-=++⎛⎫=++= ⎪⎝⎭⎰⎰⎰⎰原式(3)令cos sin x ar y br =θ⎧⎨=θ⎩,()(),,x y abr r α=αθ 原式122042abd r abrdr ππ=θ=⎰⎰ (4) 令u x y v y =+⎧⎨=⎩,则x u v y v=-⎧⎨=⎩,()(),1,x y u v α=α()111112u vv uuu e du e dv uedu e udu -===-=⎰⎰⎰⎰原式 (5)令u x y v x y =-⎧⎨=+⎩,则()()1212x u v y v u ⎧=+⎪⎪⎨⎪=-⎪⎩,()(),1,2x y u v α=α 1100011001cos cos 21sinsin1sin12v v v vu u dvdu dv du v vuv dv vdv v -=====⎰⎰⎰⎰⎰⎰原式(6)令u v ⎧=⎪⎨=⎪⎩22x uy v ⎧=⎨=⎩,()(),4,x y ur u v α=α ()()()1111230001320144232222315uuu du u v urdv u v v duu u u u du --⎛⎫=+=+⎪⎝⎭=-++=⎰⎰⎰⎰原式习题 9.31、(1)23561156120001=4111428364xyxyxyD D x xy dxdy z dz x y dxdy x dx y dx x dx ====⎰⎰⎰⎰⎰⎰⎰⎰原式(2)()()()131122001100=11111821621111115ln 22116216xyxy x yD x D xdzdxdy x y dx dxdy dx x y x y dx x y ----+++δ⎛⎫=-=- ⎪ ⎪++++⎝⎭=--=-++⎰⎰⎰⎰⎰⎰⎰⎰原式(3)()()2020020=sin 1sin 1sin 111sin 1222xyxyx D D ydxdy zdzxy x x dxdy dx ydy x xx dx π-ππ-=-=π⎛⎫=-=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰原式(4)()2222221112=129x y y zdzdxdy z dz +≤+=π+δ=π⎰⎰⎰⎰原式(5)()222011=243xD xdx dydz x x dx =-=⎰⎰⎰⎰原式2、(1)2222233210002116=2223r d r dr dz r r dr π⎛⎫θ=π-=π ⎪⎝⎭⎰⎰⎰⎰原式(2)()22112407=212rd rdr r r r dr πθ=π--=π⎰⎰⎰原式3、(1)(2)22cos 240022cos 34045404=sin cos sin cos 8sin cos 76a a d d r r drd d r dra d a ππϕππϕπθϕϕϕ=θϕϕϕ=πϕϕϕ=π⎰⎰⎰⎰⎰⎰⎰原式(3)21402140=sin sin 122545d d r drd d r drππππθϕϕ=θϕϕ=π=π⎰⎰⎰⎰⎰⎰原式4、(1)113201320=cos sin cos sin 18xyD xydxdy dz d r d d r drππ=θθθθ=θθθ=⎰⎰⎰⎰⎰⎰⎰原式22402340442400=sin cos sin cos 112sin 248aaad d r r drd d r dra r πππππθϕϕϕ=θϕϕϕπ=πϕ=⎰⎰⎰⎰⎰⎰原式(2)2cos 320242052=sin 1sin cos 41cos 2510d dr drd d ππϕπππθϕϕ=θϕϕϕππ=ϕ=⎰⎰⎰⎰⎰原式(3)()()52222223002450=55121104108xyxyD D x y dxdy x y dxdyr d r drr r π+⎛=+- ⎝⎛⎫=θ- ⎪⎝⎭⎛⎫=π- ⎪⎝⎭=π⎰⎰⎰⎰⎰⎰原式(4)()()2222420024200552=32sin 32sin 3415b a b a x y z dv d d rdrd d r drb a Ωππππ++=θϕϕ=θϕϕπ=-⎰⎰⎰⎰⎰⎰⎰⎰⎰原式5、(1)()2222424300244220430=22256433x y zx y dv zdvdz d dr zd dxdyz dz z dz z ΩΩπ+≤++=θ+δ=π+π=π=π⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰原式(2)设1Ω是由1z z ==所围成的有界闭区域,则))12222222222110021102=22232536x y x y z x y x y z z dv z dvdzdz zdz dxdy zdzdxdyΩΩ+≤+≤+≤+≤-=--+ππ=--π+=-π⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰原式(3)()1222=4357xy z dv Ω++⎰⎰⎰原式,1Ω为Ω位于第一卦限的部分。

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
dx
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =

3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0

x

1,0

y
≤ 1,0

z

K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=

二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。

∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、


a
1
dr
r 3dz
B、


a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、

高等数学(同济第七版)第九章课后答案

高等数学(同济第七版)第九章课后答案

-.《高"tt雪;')( ;r,乞履>rm习IA全航44, ’ ’i,、、J·.,-一,rr-T令,,、-M-·.‘FEE-’‘....l i··付守年,2-·’、fp····.,...、付’创刊令,-2、.四.,。

-H‘.,.JA、。

当”、句,‘-、,.-.-----号ri咱也k fi'l企:,i(r'J ;(,) f尔1’在.i!Iii i ra、2所l'..t全微分r.. l.主R F列的数的全做分:l I ) :二X)... ...:.. ; (2):=··-:14)u=‘., .( 3): sτ兰==:、f叶’.,.I·.·、-= .,ii: ”l' .‘Ez---虫”·飞”( I ) I晏为t;_=(,-干)‘1曹寸、-于)r1r.ii·i i·dz =ι二,I x+ , _ •h,,店,问向f t:l曾il=,l: \-二-.....,..,.h’,:1 2 l I崎').J...+二二,I‘冉、,1: d‘。

‘1’fr l'..lt、,I‘.“i,)dε =-飞、··....( l、牛+‘.}‘ii:_ -J '们飞!-+\1、厅可丁2( 3 > I叫11• , Iv飞+,--,--咱自---,电·、,、句’‘‘. t I--,l:,l 1、·"l1..t..1...-F‘{’. .,..,.,1: ·=、·,1‘φ. • ,I,A‘.11.,MFa,.’}iuyt吁《-Itl48 一、o,�舷学’{第七版)"F筋习忍金’E8ε27.6 一二一一-二I.JO 号i S 2 127. 8 !:, · 12.钊JU 1: l校纷iaF I乎):内政之佣的地(,j i克i:丁j宫。

高等数学(经济类)课后习题及答案第九章多元函数微分

高等数学(经济类)课后习题及答案第九章多元函数微分

习题9-1(A )1.求下列各函数的表达式: (1)设函数22),(y x y x f -=,求(,)f y x --,),(x x f -.解:(,)f y x --22)()(x y -+-=22x y -=,0)(),(22=--=-x x x x f .(2)设函数)1(3-+=x f y z ,已知1=y 时,x z =,求)(x f 及z 的表达式.解:由1=y 时,x z =,有)1(13-+=x f x ,即,所以1)1()(3-+=x x f ;而1)1(3-+=-+=x y x f y z .(3)设函数y y x y x f +-=1)1(),(2,求),(xy y x f +.解:2222))(()()(/1)/1()(),(y x y x y x yx y x y x x y x y y x x y y x f -=-+=+-+=+-+=+. (4)设函数xy y x y x f =+-),(,求),(y x f 的表达式. 解:(方法1)因为4)()(4)2(244),(222222y x y x y xy x y xy x xy y x y x f --+=+--++==+-,所以),(y x f 422x y -=.(方法2)令v y x u y x =+=-、,则22uv y v u x -=+=、,于是 422),()(22u v u v u v xy y x y x f v u f -=-+==+-=,,所以),(y x f 422x y -=.2.求下列各函数的定义域,并作定义域草图: (1))ln(x y z -=; (2)221arcsin xy y z -+=;(3)221arcsin yx x x y z --+=; (4)41)16ln(2222-++--=y x y x z .1]1)1[(1)1(333-+-=-=-x x x f解:(1)由0>-x y 且0≥x ,得定义域}0,),{(≥>=x x y y x D .(2)由022>-x y 及1≤y ,有1≤<y x ,得定义域}1),{(≤<=y x y x D .(3)由0100122>--≥≠≤y x x x xy、、、,有0122>≤<+x x y y x 、、,得定义域}0,,1),{(22≠≤<+=x x y y x y x D .(4)由040162222≥-+>--y x y x 、,有16422<+≤y x ,或4222<+≤y x ,得定义域}42),{(22<+≤=y x y x D .3.求下列极限:(1)(,)(1,1)2lim2x y x yx y →-+; (2)xxy a y x sin lim ),0(),(→;(3)22)0,0(),(1sinlim y x x y x +→; (4)2)1,0(),(2tan limxy xyy x →;(5)22(,)(1,1)sin()lim x y x y x y →--; (6)231lim )1,1(),(-+-→xy xy y x .解:(1)(,)(1,1)2121lim2213x y x y x y →--==-++.(2)(,)(0,)(,)(0,)sin limlim x y a x y a xy xya x x →→==.(3)因为221sinyx +有界,而0lim )0,0(),(=→x y x ,所以=+→22)0,0(),(1sinlim yx x y x 0.(4)2111211lim tan lim 212tan lim)1,0(),()1,0(),(2)1,0(),(=⨯⨯==→→→y xy xy xy xy y x y x y x .(5)222222(,)(1,1)(,)(1,1)sin()()sin()limlim 21 2.x y x y x y x y x y x y x y →→-+-==⨯=-- (6)=++=-++-=-+-→→→)23(lim 1)23)(1(lim231lim)1,1(),()1,1(),()1,1(),(xy xy xy xy xy xy y x y x y x 4.4.证明下列极限不存在:(1)(,)(0,0)lim x y x yx y →-+; (2)242)0,0(),(lim y x y x y x +→.证明:(1)沿)1(-≠=k kx y 取极限,则k kkx x kx x y x y x x x kx y +-=+-=+-→→=11lim lim00,当k 取不同值时,该极限值不同,所以极限(,)(0,0)limx y x yx y →-+不存在.(2)沿0=y 取极限,00lim lim 024200==+→→=x x y y x yx ; 沿2x y =取极限,212lim lim 44024202==+→→=x x y x y x x x x y . 由于2420242002lim lim y x y x y x y x x x y x y +≠+→=→=,所以极限242)0,0(),(lim y x yx y x +→不存在.习题9-1(B )1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为y x 、(单位:元),两个市场的销售量21Q Q 、各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是(2012000+=C )21Q Q +,试用y x 、表示该厂生产此产品的利润L . 解:根据已知,设y a b Q x a b Q 222111-=-=、,由10=x 时,24001=Q ;12=x 时,20001=Q ,有⎩⎨⎧=-=-,,2000122400101111a b a b 得、2001=a44001=b ,于是x Q 20044001-=.由10=y 时,8502=Q ;12=y 时,7002=Q ,有⎩⎨⎧=-=-,,70012850102222a b a b 得、752=a16002=b ,于是y Q 7516002-=.两个市场销售该产品的收入为22217516002004400y y x x yQ xQ R -+-=+=, 该产品的成本(2012000+=C y x Q Q 15003200040008800012000)21-+-+=+y x 15004000132000--=. 根据利润等于收入减去成本,得)15004000132000(751600200440022y x y y x x L ----+-= 132000752003100840022---+=y x y x .2.求下列极限:(1)y y x xy )11(lim ),2(),(++∞→; (2)22)0,0(),(1e lim 22yx y x y x +-+→; (3)4422),(),(lim y x y x y x ++∞∞→; (4)(,)lim x y →解:(1)==+=++∞→+∞→211),2(),(),2(),(e ])11[(lim )11(lim x xy y x y y x xyxy e . (2)法1: 令t y x =+22,则当)00()(,,→y x 时,+→0t ,所以 =-=+-+→+→t y x t t y x y x 1e lim 1e lim 022)0,0(),(221. 法2:因为)00()(,,→y x 时,1e 22-+y x 与22y x +是等价无穷小,所以1lim 1e lim 2222)0,0(),(22)0,0(),(22=++=+-→+→y x y x y x y x y x y x . (3)因为224424424422110yx y x y y x x y x y x +≤+++=++≤, 而00lim ),(),(=∞∞→y x , 0)11(lim 22),(),(=+∞∞→y x y x ,根据“夹逼准则”得0lim 4422),(),(=++∞∞→yx y x y x . (4)令θρθρsin cos ==y x 、,则当)00()(,,→y x 时,0→ρ(其中θ在区间)20[π,内任意变化),所以==+<≤→→θθρπθρsin cos lim lim20022)0,0(),(yx xy y x 0.3.证明极限22222)0,0(),()(lim x y y x y x y x -+→不存在.证明:沿0=y 取极限,00lim )(lim 202222200==-+→→=x x y y x y x x x y ;沿x y =取极限,11lim )(lim 0222220==-+→→=x x x y x y y x y x .因此,极限22222)0,0(),()(lim x y y x y x y x -+→不存在.4.讨论函数⎪⎩⎪⎨⎧=+≠++=0002)(222222y x y x yx xy y x f ,,,,在点),(00处的连续性. 解:沿x y =取极限,由)00(11lim 2lim)(lim 0220,,f yx xyy x f x x x y x x y ≠==+=→→=→=,有 )00()(lim )0,0(),(,,f y x f y x ≠→,所以函数)(y x f ,在点),(00处不连续.习题9-2(A )1. 求下列函数的偏导数:(1)2z xy =; (2)2cos sin()z xy x y =++;(3)z = (4)2ln(ln )z x y =+;(5)yz x=(0>x ); (6)z = (7)22y x xyz +=; (8)arctanx yz x y+=-; (9)yx z u =; (10)zy x u )tan(22-=.解:(1)2z y x ∂=+∂2z xy y ∂=∂. (2)2sin cos cos()sin 2cos()zxy xy y x y y xy x y x∂=-⋅++=-++∂, 2sin cos cos()sin 2cos()zxy xy x x y x xy x y y∂=-⋅++=-++∂. (3)12z x x y ∂==∂+ 122z y x y ∂=⋅=∂+. (4)22122ln ln z x x x x y x y ∂=⋅=∂++,22111ln (ln )z y y x y y x y ∂=⋅=∂++. (5)x yxy xyx y xy x y xy x y xy y x z sin cos 21)(sin cos 2332+=-⋅-=∂∂, xyx y x yy x x x y xy x y xy x y z sin cos 211sin cos 2-=⋅-=∂∂. (6))1(212)1(11xy xy yxy y xy x z --=--⋅--=∂∂,)1(212)1(11xy xy x xy x xy y z --=--⋅--=∂∂. (7)2/3223222222)(y x y y x y x x xy y x y xz+=++⋅-+=∂∂, 由变量y x 、的对称性,得2/3223)(y x x y z +==∂∂. (8)222211()1()()1()z x y x y yx y x x y x yx y∂⋅--⋅+-==+∂-++-, ()22221()1()1()1()x y x y z xx y y x y x y x y⋅---⋅+∂==+∂-++-. (9)z z yy z z x u y x y x ln 11ln =⋅=∂∂,z z y x y x z z y u y xy x ln )(ln 22-=-⋅=∂∂, yyx y xz yxz y x z u --==∂∂1.(10)zy x x z x y x x u )(sec 22)(sec 222222-=⋅-=∂∂, z y x y z y y x y u )(sec 2)2()(sec 222222--=-⋅-=∂∂,222)tan(z y x z u --=∂∂. 2. 求曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与x 轴正向的夹角.解:z x ∂=∂,111112x x y y z x ====∂==∂, 用α表示曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与y 轴正向的夹角,则21tan =α,所以432621arctan '≈=α. 3. 设xy x y x z xsec)1(e 2-++=,求)0,1(x z 及)0,1(y z .解:因为1e )0(-+=x x z x ,,所以=11d (1,0)(e 1)(e 1)d xx x x x z x x-=+-=+=e 1+,因为e )1(+=y y z ,,所以1)e (d d)0,1(0=+==y y y yz .4. 求下列函数的高阶导数:(1)设13323+--=xy xy y x z ,求22223223,,,,z z z z zy x x y x y x∂∂∂∂∂∂∂∂∂∂∂∂.解:xz ∂∂ ,33322y y y x --= y z ∂∂ ;9223x xy y x --=22x z ∂∂ ,62xy = 33xz ∂∂ ,62y = 22y z ∂∂ ;1823xy x -= y x z ∂∂∂2 ,19622--=y y x xy z ∂∂∂2 .19622--=y y x (2)设xy x z ln =,求22x z ∂∂,22y z ∂∂和23yx z ∂∂∂; 解:1ln ln +=⋅+=∂∂xy xy y x xy x z ,yxxy x x y z =⋅=∂∂, x xy y x z 122==∂∂,222y x y z -=∂∂,y xy x y x z 12==∂∂∂,2231yy x z -=∂∂∂. 5. 验证:(1)设函数x yz u arctan =,证明0222222=∂∂+∂∂+∂∂zu y u x u .证:因为2222)()/(1y x yzx y x y z x u +-=-⋅+=∂∂,22222)(y x xyz x u +=∂∂, 2221)/(1y x xzx x y z y u +=⋅+=∂∂,22222)(y x xyz y u +-=∂∂,x y z u arctan =∂∂,022=∂∂zu, 所以,00)()(222222222222=++-+=∂∂+∂∂+∂∂y x xyzy x xyz z u y u x u . (2)设y x z =)1,0(≠>x x ,求证z yzx x z y x 2ln 1=∂∂+∂∂.证明:=∂∂xz ,1-y yx =∂∂y z ,ln x x yy z x x z y x ∂∂+∂∂ln 1 x x xyx y x yy ln ln 11+=-y y x x += .2z =原结论成立.习题9-2(B )1.设一种商品的需求量Q 是其价格1p 及某相关商品价格2p 的函数,如果该函数存在偏导数,称Q p p Q E 111∂∂-=为需求对价格1p 的弹性、Qp p Q E 222∂∂-=为需求对价格2p 的交叉弹性.如果某种数码相机的销售量Q 与其价格1p 及彩色喷墨打印机的价格2p 有关,为 222110250120p p p Q --+=, 当501=p ,52=p 时,求需求对价格1p 的弹性、需求对价格2p 的交叉弹性. 解:由211250p p Q -=∂∂,22210p p Q--=∂∂, 有1111250Qp Q p p Q E =∂∂-=,Qp p Q p p Q E 222222210+=∂∂-=,当501=p ,52=p 时,50255050250120=--+=Q 需求对价格1p 的弹性:1.0250505015501121======Q p p p Qp E 、、,需求对价格2p 的交叉弹性:=+=====5052225502221210Q p p p Qp p E 、、2.2. 设22arcsiny x x z +=,求x z ∂∂,yz ∂∂.解: =∂∂xz '⎪⎪⎭⎫⎝⎛+⋅+-xy x x y x x 2222211322222)(||y x y y y x +⋅+=.||22y x y += =∂∂yz'⎪⎪⎭⎫⎝⎛+⋅+-yy x x y x x 2222211=y y x x 1sgn 22+-=. 3. 设函数⎪⎩⎪⎨⎧=≠-+=,,,,,x y x y y x yx y x f 0)(证明在)00(,点处),(y x f 的两个偏导数都不存在.证:因为极限x xf x f x x ∆=∆-∆→∆→∆1lim )00()0(lim00,,不存在,极限yf y f y ∆-∆→∆)00()0(lim0,,xx ∆-=→∆1lim0不存在,所以在)00(,点处),(y x f 的两个偏导数都不存在. 4. 设y x yx z -+=arctan ,求22x z ∂∂,22y z ∂∂和y x z ∂∂∂2.解:2222)()()()(11y x yy x y x y x y x y x xz+-=-+---++=∂∂,22222)(2y x xy x z +=∂∂, 2222)()()()(11y x xy x y x y x yx y x yz +=-++--++=∂∂,22222)(2y x xy y z +-=∂∂, 22222222222(2)()()z x y y y y x x y x y x y ∂+--=-=∂∂++.5. 设函数222ln z y x u ++=,证明2222222221z y x z u y u x u ++=∂∂+∂∂+∂∂.证明:将函数改写为)ln(21222z y x u ++=,则 222z y x xx u ++=∂∂,2222222222222222)()(2z y x x z y z y x x x z y x x u ++-+=++⋅-++=∂∂, 由变量的对称性,有222222222)(z y x y z x y u ++-+=∂∂,222222222)(z y x z y x z u ++-+=∂∂,所以2222222222222222222)()()()(z y x z y x y z x x z y z u y u x u ++-++-++-+=∂∂+∂∂+∂∂ 22222222221)(zy x z y x z y x ++=++++=. 习题9-3(A )1.求下列函数的全微分:(1)1sin()z x y=+; (2)22z x y =+; (3)xyz e =; (4)yxz tanln =; (5)22y x z u +=; (6)ln(32)u x y z =-+.解:(1)因为1cos()z x x y ∂=+∂,221111cos()()cos()z x x y y y y y ∂=+⋅-=-+∂,所以2211111d cos()d cos()d cos()(d d )z x x x y x x y y y y y y=+-+=+⋅-.(2)因为2z xyx ∂=+∂,2z x y ∂=+∂22(dz xydx x dy =++. (3)因为x yx yx z e 2-=∂∂,x yxy z e 1=∂∂,所以 )d d (e 1d e 1d e d 22x y y x xy x x x y z x yx yx y-=+-=.(4)因为2122cot sec cs c z x x x x y y y y y ∂=⋅=∂,22222cot sec ()csc z x x x x x y y y y y y ∂=⋅-=-∂, 所以)d d (2csc 2d 2csc 2d 2csc 2d 22y x x y y xyy y x y x x y x y z -⋅=-=(5)因为z xz x u y x ln 222+=∂∂,z yz y u y x ln 222+=∂∂,12222)(-++=∂∂y x z y x zu ,所以z z y x y z yz x z xz u y xy xy xd )(d ln 2d ln 2d 122222222-+++++⋅+⋅=]d )d d (ln 2[2222z zy x y y x x z zy x +++⋅=+.(6)因为132u x x y z ∂=∂-+,332u y x y z ∂-=∂-+,232u z x y z∂=∂-+,所以 d 3d 2d d 3d 2d d 32323232x y z x y zu x y z x y z x y z x y z--+=++=-+-+-+-+.2.求函数zxyu )(=在点)1,2,1(-处的全微分.解:).ln()( ,1)( ),()(121x y x y y u x x y z y u xy x y z x u z z z ⋅=∂∂⋅=∂∂-⋅=∂∂-- 在点)1,2,1(-处,分别有.2ln 21,41 ,21)1,2,1()1,2,1()1,2,1(=∂∂-=∂∂=∂∂---zuyu xu因此,我们有.2ln 21d 41 21dz y dx dz +-=3.求函数)41ln(22y x z -+=当1=x ,2=y 时的全微分.解 因为22418y x x x z -+=∂∂,22412y x yy z -+-=∂∂,821=∂∂==y x xz ,421-=∂∂==y x yz ,所以y x z d 4d 8d )2,1(-=,4.求函数xy e z =在点()2,1处当2.0,1.0=∆=∆y x 时的全微分.解 由于,2,,,212212e yz e xz xe y z ye x z y x y x xy xy =∂∂=∂∂=∂∂=∂∂====所以,当2.0,1.0=∆=∆y x 时,函数xye z =在点(2,1)处的全微分为.5.02.021.0222e e e dz =⋅+⋅=习题9-3(B )1. 计算()2.021.04的近似值.解: 设函数(,)yz f x y x ==.显然,要计算的值是函数在 1.04, 2.02x y ==时的函数值()1.04,2.02.f取1,2,0.04,0.02.x y x y ==∆=∆=因为 ,),(1-=y x yx y x f ,ln ),(x x y x f y y =(1,2)1,f =(1,2)2,x f =(1,2)0,y f =所以 由公式得 2.02(1.04)120.0400.02 1.08≈+⨯+⨯=. 2.计算3397.102.1+的近似值. 解:考虑函数33y x z +=,取03.002.02100-=∆=∆==y x y x 、、、,而33223yx x z x +=',33223yx y z y +=',3)21(=,z 、2/1)21(=',x z 、2)21(=',y z ,则)(97.102.10033y y x x z ∆+∆+=+,y y x z x y x z y x z y x ∆'+∆'+≈)()()(000000,,,95.206.001.03)03.0(202.05.03=-+=-⨯+⨯+=.3. 设函数⎪⎩⎪⎨⎧=+≠++=,0,0,0,),(2222222y x y x y x y x y x f 在点)0,0(O 点处讨论偏导数的存在性、偏导数的连续性以及函数),(y x f 的可微性.解:因为00lim )00()0(lim==∆-∆→∆→∆x x xf x f ,,,00lim )00()0(lim==∆-∆→∆→∆x y yf y f ,,,所以在)0,0(O 点处函数)(y x f ,的两个偏导数都存在,且0)10(0)00(==,、,y x f f .再讨论可微性,函数在)0,0(O 处的全增量用z ∆表示,则222)()()()00()00(y x yx z y f x f z y x ∆+∆∆⋅∆=∆=∆-∆-∆,,,记22)()(y x ∆+∆=ρ,则2/3222)0,0(),(0])()[()(lim )00()00(limy x yx yf x f z y x y x ∆+∆∆∆=∆-∆-∆→∆∆→ρρ,,不存在(沿0=∆x 取极限,其值为0;沿x y ∆=∆取极限,其值为22/1),所以函数)(y x f ,在)0,0(O 点处不可微.进而得偏导(函)数在)0,0(O 点处不连续(若偏导(函)数在)0,0(O 点处连续,根据可微的充分条件,则函数在点)0,0(O 可微,与函数不可微矛盾).习题9-4(A )1.求下列函数的全导数: (1)设函数 32,sin ,t v t u ez vu ===-,求dtdz ; (2)设函数t uv z sin +=,而t e u =,t v cos =,求全导数dtdz ; (3)设函数y x z cos 2=而)(x y y =是x 的可微函数,求xzd d . 解:(1)dtdv v z dt du u z dt dz ∂∂+∂∂==)6(cos 3)2(cos 22sin 2223t t e t e t e t t v u vu -=⋅-+---. (2)tzdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t+-= (3)=⋅-=∂∂+∂∂=xy y x y x x y y z x z x z d d sin cos 2d d d d 222cos sin ().x y x y y x '-⋅ 2.求下列函数的一阶偏导数:(1)设函数v uz e =,而y x u +=,y x v -=,求x z ∂∂和yz∂∂; (2)设函数122)(++=xy y x z ,求x z ∂∂和yz ∂∂. 解:(1)1e 1e 12⋅-⋅=∂∂∂∂+∂∂∂∂=∂∂v uv uvu v x v v z x u u z x z =-=v uv u v e 2yx yx y x y -+--e )(22, 21e 1e (1)u uv vz z u z v u y u y v y vv ∂∂∂∂∂=+=⋅-⋅-∂∂∂∂∂2+e u v v u v ==22e ()x yx y x x y +--, (2)这是幂指函数求导,为方便求导,将它写作复合函数,为此令122+=+=xy v y x u 、,则vu z ==⋅+=∂∂∂∂+∂∂∂∂=∂∂-y u u x vu xv v z x u u z x z v v ln 21)]ln()1(2[)(2222122y x y y x xy x y x xy ++++++,=⋅+=∂∂∂∂+∂∂∂∂=∂∂-x u u y vu y v v z y u u z y z v v ln 21)]ln()1(2[)(2222122y x x yx xy y y x xy ++++++. 3. 求下列函数的一阶偏导数(其中函数f 具有一阶连续的偏导数或导数):(1)(e )xyx z f y=,; (2))(22y x xy f z -=,;(3))(22y x xf z +=; (4)(,,)u f x xy xyz =. 解:(1)121e xy z f f y x y ∂''=⋅+⋅=∂121e xyf y f y''+, 122()e xy z x f f x y y ∂''=⋅-+⋅=∂122e xy xf x f y''-+. (2)212122f x f y x f y f xz '+'=⋅'+⋅'=∂∂,21212)2(f y f x y f x f y z'-'=-⋅'+⋅'=∂∂.(3)=+⋅'+=∂∂2222yx xf x f x z f y x x f '++222,12y z xf y ⨯∂'==∂f yx xy '+22.(4)1231231uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂, 123230uf f x f xz xf xzf y∂'''''=⋅+⋅+⋅=+∂, 123300uf f f xy xyf z∂''''=⋅+⋅+⋅=∂. 4. 设函数)(22y x f y z -=,其中)(u f 是可微函数,证明211y zy z y x z x =∂∂+∂∂. 证:因为)()(22)()(2222222222y x f y x f xy x y x f y x f y x z --'-=⋅--'-=∂∂, )()(2)(1)()2()()(222222222222222y x f y x f y y x f y x f y y x f y y x f y z --'+-=--⋅-'--=∂∂, 所以222222222222112()12().()()()z z yf x y yf x y x x y y f x y yf x y f x y ''∂∂--+=-++∂∂---2222)(yzy x f y y =-=. 5.设函数)(x y xyf z =,其中)(u f 是可微函数,证明z yz y x z x2=∂∂+∂∂. 证:因为)()()()()(22x yf x y x y yf xy x y f xy x y yf x z '-=-⋅'+=∂∂,)()(1)()(xyf y x y xf x x y f xy x y xf y z '+=⋅'+=∂∂,所以 z xy xyf x y f y x y xyf x y f y x y xyf y z y x z x2)(2)()()()(22=='++'-=∂∂+∂∂. 6.利用全微分形式的不变性求函数)cos(222z y x eu zy +++=+ 的全微分.解 令=+=w z y v ,222z y x ++,由一阶全微分形式的不变性,我们有dw w dv e dw wudv v u du v )sin (-+=∂∂+∂∂=, 注意到w v ,又都是z y x ,,的函数,并且,v vdv dy dz dy dz y z∂∂=+=+∂∂ 222.w w w dw dx dy dz xdx ydy zdz x y z∂∂∂=++=++∂∂∂ 将它们带入上式,得.)]sin(2[ )]sin(2[)sin(2 )(2)sin()( )sin (222222222222dz z y x z e dyz y x y edx z y x x zdz ydy xdx z y x dz dy e dww dv e du z y zy z y v ++-+++-+++-=++⋅++-+=-+=+++习题9-4(B )1.求下列函数的二阶偏导数(其中函数f 具有二阶连续偏导数): (1)),(y x xy f z +=; (2))(22y x x f z +=,;解:(1)21f f y xz '+'=∂∂,21f f x y z'+'=∂∂,221211222211211222)()(f f y f y f f y f f y y xz ''+''+''=''+''+''+''=∂∂, 221211222211211222)()(f f x f x f f x f f x x yz''+''+''=''+''+''+''=∂∂, 221211122211211122)()()(f f y x f xy f f f x f f x y f xy zy x z ''+''++''+'=''+''+''+''+'=∂∂∂=∂∂∂. (2)212f x f xz '+'=∂∂,221220f y f y f y z'='+⋅'=∂∂,2221211222212121122442)2(22)2(f x f x f f f x f x f f x f xz''+''+''+'=''+''+'+''+''=∂∂, 2222222122242)20(22f y f f y f y f yz''+'=''+⋅''+'=∂∂, 221222212242)2(2f xy f y f x f y xy zy x z ''+''=''+''=∂∂∂=∂∂∂. 2. 设函数)(3x yxy f x z ,=,其中函数)(v u f ,有二阶连续偏导数,求yx z y z y z ∂∂∂∂∂∂∂222、、.解:2214213)1(f x f x f xf x x y z '+'='+'=∂∂, 24253111221*********11()()2z x xf f x xf f x f x f xf y x x∂''''''''''''''=+++=++∂, )(2)(422221221221141322f x yf y x f x f x y f y x f x x y z y x z ''-''+'+''-''+'=∂∂∂=∂∂∂ 2211421324f y f y x f x f x ''-''+'+'=. 3.设),(y x f z =有连续的一阶偏导数,且θθsin ,cos r y r x ==.求θ∂∂∂∂zr z ,,并证明 .)()()(1)(22222y z x z z r r z ∂∂+∂∂=∂∂+∂∂θ解 由链式法则,得cos sin ,sin cos .z z x z y z z r x r y r x yz z x z y z z r r x y x yθθθθθθθ∂∂∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+=-⋅+⋅∂∂∂∂∂∂∂于是有222)(1)(θ∂∂+∂∂z r r z 222)cos sin (1)sin (cos y zr x z r r y z x z ∂∂⋅+∂∂⋅-+∂∂⋅+∂∂⋅=θθθθ.)()(22yz x z ∂∂+∂∂=习题9-5(A )1.若函数)(x y y =分别由下列方程确定,分别求xy d d : (1)1cos y x y =+; (2)yx y e 2+=; (3)xyy x arctan ln22=+;解 (1)法1:设()1cos F x y y x y =--,,则cos 1sin x y F y F x y =-=+、, 所以d cos .d 1sin x y F y y x F x y=-=+ 法2:方程1cos y x y =+两边同时对x 求导,有d d cos sin d d y yy x y x x=-,解得d cos d 1sin y yx x y=+. (2)方程yx y e 2+=两边同时对x 求导,有xy x y yy d d e 1d d 2+=,解得yy x y e 21d d -=. (3)令()221(,)arctanln arctan ,2y yF x y x y x x==+- 则 ,),(22y x y x y x F x ++=,),(22yx xy y x F y +-= y x F F dx dy -= .xy yx -+-= 2. 设()y y x =由方程 1yy xe =+所确定的隐函数,求 202.x d ydx=解 令 (.)1; 1yyy dy e F x y xe y dx xe =+-=--, 当0x =时01y =+,此时x dy e dx==,所以222(1)()(1)yy y y y y dy dy e xe e e xe d ydx dx dx xe --+=--,222022(01)(0)2(01)x d y e e e e dx =--+=-=-. 3.设函数y x z =,而函数)(x y y =由方程yy x e +=确定,求全导数xz d d . 解:方程yy x e +=两边同时对x 求导,有x y x y y d d e d d 1+=,得yx y e 11d d +=, =+=∂∂+∂∂=-x y x x yx x y y z x z x z yy d d ln d d d d 1y y y x x yx e1ln 1++-. 4. 若函数),(y x z z =分别由下列方程确定,求x z ∂∂及yz∂∂. (1)21z y xz -=; (2)xyz z y x 2222=-+; (3)22)sin(xyz xyz =; (4)yz z x ln =. 解:(1)法1:设1)(2--=xz y z z y x F ,,,则x yz F z F z F z y x -==-=22、、,所以xyz z F F y z x yz z F F x z z y z x --=-=∂∂-=-=∂∂222,. 法2:方程21z y xz -=两边对x 求导,有20z zyzz x x x∂∂--=∂∂,得x yz z x z -=∂∂2, 方程21z y xz -=两边对y 求导,有022=∂∂-+∂∂y z x z y z yz ,得xyz z y z --=∂∂22.(以下都按方法2作)(2)方程xyz z y x 2222=-+两边同时对x 求导,有xzxy yz x z zx ∂∂+=∂∂-2222,得 xyz yzx x z +-=∂∂, 方程xyz z y x 2222=-+两边同时对y 求导,有yzxy xz y z zy ∂∂+=∂∂-2222,得 xy z xz y y z +-=∂∂(或由变量y x 、的对称性,得xyz xzy y z +-=∂∂).(3)方程22)sin(xyz xyz =两边对x 求导,有xz xyz yz x z xyz yz xyz ∂∂+=∂∂+⋅2)2()cos(222, 即0)2](1)[cos(22=∂∂+-x z xyzyz xyz ,而01)cos(2≠-xyz ,所以022=∂∂+xzxyz yz ,得x z xyz yz x z 222-=-=∂∂,由变量y x 、对称性有yzy z 2-=∂∂. (4)方程yzz x ln =改写为)ln (ln y z z x -=, 方程)ln (ln y z z x -=两边对x 求导,有x zz x x z z z y z x z ∂∂+=∂∂+∂∂=)1(1ln 1,得zx z x z +=∂∂,方程)ln (ln y z z x -=两边对y 求导,有)11(ln 0y y z z z y z y z -∂∂+∂∂=,得)(2z x y z y z +=∂∂. 5.设04222=-++z z y x ,求22xz∂∂.解: 令,4),,(222z z y x z y x F -++=则 ,2x F x = ,42-=z F z,2zx F F x z z x -=-=∂∂222(2)(2)z z xz x x z ∂-+∂∂=∂- 2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=6.若函数),(z y x x =,),(z x y y =,),(y x z z =都是由方程0),,(=z y x F 确定的隐函数,其中),,(z y x F 有一阶连续非零的偏导数,证明1-=∂∂⋅∂∂⋅∂∂xzz y y x . 证:因为zx y z x y F F x zF F z y F F y x -=∂∂-=∂∂-=∂∂、、,所以1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7.若z 是,x y 的函数,并由 222()zx y z yf y ++=确定,求,z z x y∂∂∂∂.解:令 222(,,)()z F x y z x y z yf y =++-22()+()12()2()x y z F x z z zF y f f y y y z zF z yf z f y y y='=-''=-=-,,,因此,2212()()2x zF z x x z z x F z yf f zy y y∂=-=-=∂''-⋅-,2()()()2()().1()()2y zz z z z z zy f yf y f f F z y y y y y y z z y F z yf f zy y y ''----+∂=-=-=∂''-22-习题9-5(B )1.设函数xyz u e =,而函数)(x y y =、)(x z z =分别由方程xyy e =及z xz e =确定,求全导数xud d . 解:方程xyy e =两边同时对x 求导,有)d d ()d d (e d d xy x y y x y x y x y xy+=+=,得xy y x y -=1d d 2, 方程z xz e =两边同时对x 求导,有x z xz x z x z xz z d d d d e d d ==+,得xxz zx z -=d d ,所以 xxz z xy xy y xz yz x z z u x y y u x u x u xyz xyzxyz -+-+=∂∂+∂∂+∂∂=e 1e e d d d d d d 2 )11(e2-+-+=z yzxy z xy yz xyz.2.设函数32yz x u =,而),(y x z z =由方程xyz z y x 3222=++确定,求)1,1,1(xu ∂∂.解:方程xyz z y x 3222=++两边同时对x 求导,有)(322xzxy yz x z zx ∂∂+=∂∂+,用1=x 、11==z y 、代入,有 (1,1,1)(1,1,1)223(1)zz xx∂∂+=+∂∂,得1)1,1,1(-=∂∂xz .于是x z yz x xyz x u ∂∂+=∂∂22232,所以13232)1,1,1()1,1,1(-=-=∂∂+=∂∂xzxu .3.设),(xyz z y x f z ++=,求x z ∂∂,y x ∂∂,zy ∂∂. 解: 令,z y x u ++= ,xyz v = 则 ),,(v u f z = 把z 看成y x ,的函数对x 求偏导数得xz∂∂ )1(x z f u ∂∂+⋅= ),(x z xy yz f v ∂∂+⋅+整理得xz ∂∂ ,1v u vu xyf f yzf f --+=把x 看成y z ,的函数对y 求偏导数得)1(0+∂∂⋅=yx f u ),(y xyz xz f v ∂∂+⋅+整理得yx ∂∂ ,v u vuyzf f xzf f ++-= 把y 看成z x ,的函数对z 求偏导数得)1(1+∂∂⋅=z y f u ),(zyxz xy f v ∂∂+⋅+ 整理得zy ∂∂ .1v u vu xzf f xyf f +--=4.若函数),(y x z z =由方程133=-xyz z 确定,求yx z∂∂∂2.解:方程133=-xyz z 两边对x 求导,有0)(332=∂∂+-∂∂xz xy yz x z z,得xy z yz x z -=∂∂2,由变量y x 、的对称性,得xyz xzy z -=∂∂2.法1:等式0)(2=∂∂+-∂∂xzxy yz x z z两边同时对y 求导,有 0)(2222=∂∂∂+∂∂+∂∂+-∂∂∂+∂∂∂∂yx z xy x z x y z y z y x z z x z y z z, 即2222242222222)()2()(2)(xy z y x xyz z z xy z xyz z xy z yz x xy z xz y z y x z xy z ---=---+-+=∂∂∂- 所以=∂∂∂y x z 2322224)()2(xy z y x xyz z z ---. 法2:)(22xyz yz y y x z -∂∂=∂∂∂ 322224222)()2()()2())((xy z y x xyz z z xy z x yz z yz xy z y z y z ---=--∂∂--∂∂+=.5.设 (,)F u v 具有连续的偏导数,方程 [(),()]0F a x z b y z --=(其中,a b 是非零常数)确定z 是,x y 的隐函数,且0aFu bFv +≠,求z zx y∂∂+∂∂. 解:令 (),()u a x z v b y z =-=-因此,x u u z u v u vF aF aF zx F aF bF aF bF ∂=-=-=∂--+y v v z u v u vF bF bF zy F aF bF aF bF ∂=-=-=∂--+,1u v u v u vaF bF z z x y aF bF aF bF ∂∂+=+=∂∂++. 6. 求由下列方程组所确定函数的导数或偏导数: (1)⎩⎨⎧=++=++,,41222z y x z y x 求x y d d 和xzd d . (2)⎩⎨⎧-=+=,,v u y v u x uu cos e sin e 求x v y u x u ∂∂∂∂∂∂、、及y v∂∂.解:(1)方程组⎩⎨⎧=++=++41222z y x z y x ,两边同时对x 求导,有⎪⎩⎪⎨⎧=++=++,,0d d 2d d 220d d d d 1x z z x y y x x zx y 消去xz d d ,有0)d d 1(d d =+-+x y z x y y x ,得z y x z x y --=d d ,而z y yx x y x z --=--=d d 1d d .(2)方程组⎩⎨⎧-=+=vu y v u x uu cos e sin e ,两边同时对x 求导, 有⎪⎩⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=)2(.sin cos e 0)1(cos sin e 1x vv u v x u x u x v v u v x u x u u u ,(1)sin v ⨯-(2)cos v ⨯,有xux u v v v u∂∂+∂∂-=)cos (sin e sin , 得)cos (sin e 1sin v v vx u u -+=∂∂,再代入到(2)之中得)]cos (sin e 1[e cos v v u v x v uu -+-=∂∂. 方程组⎩⎨⎧-=+=v u y v u x u u cos e sin e ,两边同时对y 求导,有⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=.sin cos e 1cos sin e 0y vv u v y u y u y v v u v y u y u u u , 与前面解法类似,得)cos (sin e 1cos v v vy u u -+-=∂∂,)]cos (sin e 1[e in v v u v s y v u u -++=∂∂.习题9-6(A )1.求下列函数的极值:(1)222),(y x x y x f --=; (2)x y x y x y x f 936),(2233+++-=; (3))2(e ),(2y y x y x f x++=; (4)2/322)(1),(y x y x f +-=.解:(1)定义域为全平面,并且函数处处可微.由⎩⎨⎧=-==-=,,,,02)(022)(y y x f x y x f y x 得唯一驻点)01(,.2)01(0)01(02)01(-====<-==,、,、,yy xy xx f C f B f A ,042>=-B AC ,根据二元函数极值的充分条件,点)01(,是函数的极大值点,极大值为1)0,1(=f ,该函数无极小值.(2)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+-==++=,,,,063)(09123)(22y y y x f x x y x f y x 即⎩⎨⎧=-=++,,0)2(0)3)(1(y y x x 得函数的所有驻点是)23()03()21()01(4321,、,、,、,----P P P P . 66)(0)(126)(+-====+==y y x f C y x f B x y x f A yy xy xx ,、,、,,对上述诸点列表判定:所以函数的极大值为4)2,3(=-f ,极小值为4)0,1(-=-f .(3)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+==+++=,,,,0)22(e )(0)21(e )(2y y x f y y x y x f xyx x 得唯一驻点(01)-,.x yy x xy x xx y x f y y x f y y x y x f e 2)()22(e )()22(e )(2=+=+++=,、,、,, 01>=A 、0=B 、2=C ,022>=-B AC ,根据二元函数极值的充分条件,点)10(-,是函数的极小值点,极小值1)1,0(-=-f ,该函数无极大值.(4)定义域为全平面,函数处处可微.由⎪⎩⎪⎨⎧=+-==+-=,,,,03)(03)(2222y x y y x f y x x y x f y x 得唯一驻点)00(,.由于在)00(,点处函数的二阶偏导数不存在,不能用定理8.2判定,为此根据极值的定义,当022≠+y x (即非)00(,点)时)00(1)(1),(2/322,f y x y x f =<+-=,所以点)00(,是该函数的极大值点,极大值为1)0,0(=f ,该函数无极小值. 2.求函数 5020(0,0)z xy x y x y=++>> 的极值. 解: 由 22500200z y xx z x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩,解出 52.x y ⎧⎨=⎩=,222232310040, 1, z z z x y x x y y∂∂∂===∂∂∂∂ 在点(5,2)处,233100404130, 0552AC B A -=⋅-=>=>所以函数在(5,2)处由极小值 (5.2)30z=.3.求曲面 21 (0)z xy z -=>上到原点距离最近的点.解:设 222F,,,(1)x y z x y z z xy λλ+++--2()=,则 2202022010Fx y x F y x y F z z z z xy λλλ∂⎧=-=⎪∂⎪∂⎪=-=⎪∂⎨⎪∂=+=⎪∂⎪⎪--=⎩,解出 0011.x y z λ=⎧⎪=⎪⎨=⎪⎪=-⎩,,, 因为(0,0,1)是 2222d x y z =++在0z >时的唯一驻点,由题意可知在0z >的曲面上存在与原点距离最小的点,所以(0,0,1)即为所求的点. 4. 将正数12分成三个正数z y x ,,之和 使得z y x u 23=为最大. 解 令 )12(),,(23-+++=z y x z y x z y x F λ,则223323020012x y z F x y z F x yz F x y x y z λλλ'⎧=+=⎪'=+=⎪⎨'=+=⎪⎪++=⎩,,,,解得唯一驻点)2,4,6(, 故最大值为.691224623max =⋅⋅=u5. 用面积为12(m 2)铁板做一个长方体无盖水箱,问如何设计容积最大?解 设水箱的长、宽、高分别为z y x 、、,体积为V ,则目标函数为xyz V =(,0>x ,0>y 0>z ),附加条件是1222=++yz xz xy . 设)1222()(-+++=yz xz xy xyz z y x L λ,,(000>>>z y x ,,),由(2)0(2)02()02212x yz L yz y z L xz x z L xy x y xy xz yz λλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩,,,,得唯一可能极值点12===z y x 、, 根据实际意义,当长方体表面积一定是其体积有最大值,所以当长、宽都为2(m ),高为1(m )时无盖长方体水箱容积最大(此时体积为4(m 3)). 6.在斜边长为l 的直角三角形中,求周长最大的三角形及其周长.解:设两直角边长分别为y x 、,三角形周长为L ,则目标函数是l y x L ++=(00>>y x ,),附加条件为222l y x =+.设)()(222l y x l y x y x F -++++=λ,,由⎪⎩⎪⎨⎧=+=+==+=,,,222021021l y x y F x F y x λλ在00>>y x ,时得唯一可能极值点2l y x ==,由实际意义,斜边长为一定的直角三角形中,周长有最大值,所以当两直角边长都为2l (即等腰直角三角形)时,其周长最大,且最大周长为l )21(+.7.有一宽为24cm 的长方形铁板,把它折起来做成一断面为等腰梯形的水槽.问怎么折才能使断面的面积最大.解 设折起来的边长为xcm ,倾角为α(图8-17),那么梯形的下底长为242x -,上底长为2422cos x x α-+,高为sin x α,所以断面的面积为1[(2422cos )242]sin 2=-++-⋅A x x x x αα,即2224sin 2sin cos sin (012,0)2A x x x x πααααα=-+<<<≤.为求其最大值,我们先来解方程组222224sin 4sin 2sin cos 0,24cos 2cos +(sin cos )0.x A x x A x x x ααααααααα=-+=⎧⎨=--=⎩ 由于sin 0,0x α≠≠,将上述方程组两边约分,得122cos 0,24cos 2cos cos 20.=-+=⎧⎨=-+=⎩x A x x A x x ααααα 解这个方程组,得,8().3x cm πα==根据题意,断面面积的最大值一定存在,又由A 的定义,0,12;0.x α≠≠因此最大值点只可能在区域的内部或开边界2πα=上取到.但当2πα=时,2242A x x =-的最大值为72.因此,该函数的最大值只能在区域的内点处取得,而它只有一个稳定点,因此可以断定(8,)=483723A π>是其最大值.即将铁板折起8cm ,并使其与水平线成3π角时所得断面面积最大.24242x-ax a。

高等数学课后习题答案--第九章

高等数学课后习题答案--第九章

9. 设 x n >0,
10. 讨论下列级数的收敛性(包括条件收敛与绝对收敛)
182
⑴ ⑶ ⑸ ⑺ ⑼
x sin ; n n =1 ∞ n (−1) n −1 n −1 ; ∑ 3 n =1 n +1 ∞ (−1) ( x > 0 ); ∑ n =1 n + x
∑ (−1)

n +1
⑵ ⑷ ⑹ ⑻ ⑽
180
(4) (6)



n =1 ∞

n =1
ln n ln n 1 ln n 1 n 1 , = = 3 . 收敛; < 2 2 n n n n n n n2 1 1 1 , < , 收敛; n ln (n + 2) ln(n + 2) 2
n
(5)
收敛;
(7) (8) (13) (14)
∑ (
n =1
n −1
)
n
发散
由于 lim (10
a −1
1 n
n →∞
= ln a , 而 n n − 1 > n a − 1 ;
(11)
发散;

n =1



n =1
( n + 1 − n − 1 ), ( n + 1 − (2n − n + 1 − n − 1) = (n −
2 2 2 2 2
(9) 收敛;
收敛;
5.利用级数收敛的必要条件,证明: nn (1) lim = 0, (2) n →∞ ( n !) 2

n →∞
lim
( 2 n) ! = 0. 2 n ( n +1)

高等数学第九章多元函数微分学试题及答案

高等数学第九章多元函数微分学试题及答案

第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。

二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。

例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。

2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。

条件极值中,可能会遇到超过三个自变量的多元函数。

二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。

则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。

称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。

值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。

大学高数下册试题及答案第9章

大学高数下册试题及答案第9章

大学高数下册试题及答案第9章第九章曲线积分与曲面积分作业13对弧长的曲线积分1.计算,其中为直线及抛物线所围成的区域的整个边界.解:可以分解为及2.,其中为星形线在第一象限内的弧.解:为原式3.计算,其中折线ABC,这里A,B,C依次为点.解:4.,其中为螺线上相应于从变到的一段弧.解:为5.计算,其中L:.解:将L参数化,6.计算,其中L为圆周,直线及轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分从而作业14对坐标的曲线积分1.计算下列第二型曲线积分:(1),其中为按逆时针方向绕椭圆一周;解:为原式(2),其中是从点到点的一段直线;解:是原式(3),其中是圆柱螺线从到的一段弧;解:是原式(4)计算曲线积分,其中为由点A(-1,1)沿抛物线到点O(0,0),再沿某轴到点B(2,0)的弧段.解:由于积分曲线是分段表达的,需要分段积分;原式2.设力的大小等于作用点的横坐标的平方,而方向依轴的负方向,求质量为的质点沿抛物线从点移动到点时,力所作的功.解:3.把对坐标的曲线积分化成对弧长的曲线积分,其中为:(1)在平面内沿直线从点到点;(2)沿抛物线从点到点.解:(1)(2)作业15格林公式及其应用1.填空题(1)设是三顶点(0,0),(3,0),(3,2)的三角形正向边界,12.(2)设曲线是以为顶点的正方形边界,不能直接用格林公式的理由是_所围区域内部有不可道的点_.(3)相应于曲线积分的第一型的曲线积分是.其中为从点(1,1,1)到点(1,2,3)的直线段.2.计算,其中L是沿半圆周从点到点的弧.解:L加上构成区域边界的负向3.计算,其中为椭圆正向一周.解:原式4.计算曲线积分其中为连续函数,是沿圆周按逆时针方向由点到点的一段弧.解:令则,原式5.计算,其中为(1)圆周(按反时针方向);解:,而且原点不在该圆域内部,从而由格林公式,原式(2)闭曲线(按反时针方向).解:,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周(也按反时针方向),在圆环域上用格林公式得,原式6.证明下列曲线积分在平面内与路径无关,并计算积分值:(1);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式(2);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿直线积分也可,原式(3).解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式7.设在上具有连续导数,计算,其中L为从点到点的直线段.解:由于在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线积分即可,原式8.验证下列在整个平面内是某一函数的全微分,并求出它的一个原函数:(1);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则从而,(2);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则原式可取(3)解:可取折线作曲线积分9.设有一变力在坐标轴上的投影为,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:,质点在此场内任意曲线移动时,场力所作的功为由于在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16对面积的曲面积分1.计算下列对面积的曲面积分:(1),其中为锥面被柱面所截得的有限部分;解:为,原式(2),其中为球面.解:为两块,原式2.计算,是平面被圆柱面截出的有限部分.解:为两块,,原式(或由,而积分微元反号推出)3.求球面含在圆柱面内部的那部分面积.解:为两块,原式4.设圆锥面,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为,故重点坐标为5.求抛物面壳的质量,此壳的密度按规律而变更.解:作业17对坐标的曲面积分1.,其中是柱面被平面及所截得的在第一卦限内的部分前侧.解:原式=2.计算曲面积分,其中为旋转抛物面下侧介于平面及之间的部分.解:原式=3.计算其中是平面所围成的空间区域的整个边界曲面的外侧.解:分片积分。

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)、计算对弧长的曲线积分C,其中曲线C是y0某2a的一段弧a0某2aco2解:C的参数方程为y2acoin2原式202aco24a2cod4a244332、计算某yd,其中L星形线某aco3t,yain3t在第一象限的弧L0t272intcot解:原式2acotint3acotintdt3aa3060664443733、计算某yzd,其中为折线ABC,这里A,B,C依次为点0,0,0,1,2,3,1,4,3某t某1解:AB段参数方程y2t0t1,BC段参数方程y22t0t1 z3z3t原式AB某yzdBC某yzd3dt1212tdt1121412t6t18004、计算某2y2d,其中为螺旋线某tcot,ytint,zt上相应于t从0到1的弧。

解:方法一原式tt111112222tdtt2t2t2dt0202221t02111原式lnt4204220方法二、原式tt1112tdt22211u11201u1202211220原式方法三、原式lnu121202ln224tt34222因为tt422lnt11所以lntt421111lntln1ln原式422205、计算L,其中L:某2y2a某a02某aco2解:某ya某raco,曲线L的参数方程为yainco22原式22aco2a220cod2a26、计算L,其中L为圆周某2y2a2,直线y某,y0在第一象限内所围成的扇形的边界。

解:如右图,线段OA的参数方程为某t0t2yt某acot弧AB的参数方程为0t4yaint线段OB的参数方程为某t0tay0aat原式4eadtedt000a4etaet00ae1aaaaaee1ea24427、求曲线某at,ya2at,zt30t1的质量,其密度。

23解:m1aut2020a20a1u23aa388h3a1lnh823ln3a168、求半径为a,中心角为的均匀圆弧(线密度1)的质心。

高数下第九章的答案

高数下第九章的答案
解:直线 的方向向量 ;设过点 到直线 的垂足为 ;则有
,即 ;又 在直线 上,
联立方程 解得
从而点 到直线 的距离为 .
9.5空间曲面
P.31.习题9.5
1.指出下列方程在平面解析几何和在空间解析几何中分别表示什么图形.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
解:(1) 在平面解析几何中表示平行于y轴的直线,在x轴上的截距为2; 在空间解析几何中表示平行于yoz面的平面,在x轴上的截距为2;
.
(3)已知非零向量a、b、c且满足 ,证明 .
(4)设向量 ,证明三向量a、b、c共面.
证明:(1)
(2)
相加得 .
(3)已知 ,右乘b得 ,即 ;同理 ;
所以 .
(4)因为 ;
所以设向量 ,证明三向量a、b、c共面.
南阳理工学院高等数学(下)课后答案选解
第九章向量代数与空间解析几何
9.1向量及其坐标表示
P.9习题9.1
2.已知一边长为a的正方体,现取正方体下底面的中心为原点,正方体的顶点在x轴、y轴上,求此正方体各顶点的坐标.
解:下底面的四个顶点分别是:
对应的上底面的四个顶点分别是:
3.求出点 到原点、各坐标轴及坐标面的距离.
;所求直线为 .
(5)过点 且与直线 垂直相交的直线方程为
;则 ;联立
解得
所以,过点 且与直线 垂直相交的直线方程为
.
2.用点向式方程及参数方程表示直线
解:设直线的方向向量为 ;在直线
上任取一点 ,则 解得
所以,点向式方程为 ;参数方程为
3.求直线 与平面 之间的夹角.
解:因为

高等数学(下)答案(9)

高等数学(下)答案(9)

第九章 重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22 其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。

解:dxdy y x a D⎰⎰--222=3.34.21a π 81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0:(≤0⎰⎰Dydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=( )A : 212ln 3ln 87+-- B : 212ln 3ln 89-+C : 212ln 3ln 89-- D : 412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为( )A :0B : 31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 ⎰⎰Dxy dxdy ye 为( )A :e e e 212124--B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、 设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为( )A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),(C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为( )A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为( )A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求 ⎰⎰=Ddxdy yx I 22 ,其中 :D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序: ⎰⎰⎰⎰-+4240200),(),(xxdy y x f dx dy y x f dx = ⎰⎰201221xxdx y dx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy x dxdy e},max{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解: ⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=( )A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰220202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰20220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22 其中Ω为:平面z=2与曲面2222z y x =+所围成的区域 (π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f tt z y x t ⎰⎰⎰≤++→++222222240(1lim π=)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为( )A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37) D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( )A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、 质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831Rzdv V 故质心为(0,0,R 38)4、 曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为 s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章 自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),( C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1 B 323 C 343 D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 4220a rdr a d a πθπ=⎰⎰ B 422021a rdr r d aπθπ=⋅⎰⎰; C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ).A c b a 22361B b b a 22361C a c b 22361D ab c 361.6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθB ⎰⎰⎰=11020rzdz rdr d I πθ C ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 0201πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-Dd y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π) 2、⎰⎰Dd xy σarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象 限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区 域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+2111),(x xdy y x f dx (⎰⎰⎰⎰-+22202110),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a )四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++) 六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。

高等数学习题详解-第9章 无穷级数

高等数学习题详解-第9章 无穷级数

习题9-11. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6) 0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则lim lim(11)nnnS n ,级数发散。

(2)由于14113n n nn,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。

(3)11ln[ln ln(1)]ln1ln(1)ln(1)1nnnk k n S n n n n n ,则lim lim[ln(1)]nnnS n ,级数发散。

(4) 2 , 21, 1,2,3,; 0 , 2nn k S k nk因而lim n nS 不存在,级数发散。

(5)级数通项为1nn u n ,由于1lim10nn n,不满足级数收敛的必要条件,原级数发散。

(6)级数通项为(1)21n nnu n ,而lim n n S 不存在,级数发散。

2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n nn ∞=⎛⎫+ ⎪⎝⎭∑; (2) 11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4)πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nn n nk kkk n n n nk k k S 所以该级数的和为31113lim lim(),22232nn nnnSS 即1113.232nnk(2)由于1111[](1)(2)2(1)(1)(2)n n nn n n n,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnnk kS k k kk kk kn n所以该级数的和为 1111limlim [],22(1)(2)4nnn SS n n即111.(1)(2)4n n n n(3)级数的通项为sin2nu n n,由于sin2lim sinlim()02222nnnn nn,不满足级数收敛的必要条件,所以原级数发散。

高等数学第九章练习题答案

高等数学第九章练习题答案

第九章 练习题一、填空 第一节1、 22222)1ln(),(y x y x y x f --+-+=的定义域是2122≤+<y x .2、 2222911),(y x y x y x f --+-+=的定义域是9122≤+<y x .3、 2222001sin)(lim yx y x y x ++→→= 0 . 4、=+-→→xyxy y x 93lim0 16- .5、、函数y x z -=的定义域是 (){}y x y x y x ≥≥≥2,0,0/,6、函数()12ln 2+-=x y z 的定义域是 0122>+-x y7、()()=+-→11lim0,0,xy xy y x 2-. 19. ()()=-+→xyxy y x 24lim0,0,41. 8、求极限()()()yxy y x tan lim0,2,→= 29、 2210ln()lim y x y x e x y →→++= ln 2 . 第二节1、设z =zx ∂∂2、设z arctan(xy )=,则zx∂=∂ ,z y ∂=∂ .22,1()1()y x xy xy ++ 3、 设223z x xy y =++,则(1,2)zx ∂∂= 8 ,(1,2)z y ∂∂= 7 .4、设y x e z 2-=,而t x sin =,3t y =,则=dtdz()22sin 6cos 3t t e t t -- 5、设y x z =,而te x =,12-=t e y ,则=dt dz ()2231-+-t t t e e e6、 设(1)y z xy =+,则zx∂∂= 21(1)y y xy -+ 7、设(1)xy z x =+,则zy∂∂=(1)ln(1)xy x x x ++ 8、设y x z y3⋅=,求=∂∂∂y x z 2 ⎪⎪⎭⎫ ⎝⎛-y y y 13ln 3 。

9、函数222234x y z x ++=,则z x ∂=∂ 23z x x z∂-=∂,z y ∂=∂ 。

高等数学课后习题答案第九章1

高等数学课后习题答案第九章1

第九章习题解答(2) 习题9.31、 求上半球面222y x a z含在柱面ax y x 22内部的曲面面积解:被积函数为222y x a z 22222)(y x a x z x 22222)(yx a y z y --= 所以 dxdy yx a a dS 222--=积分区域为::D ax y x =+22,化成极坐标:设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 0,22a r ≤≤≤≤-⎰⎰-=-θππθcos 02222a ra ardr d S cos 0222222)(2a r a r a d d a ⎰---=22cos 022ππθθd r a a a)2(222)sin (222220-=⋅+-=--=⎰ππθθπa a a d a a a2、 求圆锥面22y x z +=被柱面x z 22=所截下的曲面面积解:被积函数为22y x z += 2222)(y x x z x += , 2222)(yx y z y += 所以 dxdy dS 2=积分区域为::D x y x 222=+,设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 20,22≤≤≤≤-r⎰⎰-=θππθcos 20222rdr d S ππθθππ222124cos 22222=⋅⋅==⎰-d3、 求抛物柱面221x z =含在由平面x y y x ===,0,1所围的柱体内的面积 解:被积函数为221x z = 22)(x z x = , 0)(2=y z所以 dxdy x dS 21+=积分区域为::D x y y x ===,0,1,0=z 围成的闭区域=+=⎰⎰x xdy x dx S 021⎰+xdx x x 0213122)1(3121)1(1211232022-=+⋅=++=⎰x x d x x 。

4、 求下列图形的形心 (1)、:D 1,0,2===x y x y ,围成的闭区域解:将密度看成1;⎰⎰⎰⎰=xDdy dx dxdy 201032221==⎰dx x 522210232010===⎰⎰⎰⎰⎰dx x dy xdx xdxdy xD2112010===⎰⎰⎰⎰⎰dx x ydy dx ydxdy xD于是得形心坐标为:53322522~==x 82332221~==y 形心为)82353( (2)、:D θρco s 1+=,围成的闭区域 解:将密度看成1;πθ23=⎰⎰Ddr rd (前面求出的结果) dr r d rdrd r xdxdy D D⎰⎰⎰⎰⎰⎰+'==θπθθθθcos 10220cos cos⎰+=πθθθ203)cos 1(cos 31d +⎰πθθ20cos 31d +⎰πθθ202cos d +⎰πθθ203cos d ⎰πθθ204cos 31d +=0++⎰πθθ20)2cos 1(21d +0⎰++πθθθ20242cos 2cos 2131d=π1215242122πππ=++65231215~==ππx 由图形关于x 轴的对称性得0~=y 形心为)065((3)、:D 0,12222≥=+x by a x ,围成的闭区域解:面积ab 2π=⎰⎰⎰⎰---=2222110a xb a x b a Dxdy dx xdxdy ⎰-=adx ax x b 0221232)1(32)2(22123222ba a x ab =--= ππ34232~2a ab ba x == 由图形关于x 轴的对称性得0~=y 形心为)034(πa5、 圆盘)0(222>≤+a ax y x 内各点处的密度=),(y x μ22y x +,求此圆盘的质心解:=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x 22⎰⎰-θππθcos 20222a dr r d3203332316cos 316a d a ⋅==⎰πθθ3932a ==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x 22⎰⎰-θππθθcos 20322cos a dr r d15641588cos 1641442254a a d a =⋅==⎰-ππθθ 56~a M M x y ==,由对称性得0~=y 所求质心为)056(a6、 设有一个等腰直角三角形薄片,各点处的密度等于该点到直角顶点距离的平方,求此圆薄片质心 解:设等腰直角三角形的顶点为),0(),0,(),0,0(a a 则22),(y x y x +=μ=M =⎰⎰D dxdy y x ),(μ=+⎰⎰Ddxdy y x )(22⎰⎰-+xa a dy y x dx 0220)( ⎰-+-=a dx x a x a x 032])(31)([⎰-+-=a dx x a x a ax 03322]31312[ 62132444a a a =-= =y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy xy x)(23⎰⎰-+xa a dy xy x dx 0230)(⎰-+-=adx x a x x a x 033])(31)([⎰-+-=a dx x x a x a ax 043223]34312[ 5555515115463121a a a a a =-+-= 由对称性得=x M =⎰⎰Ddxdy y x y ),(μ=+⎰⎰Ddxdy y y x)(32⎰⎰-+ya a dx y y x dy 032)(155a = 52~a M M x y ==,52~a M M x x == 所求质心为)5252(aa 7、 设有顶角为α2,半径为R 的扇形薄片,各点处的密度等于该点到扇形顶点距离的平方,求此薄片质心 解:设扇形顶点为)0,0(关于x 轴对称 则22),(y x y x +=μ=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x)(22⎰⎰-Rdr r d 03ααθ24R α==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x )(22⎰⎰-Rdr r d 04cos θθαα5sin 2αR =5sin 4~αR M M x y == 由对称性得0~=y ,所求质心为)05sin 4(αR8、 设均匀薄片(面密度为常数)ρ,战局的区域如下,求指定的转动惯量(1)、⎭⎬⎫⎩⎨⎧≤+=1),(2222b y a x y x D 求y I ,l I ,其中是过原点切倾斜角为α的直线解:ab M ρπ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰123203cos dr r d b a θθπ ===⎰4cos 43202ba d abρθθρπ42Ma由题设可知薄片上任意点到直线l 的距离为αα2tan 1tan +-=y x dl I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰++Ddxdy xy y x )tan 2tan (tan12222αααρ⎰⎰+=Ddxdyx 222tan 1tan ααρ⎰⎰++Ddxdy y 22tan 1αρ⎰⎰+-Dxydxdy ααρ2tan 1tan 24tan 1tan 222Ma ⋅+=ααρdr r d ab ⎰⎰++1322023sin tan 1ϑθαρπdr r d b a θθθαρπ⎰⎰+-1320222sin cos tan 14tan 1tan 222Ma ⋅+=αα2tan 123παρ⋅++ab 4tan 1tan 222Ma ⋅+=αα4tan 1122Mb ⋅++ααα2222tan 1tan 4++⋅=a b M (2)、{}b y a x y x D ≤≤≤≤=0,0),(求y I ,l I ,其中是过原点与点),(b a 的对角线ab M ρ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰bady dx x 023323Ma ba ==ρx I ρμ==⎰⎰Ddxdy y x y ),(2ρ=⎰⎰Ddxdy y2⎰⎰bady y dx 0232Mb =由题设可知薄片上任意点到直线l 的距离为22ba ay bx d +-=l I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰-++Ddxdy abxy y a x b b a )2(222222ρ=⎰⎰+Ddxdy x ba b 2222ρ⎰⎰++Ddxdy y ba a 2222ρ⎰⎰+-Dxydxdy ba ab222ρ22223b a b Ma +=22223b a a Mb ++22222b a b a M +-)(62222b a b Ma += 习题9.41、 化三重积分⎰⎰⎰Ωdv z y x F ),,(为三次积分(只须先,z 次对,y 后对x 一种次序)(1)、由三个坐标面与平面06236=-++z y x 围成解:23230yx z --≤≤,,220x y -≤≤10≤≤x ⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰---=yx x dz z y x f dy dx 32302201),,((2)、由旋转抛物面22y x z +=与平面1=z 围成解:122≤≤+z y x ,,1122x y x -≤≤--11≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰+-+---=111112222),,(y x x x dz z y x f dy dx(3)、由圆锥面22y x z +=与上半球面222y x z --=围成解:22222y x z y x --≤≤+,,2222x y x -≤≤--22≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰--+-+---=22222222222),,(y x y x x x dz z y x f dy dx(4)、由双曲抛物面xy z =与平面0,1==+z y x 围成 解:xy z ≤≤0,,10x y -≤≤10≤≤x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰-=xyxdz z y x f dy dx 01010),,(2、 设有一物体,点据空间闭区域{}10,10,10),,(≤≤≤≤≤≤=Ωz y x z y x 密度函数为z y x z y x ++=),,(μ,求该物体的质量解:=++=⎰⎰⎰Ωdv z y x M )(=⎰⎰⎰Ωxdv ++⎰⎰⎰Ωydv =⎰⎰⎰Ωzdv =⎰⎰⎰Ωzdv 32331011==⎰⎰⎰zdz dy dx 3、 计算三重积分 (1)、⎰Ωx y d v⎭⎬⎫⎩⎨⎧=++====Ω132,0,0,0),,(z y x z y x z y x ⎰⎰⎰Ωxydv ⎰⎰⎰---=)21(30)1(2010yx x xydz dy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx⎰-----=103222])22(21)22(33)22(23[dx x x x x x x ⎰-----=103222])22(21)22(33)22(23[dx x x x x x x 101512215105]12303010[10432=-+-=-+-=⎰dx x x x x (2)、⎰⎰⎰Ωzdv y x 22 {}x z z x y x y x z y x ==-====Ω.0,,,1),,( ⎰⎰⎰Ωxyzdv ⎰⎰⎰-=xxx zdz y x dy dx 02210⎰⎰-=x x dy y x dx 24102124131107==⎰dx x (3)、⎰Ωx y z d v{}0,1,,),,(=====Ωz x x y xy z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰=xyxxyzdz dy dx 01264181107==⎰dx x (4)、⎰Ωdv z 2 {}0,1),,(22=--==Ωz y x z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰------=22221021111y x x x dz z dy dx ⎰⎰--=x dy y x dx 0232210)1(311525132)1(311023220ππθπ=⋅=-=⎰⎰rdr r d (5)、⎰Ωdv z 2 {}z x y z z y x 2),,(222≤++=Ω解;积分区域是1)1(222=-++z y x ,22221111y x z y x --+≤≤---2211x y x -≤≤--111≤≤-x这样计算很繁琐,改为下面的方法(是很高的技巧) 任意取一点,z 则截口面积为)2(2z z dxdy -=π⎰⎰⎰⎰⎰⎰=ΩDdxdy dz z dv z2022dz z z )2(243⎰-=π58)542(2054ππ=-=z z4、 利用柱坐标计算 (1)⎰⎰⎰Ωzdv 其中Ω是由上半球面222y x z --=与旋转抛物面22y x z +=围成的闭区域解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,222r z r -≤≤ 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰-=222120r rzdz rdr d πθ⎰⎰--=104220]2[21dr r r r d πθ 127)61411(]2[21105320ππθπ=--=--=⎰⎰dr r r r d (2)⎰⎰⎰Ω+dv y x z22 其中Ω是由旋转抛物面22y x z +=与平面1=z 围成的闭区域解:先确定该区域在xoy 面的投影区域⎩⎨⎧+==221yx z z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,12≤≤z r 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰=112202rzdz dr r d πθ⎰⎰-=104220]1[21dr r r d πθ 214)7131(][21106220ππθπ=-=-=⎰⎰dr r r d5、设密度为常量μ的均匀物体占据由223y x z --=与0,1,1=±=±=z y x 围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域 就是{}11,11),(≤≤-≤≤-=y x y x D (1)、=M ⎰Ωdv μ ⎰⎰⎰----=22301111y x dz dy dx μ⎰⎰--=-12211)3(2dy y x dx μμμμ328)3138(4)38(4102=-=-=⎰dx x(2)、由对称性得0~,0~==y x=z M =⎰⎰⎰Ωzdv μ⎰⎰⎰----22301111y x zdz dy dx μ⎰⎰--=-122211)3(dy y x dx μμμ45506)316536(2142=+-=⎰dx x x ==MM z z ~210253,所以物体的重心是)210253,0,0( (3)=z I ⎰⎰⎰Ω+dv y x )(22μ⎰⎰⎰----+=2230112211)(y x dz dy y x dx μ⎰⎰--+=122221)3)((4dy y x y x dx μ⎰⎰---+=14422221)233(4dy y x y x y x dx μM dx x x 1056245248)519754(4)3754(41042==-+=-+=⎰μμμ6、设密度为常量1的均匀物体占据由上半球面222y x z --=与圆锥面22y x z +=围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22r z r -≤≤ 10,20≤≤≤≤r πθ,于是(1)、=M ⎰⎰⎰Ωdv ⎰⎰⎰-=22120r rdz rdr d πθ⎰⎰--=1220]2[dr r r r d πθ=--=⎰⎰102220]2[dr r r r d πθ)12(34)12(3220-=-=⎰πθπd (2)、由对称性得0~,0~==y x =z M ⎰⎰⎰Ωzdv ⎰⎰⎰-=22120r rzdz rdr d πθ⎰⎰--=102220]2[21dr r r r d πθ=-=⎰⎰10320][dr r r d πθ24120πθπ==⎰d==MM z z ~)12(83+,所以物体的重心是))12(83,0,0(+(3)、=z I ⎰⎰⎰Ω+dv y x )(22 ⎰⎰⎰-=221320r rdz dr r d πθ⎰⎰--=12320]2[dr r r r d πθ=--=⎰⎰1042320]2[dr r r r d πθ)51(2-A π =A dt t t dr r r)(cos sin 242223123⎰⎰=-πdt t t )sin (sin 245203-=⎰π1528)15832(24=-= 所以=z I )328(152)511528(2-=-=ππ (B )的习题 1、⎰⎰⎰Ω+dv z x y )cos( ⎭⎬⎫⎩⎨⎧==+====Ω0.2,,0,2),,(z z x x y y x z y x ππ ⎰⎰⎰Ωxyzdv ⎰⎰⎰-+=xxdz z x y dy dx 202)cos(ππ=⎰⎰-xdy x y dx 020)sin 1(π⎰-=20)sin 1(21πdx x x 202]cos [sin 2116ππx x x --=21162-=π2、⎰⎰⎰Ωzdv {}z z y x z y xz y x 2,1),,(222222=++=++=Ω皆7:先确定该区域在xoy 面的投影区域⎩⎨⎧=++=++z z y x z y x 21222222为⎪⎩⎪⎨⎧==+04322z y x 就是⎭⎬⎫⎩⎨⎧≤+=43),(22y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22111r z r -≤≤-- 230,20≤≤≤≤r πθ,于是 ⎰⎰⎰Ωzdv ⎰⎰⎰---=221112320r r zdz rdr d πθ=⎰⎰--230220)112(21dr r r d πθ245]21)1(32[2302232ππ=---=r r习题9.51、 计算下列对弧长曲线积分(1)、ds y x nl⎰+)(22,其中l 为圆周222a y x =+解:设t a y t a x sin ,cos ==,adt ds =ds y xn l⎰+)(22⎰++==ππ2012122n n a dt a(2)、⎰l yds x sin 其中l 是连接点)0,0(,),3(ππ的直线段解:l 的方程为x y 31=π30≤≤x dx dx ds 310911=+=⎰lyds x sin dx xx ⎰=π303sin 310dt t t ⎰=π0sin 103π103= (3)、⎰l y ds 其中l 是连接点x y 42=上点)0,0(,)2,1(的一段弧解:l 的方程为x y 42= 10≤≤x dx xds 11+= ⎰lyds )122(34)1(34121231-=+=+=⎰x dx x (4)、⎰+l ds y x )( 其中l 是连接点)0,1(,)1,0(的直线段解:l 的方程为x y -=1 , 10≤≤x , dx ds 2=⎰+lds y x )(dx ⎰=122=(5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (6)、ds y l⎰,其中l 为圆周122=+y x解:设t y t x sin ,cos ==,dtds =ds y l⎰⎰=πsin tdt ⎰-ππ2sin tdt πππ20cos cos x x +-=422=+= (7)、ds el y x ⎰+22,其中l 为圆周0,,422===+y x y y x 在第一象限的区域的边界解:在直线0=y 上 20≤≤x dx ds =ds ely x ⎰+122122-==⎰e dx e x在弧422=+y x 上设t y t x sin 2,cos 2==,dt ds 2=40π≤≤tds el y x ⎰+222222402ππ⋅==⎰e dt e在直线x y =上 20≤≤x dx ds 2=ds el y x ⎰+32212220222-===⎰e edx exxds ely x ⎰+22+-=)1(2e +⋅22πe )1(2-e )22(2+=πe 2-(8)、⎰l x y ds 其中l 是2,4,0,0====y x y x 围成的矩形的边界解:4321l l l l l +++=1l 的方程为0=y =⎰1l x y d s 001=⎰dx l ,4l 的方程为0=x=⎰4l xyds 004=⎰dy l2l 的方程为4=x=⎰2l x y d s 842==⎰y d y, 3l 的方程为2=y=⎰3l x y d s1624=⎰xdx24=⎰lxyds(9)、⎰l ds y 2其中l 是摆线)cos 1(),sin (t a y t t a x -=-=的一拱解:dt t a t a ds 2222sin )cos 1(+-=dt ta 2sin 22= ⎰l ds y 232022282sin 2)cos 1(a dt t a t a =-=⎰π=⎰π2052sin dt t ⎰π053sin 16udu a1525615832sin 32332053aa udu a =⋅==⎰π(10)、⎰+lds y x 22 其中l 是上半圆周x y x 222=+与x 轴围域的边界解:21l l l +=,1l :x y x 222=+化为1)1(22=+-y x 设t y t x sin ,cos 1==-,dt ds =⎰+122l ds y x =++=⎰π22sin )cos 1(dt t t =⎰π2cos dt t4cos 420=⎰πudu2l :0=y ,dx ds =⎰+222l ds y x 22==⎰xdx62422=+=+⎰lds y x2、 求半径为,R 中心角为α2的扇形圆弧的质心(密度均匀)1=μ解:选择与书上168页图9-34一样的坐标系,于是根据对x 轴的对称性得0~=y 设1=μ,t R y t R x sin ,.cos ==Rdt ds =R M α2=⎰=lyds M x 1~==⎰-ααtdt R M cos 12==⎰α2cos 2tdt R Mαααsin sin 22R M R ==所求质心为)0sin (ααR3、 计算下列关于坐标的曲线积分 (1)、⎰+ldx y x )(22,L 是抛物线2x y =上)0,0(O 到)4,2(A 一段弧解:⎰+l dx y x )(221556]53[)(20532042-=+=+=⎰x x dx x x(2)、⎰l y dx ,L 是 2,4,0,0====y x y x 矩形的边界按照逆时针方向 解:A O :0=y ,4:=x B A0=dx ,2:=y C A ,0:=x O C0=dx ,⎰lydx ⎰⎰⋅+=ABOAy dx 00⎰⎰⋅++COBCy dx 028204-==⎰dx(3)、⎰+l x d y y dx ,L 是 20,sin ,cos π≤≤==t t R y t R x 一段针方向的弧解:⎰+l xdy ydx dt x x dt t tR R t R t R )(]cos cos )sin (sin [242⎰++-=π02sin 22cos 202202===⎰ππtR dt t R(4)、⎰+-++lyx dyx y dx y x 22)()(,L 是圆周 222a y x =+沿逆时针方向解:t a y t a x sin ,cos ==,⎰+-++l y x dy x y dx y x 22)()(⎰-+-+=π2022]cos )sin (cos )sin )(sin [(cos a dt t t t t t t a ππ2120-=-=⎰dt(5)、⎰++l x dy dx y x )(,L 是折线 x y --=11从)0,0(到)0,2(一段解:⎩⎨⎧>-≤=121x x x xy ,弧dx dy x y A O ==,: ,dx dy x y B A -=-=,2:⎰++lxydy dx y x )(⎰⎰+=OAAB383732311)22()2(212102=+-++=+-++=⎰⎰dx x x dx x x (6)、⎰---l dy y a dx y a )()2(,L 是 )cos 1(),sin (t a y t t a x -=-=摆线的一拱,从)0,0(到)0,2(a π解:⎰---ldy y a dx y a )()2(dt t a t a a ⎰---=π20)cos 1()]cos 1(2[dt t a t a a ⎰---π20sin )]cos 1([dt t t t a ⎰+=π2022)cos sin (sin220222sin 2cos 1(a dt tt a ππ=+-=⎰4、计算⎰-++l dy x y dx y x )()(,其中L 分别是(1)、x y =2上点)1,1(到)2,4( (2)、点)1,1(到)2,4(的直线段解:(1)、在x y =2上点)1,1(到)2,4(,dx xdy 21=⎰-++ldy x y dx y x )()(dx x x xx x )](21[41-++=⎰3342153723)2121(41=++=++=⎰dx x x (2)、点)1,1(到)2,4(的直线段,3231+=x y ,dx dy 31=⎰-++ldy x y dx y x )()(dx x x x x )]3231(313231[41-++++=⎰ 11398215910)98910(41=⋅+⋅=+=⎰dx x 5、计算⎰+++l dy y x dx y x )2()2(,其中L 分别是(1)、2x y =上点)0,0(到)1,1(的一段弧 (2)、3x y =点)0,0(到)1,1(的一段弧 (3)、点)0,0(到点)0,1(再到点)1,1(的折线 解:(1)、2x y =上点)0,0(到)1,1(,xdx dy 2=⎰+++ldy y x dx y x )2()2(dx x x x xx ])2(22[122⎰+++=3111)432(132=++=++=⎰dx x x x(2)、3x y =点)0,0(到)1,1(的一段弧,dx x dy 23=⎰+++ldy y x dx y x )2()2(dx x xx ])642[153⎰++=3111=++=(3)、点)0,0(到点)0,1(再到点)1,1(的折线⎰+++ldy y x dx y x )2()2(+=⎰dx x 102⎰+1)21(dy y 3=6、一力场由沿x 轴正向的常力→F 构成,求将一个质量为m 的质点沿222R y x =+按逆时针方向移动过第一象限那段弧所做的功 解:→F →=i F dx F W l⎰=F R tdt R F -=-=⎰2sin π节9.6习题处理1、计算下列关于坐标的曲线积分,并验证格林公式的正确性(1)dy y x dx y x l )()(22--+⎰,L 是椭圆12222=+by a x 沿逆时针方向解:设t b dy t b y t a dx t a x cos ,sin ,sin ,cos ==-==dy y x dx y xl)()(22--+⎰⎰⎰⎰-+-=πππ2023202320sin cos cos sin tdt t atdt t bdt abab π2-=用格林公式y x y x P +=2),( 2),(y x y x Q +-=1),(-=y x Q x 1),(=y x P ydy y x dx y x l)()(22--+⎰ab dxdy Dπ22-=-=⎰⎰ (2)、dy y x dx y x l )()(222+-+⎰)0,0()1,0()0,1()0,0(:→→→L 直线段围成的闭路解:0),0,1()0,0(:1=→y L ; x y L -=→1),1,0()0,1:2;0),0,0()1,0(:3=→x Ldy y x dx y x l)()(222+-+⎰1])1([012012210-=--+-=⎰⎰⎰dy y dx x x xdx 用格林公式2)(),(y x y x P += 22),(y x y x Q --=x y x Q x 2),(-= )(2),(y x y x P y +=dy y x dx y x l)()(222+-+⎰=+-=⎰⎰Ddxdy y x )2(2⎰⎰-+-xdy y x dx 1010)2(21)2321(210-=-+-=⎰dx x x2、求星形线t a y t a x 33sin ,cos ==所围的面积解:dt t t a ydx xdy A l ⎰⎰=-=π20222sin cos 232183)4cos 1(1632202a dt t t a ππ=-=⎰3、用格林公式计算(1)、dy y x dx y x l)653()42(-+++-⎰)0,0()2,3()0,3()0,0(:→→→L 直线段围成的三角形边界解:653),(-+=y x y x Q 42),(+-=y x y x P3),(=y x Q x y y x P y -=),(dy y x dx y x l)653()42(-+++-⎰12212344=⨯⨯⨯==⎰⎰Ddxdy ⎰⎰-+-x dy y x dx 1010)2(2(2)、dy y y x dx xe xy l x)cos ()32(2-++⎰1:2222=+by a x L 逆时针方向解:x xe xy y x P 32),(+= y y x y x Q c o s ),(2-=x y x Q x 2),(= x y x P y 2),(=dy y x dx y x l)653()42(-+++-⎰00==⎰⎰Ddxdy(3)、⎰+++l y ydy e x dx xey )1()(22224:x x y l -=由)0,4()0,0(→的弧解:先补足成闭路1-+=l OA Ly xe y y x P 2),(+= 1),(22+=y e x y x Qy x xe y x Q 22),(= y y xe y x P 221),(+=⎰+++L y y dy e x dx xe y )1()(222ππ2)2(212-=-=-=⎰⎰Ddxdy 于是⎰+++ly ydy e x dx xey )1()(222-+++=⎰dy e x dx xe y y OA y )1()(22(2⎰+++Ly ydy e x dx xey )1()(222ππ2824+=+=⎰xdx(4)、⎰---l dy y y x dx y )sin ()cos 1(x y l s i n:=上由)0,()0,0(π→的弧解:先补足成闭路1-+=l OA Ly y x P cos 1),(-= )s i n (),(y y x y x Q --=y y y x Q x sin ),(+-= y y x P y s i n ),(=⎰-+---1)sin ()cos 1(l OA dy y y x dx y ⎰⎰⎰⎰-=-=xDydy dxydxdy sin 0π4)12((cos 41sin 21002πππ-=-=-=⎰⎰x xdx于是⎰---ldy y y x dx y )sin ()cos 1(----=⎰dy y y x dx y OA )sin ()cos 1((⎰-+---1)sin ()cos 1(l OA dy y y x dx y4400πππ=+=⎰dx(5)、⎰+--l dy y x dx y x )sin ()(2222:x x y l -=上由)1,1()0,0(→的弧解:先补足成闭路1-++=l AB OA Ly x y x P -=2),( )s i n ),(2y x y x Q --=-=),(y x Q x 1),(-=y x P y⎰-+++--1)sin ()(22lAB OA dy y x x dx y x 0=于是⎰+--l dy y x dx y x )sin ()(22+--=⎰dy y x dx y x OA)sin ()(22dy y x dx y x AB)sin ()(22--=⎰+=⎰102dx x ⎰--12)sin 1(dy y⎰---=10)2cos 1(21131dy y 672sin 41-= (6)、⎰+++l xxdy e x dx ye )()1( 1:2222=+by a x L 上由)0,()0,(a a →-的上半椭圆解:先补足成闭路1),(-++-=l a a Lx ye y x P +=1),( x e x y x Q +=),(x x e y x Q +=1),( x y e y x P =),(ab dxdy dy e x dx ye Dl a a x x π21)()1(1),(==+++⎰⎰⎰-++- 于是⎰+++lxx dy e x dx ye )()1(ab dy e x dx ye a a x x π21)()1(),(-+++=⎰+- ab dx a a π21-=⎰-ab a π212-= 4、 证明下列曲线积分在xoy 面内与路径无关,并计算积分值 (1)、⎰-++)3,2()1,1()()(dy y x dx y xy x y x P +=),( y x y x Q -=),( 都是初等函数,因此在xoy 面内有连续的偏导数1),(=y x Q x 1),(=y x P y 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++)3,2()1,1()()(dy y x dx y x ⎰+=21)1(dx x ⎰-+31)2(dy y=--+-+=)19(214)14(21125 (2)、⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy32),(4+-=y xy y x P 324),(xy x y x Q -= 都是初等函数,因此在xoy 面内有连续的偏导数342),(y x y x Q x -= 342),(y x y x P y -= 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy ⎰+=21)22(dx x ⎰-+13)164(dy y544)14(2=-+-+=25(3)、⎰-++),()0,0()c o s ()s i n (ππdy y xe dx x e y yx e y x P y sin ),(+= y xe y x Q y cos ),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( yy e y x P =),( 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++),()0,0()cos ()sin (ππdy y xe dx x e yy⎰+=π0)sin 1(dx x ⎰-+ππ0)cos (dy y e y=--++=0)1(2πππe 252+=ππe 5、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某一个函数),(y x u 的全微分,并且求这样的函数),(y x u(1)、dy y x dx y x )2()2(+++解答:y x y x P 2),(+= y x y x Q +=2),( 都是初等函数,因此在xoy 面内有连续的偏导数2),(=y x Q x 2),(=y x P y 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使dy y x dx y x y x du )2()2(),(+++=⎰+++=),()0,0()2()2(),(y x dy y x dx y x y x u ⎰=x xdx 0⎰++ydy y x 0)2(2221221y xy x ++=(2)、dy y xe dx e x y y )2()2(-++解答:y e x y x P +=2),( y xe y x Q y 2),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( y y e y x P =),( 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y xe dx e x y y )2()2(-++⎰-++=),()0,0()2()2(),(y x yydy y xe dx e x y x u ⎰+=x dx x 0)12(⎰-+yy dy y xe 0)2(=-+-+=x xe y x x y 22y xe y x +-22(3)、y d y x y d x x 3c o s 2c o s 33s i n 2s i n2-解答:y x y x P 3sin 2sin 2),(= y x y x Q 3c o s 2c o s 3),(-= 都是初等函数,因此在xoy面内有连续的偏导数y x y x Q x 3c o s 2s i n 6),(= y x y x P y 3c o s 2s i n 6),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰-=),()0,0(3cos 2cos 33sin 2sin 2),(y x ydy x ydx x y x uy x ydy x y 3sin 2cos 3cos 2cos 30-=-=⎰(4)、dy ye y x y x dx xy y x y)122()3(223322++++解答:32283),(xy y x y x P += yye y x y x y x Q ++=223122),( 都是初等函数,因此在xoy 面内有连续的偏导数22246),(xy y x y x Q x += =),(y x P y 22246xy y x + 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰++++=),()0,0(223322)122()83(),(y x y dy ye y x y x dx xy y x y x u31 ⎰++=yy dy ye y x y x y x u 0223)122(),(y y e ye y x y x -++=322346、设→→→-++=j xy i y x F )12()(2试证:在在xoy 面内,→F 作的功与路径无关 证明:⎰-++=l dy xy dx y x W )12()(22),(y x y x P += 12),(-=xy y x Q 都是初等函数,因此在xoy 面内有连续的偏导数 y y x Q x 2),(= y y x P y 2),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内积分与路径无关,所以在在xoy 面内, →F 作的功与路径无关。

高等数学课后习题答案第九章2

高等数学课后习题答案第九章2

第九章习题解答(3)习题9.7计算下列对面积的积分1、dS z y x )342(++∫∫Σ,其中Σ为平面1432=++zy x 在第一卦限的部分解:曲面方程为3424y x z --=dxdydxdy dS 36119164=++=积分区域为30,20:≤≤≤≤y x D dS z y x )342(++∫∫Σdxdy D∫∫?=361461433614=?=2、∫∫ΣdS z2其中Σ为半球面221y x z --=被21=z 截取的部分解:曲面方程为221yx z --=dxdyyx dS 2211--=积分区域为430:22≤+≤y x D dS z ∫∫Σ2dxdy y x yx D ∫∫----=222211∫∫-=πθ0230212)1(dr r r d 12787320πθπ==∫d 3、dS z y x )(222++∫∫Σ,其中Σ为圆锥面22y x z +=被1=z 截取的部分解:曲面方程为22yx z +=dxdydS 2=积分区域为10:22≤+≤y x D dS z yx )(222++∫∫Σdxdy y x D∫∫+=2)(222∫∫=πθ201322dr r d π2=4、dS z x x xy ∫∫Σ+--)22(2,其中Σ为平面622=++z y x 在第一卦限的部分解:曲面方程为y x z 226--=dxdydS 3=积分区域为xy x D -≤≤≤≤30,30:dS z x x xy ∫∫Σ+--)22(2dxdyy x x xy D∫∫+---=)62322(32∫∫-+---=3302)62322(3xdy y x x xy dx ∫-+-------=30222)]3(6)3()3(3)3(2)3([3dxx x x x x x x x ∫+-=323]9103[3dx x x 4278127108149-=+×-×=5、dS y x )(22∫∫Σ+,其中Σ为旋转抛物面222y x z --=在xoy 面上方的部分解:曲面方程为222yx z --=dxdyy x dS )(4122++=积分区域为20:22≤+≤y x D dS y x )(22∫∫Σ+dxdy y x y x D∫∫+++=)(41)(2222∫∫+=πθ2022341drr r d ∫∫+=πθ20220231161duu u d 其中du u u222031+∫单独计算为设tdt du t u 2sec ,tan ==,du u u 222031+∫==∫dt tt22arctan 063cos sin ∫-22arctan 062cos )(cos )1(cos tt d t 15596151307263265242)11(41316=-=-=-=∫dv v vdS y x )(22∫∫Σ+3014915596162ππ=×=(6)、dS xz z y y x )(222222++∫∫Σ,其中Σ为圆锥面22y x z +=被圆柱面xy x 222=+所截取的部分解:曲面方程为22yx z +=dxdydS 2=积分区域为:θπθcos 20,20:≤≤≤≤r DdS x z z y y x )(222222++∫∫Σdrr d )1sin (cos 2222cos 2052+=∫∫θθθθπθθθθπd )cos cos (cos 6222621086+-×=∫8229)2047(322)!!6!!5!!10!!9!!8!!7(62226πππ=+=×+-×=2、求抛物面)10)((2122≤≤+=z y x z 的质量,此壳的密度z=μ解:dSz M ∫∫Σ=dxdyy x dS 221++=积分区域为:20,20:≤≤≤≤r D πθdS z M ∫∫Σ=dr r rd 223212+=∫∫πθ∫∫--=2arctan 06220cos cos )cos 1(2t td t d πθdu u u d )11(24131620-=∫∫πθdu u u d )11(2413162-=∫∫πθ)33315139(-+-=π)136(152+=π3、求均匀抛物面壳)410(22≤≤+=z y x z 的重心解:∫∫Σ=dSM dxdyy x dS )(4122++=积分区域为:210,20:≤≤≤≤r D πθ∫∫Σ=dS M dr r r d 22102414+=∫∫πθ)2()2(1)2(22102r d r r d +=∫∫πθdu u u d 21020)(1+=∫∫πθ)122(6)1(322121232-=+??=ππu 由对称性得~~==y xMz 1~=∫∫ΣzdS ∫∫+=πθ2021023411dr r rd M ∫∫+=πθ201231161duu ud M∫∫--=ππθ204062cos cos )cos 1(161t t d t d Mdv v v d M )11(1612012146∫∫-=πθ×=M 8π=-+-)32215124()12(1528+?M π70235+=所以重心为?????+70235004、设稳定不可压缩的流体速度场为→→→→++=k z y j y x i xz V 22,Σ是圆柱面122=+y x 的外侧被平面1,0==z z 截取的位于第一、第四卦限部分,求流体流向Σ指定一侧的流量Φ解:Φzdxdyy ydzdx x xzdydz 22++=∫∫Σ设;0:1=Σz ;0:2=Σy ;1:3=Σz 于是-Σ-Σ12Σ3Σ+构成封闭的曲面∫∫∫∫∫?Σ+Σ-Σ-Σ++=++=dv z yx zdxdy y ydzdx x xzdydz )(2222321dz z r rdr d ][21010220+=∫∫∫πθ2)21(21320πθπ=+=∫∫dr r r d =++∫∫Σ+Σ-Σ-zdxdy y ydzdx x xzdydz 22321+∫∫Σ-310dxdy ∫∫Σ-20dzdx ∫∫Σ+32dxdy y 8sin 210322πθθπ==∫∫dr r d 所以838222πππ=-=++=Φ∫∫Σzdxdy y ydzdx x xzdydz 5、计算下列对坐标的曲面积分(1)、∫∫Σdxdy yx 22,其中是球面2222a z y x =++下半部分的下侧解:球面方程为222y x a z ---=,积分区域为ar ≤≤≤≤0,20:πθ取外法线方向为正∫∫Σdxdy y x 22dxdy y x a y x D)(22222----=∫∫dxdyy x a yx D22222--=∫∫drr a r∫∫-=102252022cos sinθθπ1052)!!7!!5!!5!!3(4)sin (sin 84cos 1220752022a a dr t t d a ππθθππ=-=--=∫∫(2)、∫∫Σ+dydz y 2)1(,其中是球面1222=++z y x 的外侧在0≥x 的部分解:球面方程为221y x x --=,积分区域为10,20:≤≤≤≤r πθ取外法线方向为正∫∫Σ+dydz y 2)1(dr r r d ∫∫+=1220)1sin (θθπdrr r r d ∫∫++=122320)sin 2sin (θθθπ∫++=πθθθ202)21sin 32sin 41(d 45)82cos 1(20ππθθπ=+-=∫d (3)、∫∫Σdxdy z2,其中是圆锥面22y x z +=被平面1=z 截取的有限部分的下侧解:积分区域为10,20:≤≤≤≤r πθ取外法线方向为正∫∫Σdxdy z 2∫∫+-=Ddxdyy x )(22dr r d ∫∫-=10320πθ2412ππ-=×-=(4)、xdxdyydzdx xdydz ++∫∫ΣΣ是圆柱面122=+y x 的外侧被平面3,0==z z 截取的位于第一限部分解:=++∫∫Σxdxdy ydzdx xdydz C B A ++∫∫Σ=xdydz A ,∫∫Σ=ydzdx B ,∫∫Σ=zdxdy C 由于Σ在xoy 面的投影区域面积为零,所以0==∫∫Σzdxdy C ∫∫Σ=xdydz A dy y dz dydz y yzD∫∫∫∫-=-=1023021143cos 3202ππ==∫tdt ∫∫Σ=ydzdx B dy x dz dydz x zxD∫∫∫∫-=-=1023021143cos 3202ππ==∫tdt 所以=++∫∫Σxdxdy ydzdx xdydz 2304343πππ=++=++C B A(5)、∫∫Σ-+-+-dxdy x z dzdx z y dydz y x )()()(Σ{}c z b y a x z y x ≤≤≤≤≤≤=0,0,0),,(解:用高斯公式、∫∫Σ-+-+-dxdy x z dzdx z y dydz y x )()()(abcdv 3==∫∫∫(6)、∫∫Σ++zxdxdyyzdzdx xydydz Σ{}1,0,0,0),,(=++====z y x z y x z y x 的外侧解:用高斯公式、∫∫Σ++zxdxdyyzdzdx xydydz =++=∫∫∫dv z y x )(∫∫∫---++yx xdzz y x dydx101010)(∫∫---+--+=xdy y x y x y x dx 10210])1(21)1)([(∫∫----=xdy y xy x dx 102210]21[21∫------=10322])1(31)1()1)(1[(21dx x x x x x 81)3132(21103=+-=∫dx x x 习题9.81、利用高斯公式计算(1)、∫∫Σ++dxdyz dzdx y dydz x 222Σ{}a z a y a x z y x ≤≤≤≤≤≤=0,0,0),,(的表面的外侧解:∫∫Σ++dxdy z dzdx y dydz x 222=++=∫∫∫dv z y x )(2∫∫∫?zdv 64236azdz aa ==∫(2)、∫∫Σ-+dxdyy x dzdx y xydydz 4223Σ)1,0,0(),0,01(),0,0,1(),0,0,0(:为顶点的四面体的表面的外侧解:∫∫Σ-+dxdy y x dzdx y xydydz 4223=+=∫∫∫dv y y )23(∫∫∫?ydv5任取一点y 得到与四面体的截面面积为2)1(21y dzdx yD-=∫∫于是245)413221(25)1(255102=+-=-=∫∫∫∫dy y y ydv (3)、zdxdy ydzdx xdydz ++∫∫Σ,222:y x a z --=Σ的上侧解:加一个底面1Σ0=z ,则1Σ+Σ=Σ′3326433a a dv zdxdy ydzdx xdydz ππ=×==++∫∫∫∫∫?Σ′而:001=-=++∫∫∫∫ΣxyD dxdy zdxdy ydzdx xdydz 所以32azdxdy ydzdx xdydz π=++∫∫Σ(4)、dxdy z x dzdx y z dydz x y )()()(222-+-+-∫∫Σ,221:y x z --=Σ在xoy 面上方的上侧解:加一个底面1Σ0=z ,则1Σ-Σ=Σ′dxdy z x dzdx y z dydz x y )()()(2221-+-+-∫∫Σ-Σππ23)1(3310-=-×-=-=∫∫∫∫dz z dv 而:dxdyz x dzdx y z dydz x y )()()(2221-+-+-∫∫Σ4cos 1023202πθθπ-=-=-=∫∫∫∫dr r d dxdy x xyD45423)()()(222πππ-=+-=-+-+-∫∫Σdxdy z x dzdx y z dydz x y 2、设稳定的、不可压缩的流体的速度场为→→→→++=k z j y i x V 222,Σ是球面2222a z y x =++的外侧位于第一卦限部分,求流体流向Σ指定一侧的流量Φ解:Φdxdy z dzdx y dydz x 222++=∫∫Σ设;0:1=Σx ;0:2=Σy ;0:3=Σz 于是-Σ-Σ12Σ3Σ-构成封闭的曲面∫∫∫∫∫?Σ+Σ+Σ+Σ++=++dv z y x dxdy z dzdx y dydz x )(2222321dzz r rdr d ar a ])sin (cos [2002022++=∫∫∫-θθθπ∫∫-+=adr r a r d 022220)sin (cos 2πθθθ∫∫-+adrr a r d 02220)(πθ∫-=20424)sin (sin 4πdt t t a )42(244a a -+π8384444aa a πππ=+=而222321=++∫∫Σ+Σ+Σdxdy z dzdx y dydz x 所以dxdy z dzdx y dydz x 222++=∫∫Σ834aπ=三重积分也可以另解为:任取一点z ,得到截面z D 的面积为)(422z a dxdy zD -=∫∫π根据对称性有∫∫∫++dv z y x )(24032083)(466a dz z z a dxdy zdz a D azππ=-==∫∫∫∫第九章习题解答完毕2008-5-11于利民开发区宏信广场。

高等数学下册复旦大学出版社第九章答案(黄立宏著)

高等数学下册复旦大学出版社第九章答案(黄立宏著)
2
故切线方程为
x
π 1 y 1 z 2 2 2 . 1 1 2
法平面方程为
x

π 1 y 1 2( z 2 2) 0 2
π x y 2z 4 0. 2
3. 证明:螺旋线 x = acost, y = asint, z = bt 的切线与 z 轴形成定角。 证明: x a sin t , y a cos t , z b. 螺旋线的切向量为
(2) z = e2x(x+y 2+2y); (4) z = (x2+y 2) e
( x2 y 2 )
;
得驻点为(0,0) ,(0,2),(2,0),(2,2). zxx=6x-6, zxy=0, zyy=6y- 6 2 在点(0,0)处,A=- 6,B=0,C=-6,B -AC=-36<0,且 A<0,所以函数有极大值 z(0,0)=0. 在点(0, 2)处,A =-6,B =0, C=6,B 2-AC=36>0,所以(0,2)点不是极值点. 在点(2, 0)处,A =6,B =0, C=- 6,B 2-AC=36>0,所以(2,0)点不是极值点. 在点(2, 2)处,A =6,B =0, C=6,B2-AC=-36<0,且 A >0,所以函数有极小值 z(2,2)=-8.
习题九
1. 求下曲线在给定点的切线和法平面方程: (1)x=asin2t,y =bsint cost,z=c cos2t,点 t (2)x2+y 2+z2=6,x+y+z=0,点 M0(1,-2,1); (3)y2=2mx,z2=m-x,点 M0(x0,y0,z0). 解: x 2a sin t cos t , y b cos 2t , z 2c cos t sin t 曲线在点 t

上海财经大学《高等数学》第九章习题及解答

上海财经大学《高等数学》第九章习题及解答

第九章习题解答1.设xoy 平面上的一块平面薄片D ,薄片上分布有密度为),(y x u 的电荷,且),(y x u 在D 上连续,请给出薄片上电荷Q 的二重积分表达式.[解] 板上的全部电荷应等于电荷的面密度(,)u x y 在该板所占闭区域D 上的二重积分, 即=(,)DQ u x y d σ⎰⎰.2.由平面1342=++z y x ,0=x , 0=y ,0=z 围成的四面体的体积为V ,试用二重积分表示V . [解] 4(1)23Dx yV dxdy =--⎰⎰. 3.比较大小 (1) σ⎰⎰+D d y x 2)( 与σ⎰⎰+Dd y x 3)(,其中D 是x 轴、y 轴与直线1=+y x 所围成.(2)σ⎰⎰+Dd y x 2)(与σ⎰⎰+Dd y x 3)(,其中D 是由圆2)1()2(22=-+-y x 所围成. [解] (1) 由0x 1y ≤+≤,得32()x y ≤+(x+y), 由二重积分的性质可得23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 由积分区域D 位于+1x y ≥的半平面内,所以D 内有23()()x y x y +≤+, 由二重积分的性质可得23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰. 4.估计: (1) I=σ⎰⎰+Dd y x xy )(,其中D 是矩形区域:0≤x ≤1,0≤y ≤1;(2) I=σ⎰⎰++Dd y x )1(,其中D 是矩形区域:0≤x ≤1,0≤y ≤2;(3) I=σ⎰⎰++Dd y x )9(22,其中D 是圆形区域:422≤+y x . [解] (1) 因为在区域D 上有01,0y 1x ≤≤≤≤,所以01,02,xy x y ≤≤≤+≤故0()2xy x y ≤+≤,所以0()22,DDDd xy x y d d D σσσ≤+≤=⎰⎰⎰⎰⎰⎰上海财经大学《高等数学》第九章习题及解答即()2Dxy x y d σ≤+≤⎰⎰0.(2)因为在区域D 上01,02x y ≤≤≤≤,所以114x y ≤++≤,故()=x 14=4DDDD d y d d D σσσ≤++≤⎰⎰⎰⎰⎰⎰,即()218Dx y d σ≤++≤⎰⎰.(3) 因为2222x 494()925,y x y ≤++≤++≤9,所以25D I D ≤≤9,即36100I ππ≤≤.5.由二重积分的几何意义计算⎰⎰--Dd y x R σ222,222:R y x D ≤+.[解] 令2222z x y z R =++=,所以z Dd σ⎰⎰为上半球体的体积, 于是有314=23DR σπ⋅⎰⎰.6.求下列二重积分 1)σ⎰⎰+D d y x)(22,其中D 是矩形区域:|x|≤1, |y|≤1;2)σ⎰⎰+Dd y x )23(,其中D 是x 轴、y 轴与直线2=+y x 所围成闭区域;3)σ⎰⎰++Dd y y x x )3(322,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1; 4)σ⎰⎰+Dd y x x )cos(, 其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域; 5)σ⎰⎰Dy x d e),max{22,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1.[解] (1) 1112222211128233Dx y d x y dxdy x dx σ---+=+=+=⎰⎰⎰⎰⎰()()(). (2)22-003232xDx y d dx x y dy σ+=+⎰⎰⎰⎰()()22224)xx dx =++⎰(-3220220(4)33x x x =-++=.(3) 11323323033Dx x y y d dy xx y y dx σ++=++⎰⎰⎰⎰()()42131001()()14424y y y y y dy =++=++=⎰.(4)coscos()xDx x y d xdx x y dy πσ+=+⎰⎰⎰⎰()001(sin 2sin )(cos 2cos )2x x x dx xd x x ππ=-=--⎰⎰00113(cos 2-cos )cos 2-cos 222x x x x x dx πππ=-+=-⎰(). (5) 因{}222222111max ,100001111(1)2222x x y x x x xD e d dx e dy e xdx e dx e e σ=====-⎰⎰⎰⎰⎰⎰, 所以 {}22max ,(1)x y Ded e σ=-⎰⎰.7. 画出积分区域,计算积分: 1) σ⎰⎰Dd y x ,其中D 是由两条抛物线2x y =, x y =所围成闭区域, 2) σ⎰⎰Dd xy2,其中D 是由圆周422=+y x 及y 轴所围成右半闭区域,3) σ⎰⎰+D yx d e, 其中D 是由1≤+y x 所确定的闭区域,4)σ⎰⎰-+Dd x y x )(22, 其中D 是由直线x y y ==,2 及x y 2=所围成的闭区域. [解] (1)图略.27114400226()3355xDdx x x dx σ==-=⎰⎰⎰⎰(2)图略.222352222164();31015Dxy d dy dx y y σ--==-=⎰⎰⎰ (3)图略.1111101x x x y x y x y x x De d e dx e dy e dx e dy σ+-++----=+⎰⎰⎰⎰⎰⎰1211211()()x x ee dx e e dx +---=-+-⎰⎰21021111111()()22x x e x ex e e e e +---=-+-=-.(4) 图略.2222202()()yy Dxy x dy x y x dx +-=+-⎰⎰⎰⎰2330193()248y y dy =-⎰ 4321911()2448y y =⋅- 136=. 8. 交换下列的积分顺序 1) ⎰⎰--22221),(x x xdy y x f dx ,2) ⎰⎰--aax a dy y x f dx 220),(3)⎰⎰-xx dy y x f dx sin 2sin 0),(π;4)⎰⎰--2ln 1),(2y e dx y x f dy ⎰⎰-++2)1(2112),(y dx y x f dy ;5)⎰⎰⎰⎰-+31301020),(),(yy dx y x f dy dx y x f dy ;6)⎰⎰--2ln 1),(2ye dx y xf dy ⎰⎰-++2)1(2112),(y dx y x f dy .[解] (1) 图略.2111202(,)(,)xydx f x y dy dy f x y dx--=⎰⎰⎰(2) 图略.(,)(,)aaadx f x y dy dy f x y dx-=⎰⎰(3) 图略.sin 01arcsin 0sin12arcsin 0arcsin 2(,)(,)(,)xyx yydx f x y dy dy f x y dx dy f x y dxπππ----=+⎰⎰⎰⎰⎰⎰(4) 图略. 因{}{}22ln =1,2(,)111)2D y e y x x y y y x -≤≤-≤≤⋃≤≤-≤≤(x,y ),因此积分区域还可以表示为212,02,1x D x y x e y x -⎧⎫⎪⎪=≤≤≤≤+⎨⎬⎪⎪⎩⎭(),所以 1222212221(101)1 (,)(,)(,)x x eIn y yedy f x y dx f x y dx dx f x y dy --+--+=⎰⎰⎰⎰⎰⎰.(5) 图略. 由3x y =-和=2=1x y ,,得123323012(,)(,)=(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+⎰⎰⎰⎰⎰⎰.9.计算下列二重积分: ⑴⎰⎰+Dy x d e σ23.2||,2||:≤≤y x D ⑵⎰⎰+Dd y xσ)(22.1||||:≤+y x D .⑶⎰⎰+Ddxdy y x 221.10,10:≤≤≤≤y x D . ⑷⎰⎰--Ddxdy y x )2(21.2,:x y x y D ==. [解] 223232322266442222111(1)()()326x y x y x y De d e dx e dy e e e e e e σ+------==+=--⎰⎰⎰⎰. (2)3111222100()()3xxy dx x y dy dx x y --+=+⎰⎰⎰3120(1)(1)3x x x dx ⎡⎤-=-+⎢⎥⎣⎦⎰ 12463=⨯=. (3) 23112110220011arctan 1133412Dx x dxdy x dx dy yy y ππ===⋅=++⎰⎰⎰⎰. (4)21011(2)(2)22x x Dx y dxdy dx x y --=--⎰⎰⎰⎰ 22101(2)22xx y dx y xy =--⎰2412230122222x x x x x x dx ⎡⎤⎛⎫⎛⎫=-----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎰1711(1)26410=-++ 11120=.10.利用极坐标求下列积分 1)⎰⎰+Dd y x σ)(22其中D 是由直线x y =, )0(3,,>==+=a a y a y a x y 所围成的区域. 2)⎰⎰+Ddxdy y x 22.1:22≤+y x D .3)⎰⎰--D d y x R σ222,其中D 是由圆周Rx y x =+22所围成的区域.4) ⎰⎰+Ddxdy y x)(22.y y x D 6:22≤+.5)⎰⎰-+Dd y x σ222,其中D :322≤+y x . 6)σ⎰⎰++Dd y x )1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内 的闭区域; 7)计算dxdy y x D)(22⎰⎰+,其 D 为由圆 y y x 222=+,y y x 422=+及直线y x 3-0=, 03=-x y 所围成的平面闭区域8) 计算二重积分⎰⎰++Ddxdyyx y x 2222)sin(π,其中积分区域为22{(,)|14}D x y x y =≤+≤;9)σ⎰⎰++--Dd yx y x 222211,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内的闭区域. 10)⎰⎰++Dd y xσ)1ln(22.4:22≤+y x D ,0≥x ,0≥y .[解] (1) 32222414ayay a Dx y d dy x y dx a σ-+=+=⎰⎰⎰⎰()().(2)2120012233Dd r dr πθππ==⋅=⎰⎰.(3)cos 202R Dd rdr πθπθ-=⎰⎰cos 202R d rdr πθθ=⎰⎰33320112(sin )33R R d πθθ=-⎰34()33R π=-. (4)设cos ,sin x r y r θθ==, 则006sin r θπθ≤≤≤≤,.22=Dx y dxdy +⎰⎰原式()6sin 3444000136sin 6432d r dr d πθπθθθπ==⨯=⎰⎰⎰.2222222000442230(5)22)2)55((24442D x y d d rdr d r rdr r rdr r r d r r πππσθθθππ⎡⎤+-=-=-+-⎢⎥⎣⎦⎡=--=⋅=⎢⎣⎰⎰⎰⎰⎰(6)积分区域D 的极坐标表达式0,012r πθ≤≤≤≤,则12222+x (1)(221)4DInd In r rdr In ππσ=+=-⎰⎰⎰⎰(1+y ).(7)内边界22sin 2sin r r r θθ=⇒=, 外边界24sin 4sin r r r θθ=⇒=,则,2sin 4sin 63r ππθθθ≤≤≤≤,所以原式=4sin 2224332sin 6660sin 15(48Ddxdy d r rdr d ππθππθπθθθ=⋅==-⎰⎰⎰⎰⎰(x +y )(8)cos ,sin x r y r θθ==,则02,12r θπ≤≤≤≤,原式221=sin 4Dd rdr πθπ==-⎰⎰.(9)采用极坐标计算200(2)8Dd ππθπ==-⎰⎰. (10) 积分区域D 的极坐标表达式为022r πθ≤≤≤≤0,,则22222+(1)(554)4DInd d In r rdr In ππσθ=+=-⎰⎰⎰⎰(1x +y ).11. 将三次积分⎰⎰⎰yxxdz z y x f dy dx ),,(110改换积分次序为z y x →→.[解] 110(,,)(,,)xy yy x xxD I dx dy f x y z dz d f x y z dz σ==⎰⎰⎰⎰⎰⎰,现改为先y 后x 的顺序:11(,,)(,,)yyxDxzI dy dx f x y z dz dy f x y z d σ==⎰⎰⎰⎰⎰⎰现改为先x 后z 的顺序:10(,,)(,,)yzy z zD I dy dz f x y z dx d f x y z dx σ==⎰⎰⎰⎰⎰⎰现改为先y 后z 的顺序:110(,,)zzI dz dy f x y z dx =⎰⎰⎰.12.将三次积分⎰⎰⎰+10122),,(y x dz z y x f dy dx 改变成按x z y ,,的次序积分.[解] 1()(,,)(,,)D x I f x y z dV dx f x y z Ω==⎰⎰⎰⎰⎰⎰,其中22.Dy ≤≤≤≤+(x ):0y 1,0z x 现改为先y 后z 的顺序,将D (x )分成两部分: 2,01;y ≤≤≤≤0z x2211x z x y ≤≤+≤≤,所以:222111110=x x xI dx dz dy dx dz ++⎰⎰⎰⎰⎰.13..求下列给定区域的体积 1)求由曲面222y xz +=及2226y x z --=,所围成的立体的体积;2)求由下列曲面所围成的立体体积,y x z+=,xy z =,1=+y x ,0=x ,0=y .[解] 1) 222226(2)z x y x y =+=-+, {22(,)|2},D x y x y =+≤ 于是2222(62)(2)DV z y x y dxdy =---+⎰⎰2263()D xy dxdy =-+⎰⎰2203)6r rdrd πθπ=-=⎰. 2) []111107()24xx y xx y z x xyV d d d d x y xydy -+-==+-=⎰⎰⎰⎰⎰. 14.作适当的变换,计算下列二重积分:1)⎰⎰Ddxdy y x22,其中D 是由两条双曲线1=xy 和2=xy ,直线x y =和xy 4=所围成的在第Ⅰ象限的闭区域. 2)⎰⎰+Ddxdy y x )(22,其中D 是椭圆区域:1422≤+y x . [解] 1) (,)(,)1,2,(,)(,)22u xyu v x y v yx y u v v v =⎧∂∂⎪==⎨∂∂=⎪⎩, {}'(,)|12,14D u v u v =≤≤≤≤, 于是,2422221117ln 2223x y u v u v D D u x y d d u d d d d v v =⋅==⎰⎰⎰⎰⎰⎰. 2) cos 1sin 2x r y r θθ=⎧⎪⎨=⎪⎩, {}'(,)|01,02D r r θθπ=≤≤≤≤, 于是 ,,222221()(cos sin )42D Dr x y dxdy r drd θθθ+=+⎰⎰⎰⎰ 123001535(cos 2)28832r drd πθθπ=+=⎰⎰.15. 计算dxdydz z xy V42⎰⎰⎰.31,20,10:≤≤≤≤≤≤z y x V .[解]1232424213230010111196823515Vxy z dxdydz xdx y dy z dz x y z ==⋅⋅=⎰⎰⎰⎰⎰⎰. 16.计算dxdydz z y x V⎰⎰⎰++)sin(.V 由平面0=x ,0=y ,0=z ,2π=++z y x 围成.[解]222sin()sin()x yx y z dxdydz dx dy x y z dz πππ--Ω++=++⎰⎰⎰⎰⎰⎰22200cos()|x ydx x y z dy πππ--=-++⎰⎰22sin()|xx y dx ππ-=+⎰12π=-.17.在柱面坐标系下计算三重积分dxdydz y xV⎰⎰⎰+)(22,其中V 由旋转抛物面)(2122y x z +=及平面2=z 所围成的立体. [解] 令cos sin x r y r θθ=⎧⎨=⎩, {}'02,02V r z θπ=≤≤≤≤≤≤, 于是,222223016()3x y z r z r z VVx y d d d r rd d d d d d πθθπ+=⋅==⎰⎰⎰⎰⎰⎰⎰⎰. 18.设有物体占有空间V: 0≤x ≤1, 0≤y ≤1,0≤z ≤1,在点()z y x ,,的密度是()z y x z y x ++=,,ρ,求该物质量.[解] (,,)()M x y z dxdydz x y z dxdydz ρΩΩ==++⎰⎰⎰⎰⎰⎰1113()2dx dy x y z dz =++=⎰⎰⎰. 19.计算⎰⎰⎰Vdxdydz z xy32,其中V 是曲面xy z =与平面1,==x x y 和0=z 所围成的闭区域.[解] Ω在xOy 面上的投影区域Dxy 由,1,0y x x y ===所围成,则11232312001128364xxyxyz dxdydz xdx y dy z dz x dx Ω===⎰⎰⎰⎰⎰⎰⎰. 20.计算⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是平面1,0,0,0=++===z y x z y x 所围成的四面体.[解] 令1x y z ++=中的0z =,得1x y +=,Ω在xOy 面上的投影区域Dxy 由0,0,1x y x y ==+=所围成, 所以111330001(1)(1)x x y dxdydz dx dy dz x y z x y z ---Ω=++++++⎰⎰⎰⎰⎰⎰ 1120011115()(ln 2)24(1)28x x y d d x y -=--=--++⎰⎰. 21. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是球面1222=++z y x 及坐标面所围成的第一卦限内的闭区域.[解] 令2221x y z ++=中z=0得221y +=x ,故Ω在xOy 面上的投影区域Dxy 由221,0,0x y x y +===所围成,故1xyzdxdydz dx xyzdz Ω=⎰⎰⎰⎰1122220001111(1)(1)22448xdx y x y dy x x dx ⎡⎤=--=-=⎢⎥⎣⎦⎰⎰. 22. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是平面1,,0===y y z z 以及抛物柱面2x y =所围成的闭区域.[解] (1)故Ω在xOy 面上的投影区域Dxy 由1y =,2y x =所围成, 所以2111yxxzdxdydz dx dy xzdz -Ω=⎰⎰⎰⎰⎰⎰21121102x xdx y dy -==⎰⎰. (2)Ω在z 轴上的投影区域为[]0,h ,过[]0h ,内的任一点做垂直于z 轴的平面截Ω得截面为一圆域Dz ,其半径为R z h,所以Dz 为:22222R x y z h +=,面积为222R z h π, 所以222224hhDzR R h zdxdydz zdz dxdy zz dz h ππΩ===⎰⎰⎰⎰⎰⎰⎰.23. 计算⎰⎰⎰Vzdxdydz , 其中V 是曲面222y x z --=及22y x z +=所围成的闭区域. [解]联立z =及22z x y =+,22=1x y +,故Ω在xOy 面上的投影区域为221x y +≤ ,用柱坐标得2242121027()2212rr r zdv d rdr d r dr ππθπθΩ-==-=⎰⎰⎰⎰⎰⎰⎰.24. 计算⎰⎰⎰+Vdv y x )(22,其中V 是z y x 222=+及平面2=z 所围成的闭区域. [解] 联立222x y z +=及2z =得224x y +=,故Ω在xOy 面上的投影区域为224x y +≤,所以2222223216()3r x y dv d r dr dz ππθΩ+==⎰⎰⎰⎰⎰⎰. 25. 计算⎰⎰⎰++Vdv z y x )(222,其中V 是球面1222=++z y x 所围成的闭区域. [解]2122240004()sin 5x y z dv d d r dr ππϕπθϕΩ++==⎰⎰⎰⎰⎰⎰. 26. 计算⎰⎰⎰Vzdv ,其中V 是由不等式()2222a a z y x ≤-++, 222z y x ≤+所围成的闭区域.[解] 在球面坐标系中,2222()y z a a ++-≤x ,即为2222cos ,r a x y z ϕ≤+≤,即4πϕ≤,所以22cos 2344440sin cos 2sin 2cos a zdv d d r dr ad d πππϕπϕϕϕϕϕθϕθΩ==⎰⎰⎰⎰⎰⎰⎰⎰245440074cos (cos )6ad d a ππθϕϕπ=-=⎰⎰.27. 用三重积分计算下面所围体的体积:(1) 226y x z --=及22y x z +=(2) az z y x 2222=++及222z y x =+(含z 轴部分).[解] (1) 226z x y =--可变为26z r =-, z =变为z r =, 则22262230322(6)3r rV dv rdrd dz d rdr dz r r r dr r πθθπ-ΩΩ====--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰. (2) 222x y z +=的球面坐标方程为=4πϕ, 2222x y z az ++=的球面坐标方程为2cos r a ϕ=, 则22cos 22340sin sin a V dv r drd d d d r dr a ππϕϕϕϕθπθϕΩΩ====⎰⎰⎰⎰⎰⎰⎰⎰⎰.28. 求球面2222a z y x=++,含在圆柱体ax y x =+22内部的那部分面积.[解]上半球面方程为1D 为曲面在第一象限的投影:22,0x y ax y +≤≥,14D A =14D =cos 204a d πθθ=⎰⎰204(sin )a a a d πθθ=-⎰22(2)a π=-.29. 求锥面22y x z +=被柱面x z 22=所截得部分的曲面面积.[解] 由2222,2z x y z x =+=得222x y x +=,故所求曲面在xOy 的投影区域D 为222y x +≤x ,于是DA =D=⎰⎰Ddxdy ==.30. 求圆柱面222x y R +=将球面22224x y z R ++=截下部分的面积.[解] 由对称性,只考虑z =D :222x y R +≤, 于是x z =,y z =,==.因此,2S σ=⎰⎰4R d σ=⎰⎰4R θ=⎰⎰204R Rd πθ=⎰⎰0142(2RR π=⋅⋅-⋅28(2R π=.31. 求圆柱面222x y R +=,222x z R +=所围成的立体的表面积.[解] 由对称性,只考虑z =,D :222x y R +≤. 于是,==, 因此所求的表面积为16S σ=⎰⎰16σ=⎰⎰16R Rdx =⎰201616RR dx R ==⎰.32. 已知A 球的半径为R , B 球的半径为h 且球心在A 球的表面上, 求夹在A 球内部的B球的部分面积(02h R ≤≤).[解] 建立坐标系可设球A :2222x y z R ++=,球B :2222()x y z R h ++-=,则两球面的交线在xOy 面的投影区域为D :222222(4)4h x y R h R+=-,在A 球内部的B球面为:z R =A 球内部的B 球的表面积()S h σ=⎰⎰σ=⎰⎰θ=⎰⎰20hd πθ=⎰322h h Rππ=-.33. 求均匀半球体0,2222≥≤++z r z y x 的质心.[解]),0,0(r34. 求下列均匀的平面薄板重心:(1) 半椭圆;0,12222≥≤+y by a x (2) 高为h ,底分别为a 和b 的等腰梯形.[解] (1)设重心位置在),(y x ,由对称性0=x ,现求y .⎰⎰⎰⎰⎰⎰==DDDydxdy ab dxdyydxdyy πμμ2dr r ab d ab θθππsin 22120⎰⎰=π34b =. (2)设等腰梯形在直角坐标系中位置如图,其重心位置为),(y x , 对称性可得0=x ,并且有⎰⎰⎰⎰⎰⎰+==D DD ydxdy h b a dxdy ydxdyy )(2μμ⎰⎰--+=h y L y L dx ydy h b a 0)()(1211)(2 =⎰+--+h ydy a h y h b a h b a 0])([)(2=h b a ab )(32++, 其中,12():()2h a L x y x h b a =++-, 22():()2h aL x y x h a b =-+-. 35. 由直线2,2,2===+y x y x 所围成的质量分布均匀 (设面密度为μ)的平面薄板,关于x 轴的转动惯量xI .[解] 2222024x y x yDI y d y d d σμμμ-===⎰⎰⎰⎰.36. 求边长为密度均匀的立方体关于其任一棱边的转动惯量.[解] 设方体的密度为ρ, 则22()z VI x y dxdydz ρ=+⎰⎰⎰2250002()3aaadx dy x y dz a ρρ=+=⎰⎰⎰.37. 求半径为a ,高为h 的圆柱体对于过其中心并且平行于母线的轴的转动惯量(假设密度1ρ=).[解] 建立坐标系,过中心且平行于母线的轴即为z 轴, 于是 22()(,,)z I x y x y z dv ρΩ=+⎰⎰⎰22()x y dv Ω=+⎰⎰⎰3r drd dz θΩ=⎰⎰⎰23ahd r dr dz πθ=⎰⎰⎰424a h π=⋅⋅412a h π=.38. 求抛物线2y x =,直线1y =所围成的均匀薄片对于直线1y =-的转动惯量.[解] 21(1)y DI y d ρσ=-=+⎰⎰21121(1)xdx y dy ρ-=+⎰⎰1231{8(1)}3x dx ρ-=-+⎰12302{8(1)}3x dx ρ=-+⎰164202{733}3x x x dx ρ=---⎰ 213368{71}375105ρρ=---=. 39. 求密度为ρ的均匀半球体对于在其中心的一单位质量的质点的引力.[解] 设球半径为R ,建立坐标系如图,由对称性,0x y F F ==;02222dv mdMdF kk r x y zρ==++, cos z dF dF γ={,,}n x y z =,02211,,}||n n x y z n x y ==+,故cos γ=;cos z dF dF γ=320222()zk dv x y z ρ=++,从而32222()z zdvF k x y z ρΩ=++⎰⎰⎰203cos sin r k r drd d rϕρϕθϕΩ=⎰⎰⎰0cos sin k drd d ρϕϕθϕΩ=⎰⎰⎰220000cos sin Rk d d dr ππρθϕϕϕ=⎰⎰⎰001{2}2k R k R ρπρπ=⋅⋅=.40. 求均匀薄片R y x ≤+22,0=z 对于轴上一点),0,0(c )0(>c 处的单位质量的引力;[解] 由对称性,引力方向必在z 轴方向上,因此0=x F ,0=y F ,且dxdy z y x ck F R y x x ⎰⎰≤+++=22223222)(μdr c r r d c k R⎰⎰+=0232220)(πθμ]1[222cR c k +-=πμ.故},0,0{Z F F =.41.求均匀柱体222a y x ≤+,h z ≤≤0对于点),0,0(c P )(h c >处的单位质量的引力.[解] 设物体密度为μ,由对称性0=x F ,0=y F . 进一步32222[()]z Vz cF k dxdydz x y z c μ-=++-⎰⎰⎰dz c z r c z dr r d k ha ⎰⎰⎰-+-=032220]])([[πθμ2]h k πμ=,故{0,0,2]}F h k πμ=, 其中k 为引力系数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档