幂函数、指数函数、对数函数比较大小ppt课件

合集下载

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y=logbx(b>1)的增长有何差异?
一般地,无论k(k>0)、a(a>1)、b(b>1)如何取值,三种函数在区间(0,+∞)上都单调递增,但一次函数总是保持固定的增长速度;指数函数的增长速度都会越来越快,并且指数函数的函数值最终总会大于一次函数的函数值;对数函数的增长速度都会越来越慢,并且对数函数的函数值最终总会小于一次函数的函数值.
401
626
901
y2
2
32
1024
32768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
【解析】(1)由于指数型函数的增长式为爆炸式增长,则当x越来越大时,函数y=的增长速度最快,故选A.
(2)从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数变化.
x
y=2x
y=2x
0
1
0
2
4
4
4
16
8
6
64
12
8
256
16
10
1024
20
12
4096
24



可以看到,当自变量x越来越大时,y=2x的图象就像与x轴垂直一样,2x的值快速增长;而函数y=2x的增长速度依然保持不变,与函数y=2x的增长速度相比几乎微不足道.

幂函数、指函数与对函数PPT课件

幂函数、指函数与对函数PPT课件

D. b > a > 1 O
思路二:
1b a
x
数形结合
26
题型三:幂函数性质的应用
3.比较下列各组数的大小:
< 1
1
(1)1.32 ____ 1.4 2
解后反思 两个数比较
(2)0.261
_>____
0.271
大小,何时 用幂函数模
(3)(5.2)2 _<____(5.3)2
型,何时用 指数函数模
即 log2 a log2 b 0 log2 1
a b 1 所以答案选C. 25
能力提升
变②:若0 < loga 2 < logb 2,则
C
()
A. 0 < a < b < 1 y
B. 0 < b < a < 1
1
C. a > b > 1
x=2
y= logb x
y= loga x
解析式 y = a x ( a > 0, a≠1)
y
图 象 0<a<1
y a>1
1
(描点)
1
0
x
0
x
y = log a x ( a > 0, a≠1)
y 0<a<1
y a>1
01
x
01
x
定义域
R
(0 , +∞)
值域
(0 , +∞)
R
定点
都过点(0,1)
都过点(1,0)
范围
x<0时,y>1;x>0时,y>10;<x<1时 x>0时 x<0时 y>0

指数函数、幂函数、对数函数增长的比较ppt课件

指数函数、幂函数、对数函数增长的比较ppt课件

1000
1500
对于模型y=log7x+1,它在区间[10,1000] 上递增,而且当x=1000时, y=log71000+1≈4.55<5,所以它符合
17
练习
1、0.32,log20.3,20.3这三个数之间大小关 系是( D ) A. 0.32<20.3<log20.3; B. 0.32<log20.3<20.3; C. log20.3<20.3<0.32; D. log20.3<0.32<20.3;
4
3
2
1
0
0
200
400
600
800
1000
1200
对于模型由y=1.002x函数图像并利用计算 器满,足可1以.0知02道x0=在5,由区于间它(80在5,区80间6)[内10有,1一00个0]上点递x0 增,因此当x>x0时,y>5,因此该模型也不符合 要求;
16
5
4 3
y=㏒7x
2
1
0
0
500
18
练习
2、作图像,试比较函数y=4x,y=x4, y=log4x 的增长情况. y=x4 y y=4x
y=log4x
x
19
小结 比较了指数函数、幂函数、对数函数的增长
在区间(0,+∞)上,当a>1,n>0时,当x足够大 时,随着x的增大,y=ax的增长速度越来越快, 会超过并远远大于y=xn的增长速度,而 y=logax的增长速度则越来越慢.
20
长就越快。
y 3x
y 2x
2
对数函数
2.当a>1时,对数函数y=logax是增函数, 并且对于x>1,当a越小时,其函数值的 增长就越快。 y

幂函数指数函数对数函数比较大小 ppt课件

幂函数指数函数对数函数比较大小 ppt课件
• “太阳当空照,花儿对我笑,小鸟说早早早……”
(1)定义域:R (2)值域:(0, +)
(3)单调性:当01时,指数函数在定义域上是减函数 当1时,指数函数在定义域上是增函数
(4)奇偶性:非奇非偶
幂函数指数函数对数函数比较大小
幂函数指数函数对数函数比较大小
幂函数指数函数对数函数比较大小 Nhomakorabea精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”

指数函数对数函数与幂函数指数函数与对数函数的关系pptx

指数函数对数函数与幂函数指数函数与对数函数的关系pptx
对数函数的图像是一条直线,在定义域内单调递 增。
性质
对数函数的图像与y轴的交点为1,函数的导数是1/x',其中x'是x的倒数。
复合对数函数
定义
复合对数函数是指数函数和对数函数的组合形式,它表示为log(base) (x) ^ (y),其中base是底数,x和y是函数的自变量。
当n为负整数时,幂 函数的最大值出现在 x=1处,且最大值为 1/2;
当n为分数时,幂函 数的最大值出现在 x=1处,且最大值为 1。
复合幂函数
定义
复合幂函数是指由幂函数与其他函数复合而成的函数,如 $f(x) = \sin x^{2}$。
性质
复合幂函数的性质取决于其内部的幂函数的性质以及外部函 数的性质。例如,如果内部函数是偶函数,则复合幂函数也 是偶函数;如果内部函数是奇函数,则复合幂函数也是奇函 数。
复合指数函数
定义:复合指数函数是指形式为f(ax+b)的函数,其中 a和b是常数,且a≠0。
1. 复合指数函数的图像与指数函数的图像类似,但需 要根据具体的函数表达式来确定。
性质
2. 复合指数函数的性质与指数函数的性质类似,但需 要根据具体的函数表达式来进行判断。
02
对数函数
对数函数的定义与性质
性质
1. 当x为有理数时,a^x仍为有 理数;当x为无理数时,a^x亦 为无理数。
2. 当a>1时,a^x>0;当 0<a<1时,a^x<0。
指数函数的图像与性质
图像:指数函数的图像是一条连续的曲线,经过原点 ,并在第一象限内单调递增。
1. 函数值y随x的增大而增大(当x为正数时)。
性质
2. 当x=0时,y=1(当a>1时),y=0(当0<a<1时 )。

原创精品课件1:3.6 指数函数、幂函数、对数函数增长的比较(导学式)

原创精品课件1:3.6 指数函数、幂函数、对数函数增长的比较(导学式)

知识回顾
三、对数函数的图像与性质 y=logax(a>0 且 a≠1)的图像和Hale Waihona Puke 质.知识回顾知识回顾
四、指数函数、幂函数、对数函数增长的比较 一般地,对于指数函数 y=ax(a>1)和幂函数 y=xn(n>0), 通过探索可以发现,在区间(0,+∞)上,无论 n 比 a 大多少, 尽管在 x 的一定变化范围内,ax 会小于 xn,但由于 ax 的增长 快于 xn 的增长,因此总存在一个 x0,当 x>x0 时,就会有 ax>xn.
新知探究
在区间(0,+∞)上,尽管函数 y=ax(a>1),y=logax(a>1), y=xn(n>0)都是________(填“增”或“减”)函数,但它们的 增长速度不同,而且在不同的“档次”上,随着 x 的增大,y = ax(a>1) 的增长速度越来越快,会超过并会远远大于 y = xn(n>0) 的增长速度,而 y = logax(a>1) 的增长速度会越来越 慢 . 因 此 , 总 会 存 在 一 个 x0 , 当 x>x0 时 , 就 有 logax________x ________a .
典例精讲 题型一:函数增长快慢的比较
[方法总结] (1)我们常把指数的这种快速剧增形象地称为“指数爆炸”. (2)在计算器或计算机中,1.10×1012 常表示成 1.10E+12. (3)在区间(0,+∞)上,尽管函数 y=ax(a>1),y=logax(a>1)和 y=xn(n>0)都 是增函数,但它们的增长速度不同,而且不在同一“档次”上,随着 x 增长,y =ax(a>1)的增长速度越来越快,会超过并远远大于 y=xn(n>0)的增长速度,而 y = logax(a>1) 则增长会越来越慢,因此,总会存在一个 x0 ,当 x>x0 时,就有 logax<xn<ax.

指数函数、对数函数、幂函数 经典课件(最新)

指数函数、对数函数、幂函数 经典课件(最新)

高中数学课件
知识要点梳理
高中数学课件
(一)指数函数 1.根式 (1)n 次方根:如果 xn=a,那么 x 叫做 a 的________,其中 n>1,且 n∈N*. ①当 n 为奇数时,正数的 n 次方根是一个________数;负数的 n 次方根是一个________ 数,这时 a 的 n 次方根用符号________表示. ②当 n 为偶数时,正数的 n 次方根有________个,这两个数互为________.这时, 正数 a 的正的 n 次方根用符号________表示,负的 n 次方根用符号________表示.正的 n 次方根与负的 n 次方根可以合并写成________. ③负数没有偶次方根. ④0 的 n(n ∈N*)次方根是________,记作________.
8.对数运算的常用结论 (1)logambn=________; (2)logab=________.
答案:mn logab
1 logba
高中数学课件
高中数学课件
高频考点透析
高中数学课件
高频考点 1 指数幂的运算 【例 1.1】 (2019 年济宁测试)化简下列各式:
1 23 (1)[(0.0645)-2.5]3-
数时,幂函数在定义域上为偶函数.
高中数学课件
答案
(一)1.(1)n 次方根
①正

n a
②两
相反数
n a
-n a
n ±a
④0
n 0=0
(2)根指数 被开方数 (3)a |a|
2.(1)1

1 (2)an
n (3)
am
1 (4)
n am
(5)0 没有意义 (6)ar+s ars arbr

指数函数,幂函数,对数函数的增长的比较及函数模型 课件

指数函数,幂函数,对数函数的增长的比较及函数模型 课件
2018年年份代码为 = 2,依此类推)有两个函数模型 = > 0, > 1 与
= + > 0 可供选择.
(1)试判断哪个函数模型更合适(不需计算,简述理由即可),并求出该模型
的函数解析式;
(2)问大约在哪一年,三峡大坝旅客年游览人数约是2018年的2倍.(参考数据:

2、建立函数模型解决实际问题的步骤
(1)确切理解题意:明确问题的实际背景,进行科学的抽象、概括,将实际问
题转化为数学问题。
(2)建立相应的数学模型(选择合适的数学模型)
(3)求解函数模型,得出数学结论
(4)将用数学知识和方法得出的结论,还原为实际问题的意义,并进行验证,
看是否符合实际。
典 例 剖 析
1
= 80 + 4 21 , = 2 + 120,设甲大棚的资金投入为(单位:万元),
4
每年两个大棚的总收入为 (单位:万元),求 的最大值。
题型六 分段函数模型
例6、通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化
而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的
指数函数、幂函数、对数函
数增长的比较与函数模型


1
输 入 标 题 名 称
2
输 入 标 题 名 称
3
输 入 标 题 名 称
4
输 入 标 题 名 称
情 景 导 入
每年的3月21日时植树节,全国各地在这一天都会开展各种形式的植树
活动,某市现有树木面积为10万平方米,计划今后5年内扩大树木面积,现
有两种方案如下:
状态,随后学生的注意力开始分散,设 表示学生注意力随时间(分钟)的变化

指、对、幂的大小比较:高考数学复习课件

指、对、幂的大小比较:高考数学复习课件

π 6
,则a,b,c的大小关系为
A.a>b>c
B.a>c>b
C.b>c>a
√D.b>a>c
1 2 3 4 5 6 7 8 9 10
c=sin π6=12,因为函数 y=log3x,y=log4x 在(0,+∞)上单调递增,
则 a=log32>log3 3=12,b=log43>log42=12.
a-b=llnn
23-llnn
34=ln
2×ln 4-ln ln 3×ln 4
32,
因为 ln 2>0,ln 4>0,则 ln 2+ln 4>2 ln 2×ln 4⇒ln 2×ln 4<14×
(ln 8)2<14×(ln 9)2=(ln 3)2.
故a<b,综上,b>a>c.
1 2 3 4 5 6 7 8 9 10
6.已知 log4m=290,log12n=14,0.9p=0.8,则正数 m,n,p 的大小关系为
√A.p>m>n
B.m>n>p
C.m>p>n
D.p>n>m
1 2 3 4 5 6 7 8 9 10

log4m=290,得
9
m=420
9
=210
<2,

log12n=14,得
1
n=12 4

m n
9
4 20
1
12 4
1 9
4 20
1 5
12 20
1
49 125
20
1
35
49 45
20
(2)(2023·哈尔滨模拟)已知 a=sin 56π,b=ln 3,c=20.2,则 a,b,c 的大 小关系为

专题复习幂函数、指数函数、对数函数.ppt

专题复习幂函数、指数函数、对数函数.ppt

(4) a>1时, x<0,0<y<1; x>0,y>1 (4) a>1时,0<x<1,y<0; x>1,y>0

0<a<1时,x<0,y>1;x>0,0<y<1 0<a<1时,0<x<1,y>0; x>1,y<0
(5) a>1时, 在R上是增函数; (5) a>1时,在(0,+∞)是增函数;
0<a<1时,在R上是减函数 0<a<1时,在(0,+∞)是减函数
(0,+∞)上是减函数。
(3)在第一象限,图象向上与 y 轴无限接近,向右与 x 轴无限接近。Βιβλιοθήκη 幂函数在第一象限的性质小结
y
当n>0
n>1 y=x
1
0<n<1
x
O
1
(1) 图象必经过点(0 , 0)和(1 , 1); (2) 在第一象限内,函数值随着 x 的增大而增大。
幂函数在第一象限的性质小结
y
x u=g(x) y=f(u)
u=g(x)



y=f(u)



y=f[g(x)] 增


定义域
分解
各自判断
减 减 增
复合
9. 设 f (x) 1 lg 1 x
x 2 1 x
(1)试判定函数f(x)的单调性,并给出证明;
(2)解关于x的不等式 f [x(x 1)] 1 22
三、函数的奇偶性
12.已知函数
ax 1

第11讲指数函数对数函数幂函数PPT课件

第11讲指数函数对数函数幂函数PPT课件

30
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版
立足教育 开创未来
题型三 幂函数及其简单应用
例3(1)设α∈{-1,1, 1 ,3},
则使函数y=xα的定义域为R且为2 奇函 数的所有α的值为 1,3 .
2
y=3u是增函数,
所以y 在[ 3
3-x2 3x2在(-∞,
3
2 ]上单调递增,
,+∞)上单调递减.
2
21
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版
立足教育 开创未来
点评 复合函数的值域可
采用换元法,结合中间变量的 范围求函数值域.
复合函数y=f(x)的单调性要 根据y=au,u=f(x)两函数在相应 区间上的单调性确定,遵循 “同增异减”的规律.
解析 由0<a<1知函数f(x)=logax为
减函数.故由logam<logan<0,得m>n>1.
6
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版
立足教育 开创未来
3.已知函数f(x)= 2x (x<4)
f(x-1) (x≥4), 则f(-2)= 1 ,f(5)= 8 .
4
解析
28
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版
立足教育 开创未来
变式 已知函数f(x)=log 1 (x2-2ax+3).
2
(1)若f(x)的定义域为R,求实数a的 取值范围;
(2)若函数f(x)在(-∞,1]上为增函数, 求实数a的取值范围.
解析(1)依题意,
x2-2ax+3>0对x∈R恒成立, 即Δ=(-2a)2-4×3<0,即a2<3, 解得a∈( - 3 , 3 ).

幂指对函数的增长比较ppt课件

幂指对函数的增长比较ppt课件
11
比较大小
[例 2] 比较下列各组值的大小:
(1)log1
2
45与
log1
2
67;
(2)0.8-0.1 与 1.250.2;
(3)log32.5 与 log52.5; (4)(lgm)1.7 与(lgm)2.1(m>1).
[分析] 充分利用函数的图像和性质(如单调性等)来比较
两数的大小.
12
[解析] (1)y=log1 x 在(0,+∞)上递减,
1 o 1234 x
4
一般地,对于指数函数 y=ax (a>1)和幂函数 y=xn (n>0),在区间
(x0,0+∞)10 上,无20论n比a大30多少,尽4管0 在x的一5定0 变化范围
y内=2,x a1x会10小24于x1.n0,5但×由10于6 a1x.0的7×增1长09 快1.于10x×n1的01增2 长1.1,3×因10此15 总存在
2.列表并在同一坐标系中画出上面这三个函数的图像.
x
0.2 0.6 1.0 1.4
y
y=x2 y=2x
y=2x 1.149 1.516 2 2.639
5
y=x2 0.04 0.36 1 1.96
4
y=log2 x -2.322 -0.737 0 0.485
3
1.8 2.2 2.6 3.0 3.4 …
6
知能自主梳理
7
在区间(0,+∞)上,尽管函数 y=ax(a>1),y=logax(a>1), y=xn(n>0)都是________(填“增”或“减”)函数,但它们的 增长速度不同,而且在不同的“档次”上,随着 x 的增大,y =ax(a>1)的增长速度越来越快,会超过并会远远大于 y= xn(n>0)的增长速度,而 y=logax(a>1)的增长速度会越来越 慢 . 因 此 , 总 会 存 在 一 个 x0 , 当 x>x0 时 , 就 有 logax________xn________ax.

幂函数PPT课件

幂函数PPT课件
栏目 导引
第4章 指数函数与对数函数
2.幂函数的图象与性质 (1)五种常见幂函数的图象
栏目 导引
第4章 指数函数与对数函数
(2)五类幂函数的性质 幂函数 y=x y=x2
y=x3
定义域 _R__ ___R___ __R____
值 域 R___ [0,___+__∞_ ) __R____
1
y=x2 [0_,__+__∞_ )
栏目 导引
第4章 指数函数与对数函数
【解】 因为图象与 x,y 轴都无交点, 所以 m-2≤0,即 m≤2. 又 m∈N,所以 m=0,1,2. 因为幂函数图象关于 y 轴对称,所以 m=0,或 m=2. 当 m=0 时,函数为 y=x-2,图象如图 1; 当 m=2 时,函数为 y=x0=1(x≠0),图象如图 2.
∞,0],_减____
(-∞,0),
_减_____
公共点
都经过点_(1_,__1_)_
栏目 导引
第4章 指数函数与对数函数
1.判断(正确的打“√”,错误的打“×”) (1)函数 y=x0(x≠0)是幂函数.( ) (2)幂函数的图象必过点(0,0)和(1,1).( ) (3)幂函数的图象都不过第二、四象限.( ) 答案:(1)√ (2)× (3)×
栏目 导引
第4章 指数函数与对数函数
(1)幂函数 y=xα的图象恒过定点(1,1),且不过第四象限. (2)解决幂函数图象问题,需把握两个原则:①幂指数 α 的正 负决定函数图象在第一象限的升降;②依据图象确定幂指数 α 与 0,1 的大小关系,在第一象限内,直线 x=1 的右侧, 图象由上到下,相应的指数由大变小.
栏目 导引
第4章 指数函数与对数函数
2.下列函数中不是幂函数的是( )

《对数与对数函数》指数函数、对数函数与幂函数PPT(对数函数的性质与图像)

《对数与对数函数》指数函数、对数函数与幂函数PPT(对数函数的性质与图像)
错解三中出现逻辑性错误运算变形的顺序出现了问题即开始默认了a1对原不等式进行了转化是不正确的虽然后来对a又进行了讨论看起来结果正确而实际上解答过程是错误的
人教版高中数学B版必修二
指数函数、对数函数与幂函数
4.2 对数与对数函数
4.2.3 对数函数的性质与图像
-1-
课标阐释
思维脉络
1.理解对数函数的概念,体会对
B.(-1,+∞) C.(-1,4)
D.(4,+∞)
(2)函数 y=loga -1(a>0,a≠1)的定义域为
答案:(1)A
(2)(1,+∞)
+ 1 ≥ 0,
解析:(1)由题意可知
4- > 0,
解得 x∈[-1,4),故选 A.
(2)由题意可得 -1>0,又∵偶次根号下非负,
∴x-1>0,即 x>1.
A.(0,2)
B.(0,2] C.(2,+∞)
1
指数函数、对数函数与幂函数
(2)函数 f(x)=log4 的大致图像为(
)
D.[2,+∞)
)

(1)函数
(a>0,且a≠1)是对数函数.
因忽视真数的取值范围而致误
29可看作是函数y=log0.
(5)当0<a<1时,y=logax为R上的减函数;当a>1时,y=logax为R上的增函数.
同理可得函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1].
故函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1],
单调减区间为[1,+∞).
课堂篇探究学习
探究一

新教材高中数学第四章指数函数对数函数与幂函数1.2指数函数的性质与图像课件新人教B版必修第二册

新教材高中数学第四章指数函数对数函数与幂函数1.2指数函数的性质与图像课件新人教B版必修第二册
4
∴2x= 1 ,解得x=-2.
4
2.(☆)解下列不等式.
(1)
1 2
3
x 1
≤2;
(2) ax2 3x1< ax2 6(a>0,且a≠1).
解析
(1)∵2=
2
≤ 3x-1
1 2
-1.
∵y=
1 2
x
在R上是减函数,
∴3x-1≥-1,解得x≥0,
故原不等式的解集是{x|x≥0}.
判断正误,正确的画“ √” ,错误的画“ ✕” 。 1.函数y=2x+1是指数函数. ( ✕ ) 提示:因为指数x+1不是自变量,所以函数y=2x+1不是指数函数.
2.若指数函数f(x)=(2a+1)x在定义域上是增函数,则实数a的取值范围为(0,+∞).
(√)
提示:由题意可知2a+1>1,解得a>0.
拔高问题 3.求与指数函数有关的复合函数的值域时要注意什么? 提示:要注意与求其他函数(如一次函数、二次函数)值域的方法相结合,同时注意 指数函数的值域为(0,+∞),求解时要准确运用指数函数的单调性.
1.(☆)(1)函数f(x)= A.(-3,0]
1+ 2x 的1定义域为 ( A )
x3
B.(-3,1]
问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的函数关系式是什 么? 提示:y=2x+1. 2.上述求出的函数关系式中,x的范围是什么?值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
与指数函数有关的复合函数的定义域、值域的求法(a>0且a≠1): (1)函数y=af(x)的定义域与f(x)的定义域相同; (2)求函数y=af(x)的值域,需先确定f(x)的值域,再根据指数函数y=ax的单调性确定函 数y=af(x)的值域; (3)求函数y=f(ax)的定义域,需先确定y=f(u)的定义域,即u的取值范围,亦即u=ax的值 域,由此构造关于x的不等式(组),确定x的取值范围,得到y=f(ax)的定义域; (4)求函数y=f(ax)的值域,需先利用函数u=ax的单调性确定其值域,即u的取值范围, 再确定函数y=f(u)的值域,即y=f(ax)的值域.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档