对称分量法
对称分量法公式

对称分量法公式摘要:一、对称分量法简介1.对称分量法的概念2.应用背景二、对称分量法公式推导1.基本概念与定义2.公式推导过程三、对称分量法的应用1.在电力系统中的应用2.在其他领域的应用四、对称分量法的优缺点1.优点2.缺点五、结论正文:对称分量法是一种分析电气工程、信号处理等领域中复杂系统的方法,通过分解系统中的对称分量,简化问题,从而更好地理解和处理问题。
对称分量法广泛应用于电力系统的故障分析、保护装置设计和运行控制等领域。
1.对称分量法的概念对称分量法是将复杂系统中各变量分解为正、负、零三个对称分量。
正分量表示变量在正序方向上的分量,负分量表示变量在负序方向上的分量,零分量表示变量在零序方向上的分量。
通过分解对称分量,可以简化系统模型,便于分析和处理问题。
2.应用背景对称分量法主要应用于电力系统,包括发电、输电、配电和用电等环节。
在电力系统中,对称分量法可以帮助分析系统中的不对称故障,如两相或三相短路等,并为保护装置的设计和运行提供依据。
此外,对称分量法还应用于信号处理、自动控制、通信等领域。
3.对称分量法公式推导对称分量法的公式推导主要包括基本概念与定义以及公式推导过程。
首先,根据系统中的变量和其正、负、零序分量的关系,可以得到对称分量法的定义。
然后,通过对称分量法的定义,推导出各个分量的计算公式。
4.对称分量法的应用对称分量法在电力系统中的应用主要包括故障分析、保护装置设计和运行控制等。
在故障分析中,通过计算系统中的对称分量,可以判断故障的类型和位置。
在保护装置设计中,根据系统中的对称分量,可以设计出合适的保护装置。
在运行控制中,通过对称分量法,可以实现对电力系统的实时监控和控制。
5.对称分量法的优缺点对称分量法的优点在于能够简化复杂系统的分析过程,便于理解和处理问题。
然而,对称分量法也存在一定的缺点,如在实际应用中,可能需要根据具体情况对对称分量法进行修正。
对称分量法的内容

对称分量法一、什么是对称分量法对称分量法(Symmetrical Component Method,简称SCM)是一种用于解决三相电力系统中不平衡故障问题的分析方法。
在电力系统中,由于各种原因(例如电力负载变化、设备故障等),电源产生的三相电流和电压可能会失去平衡,从而引发各种故障。
对称分量法通过将不平衡信号分解为对称和非对称分量,可以准确地计算电力系统中发生的不平衡故障。
二、对称分量法的基本原理2.1 对称分量的定义在对称分量法中,将三相电源的电压和电流分解为正序、负序和零序三个互相独立的分量。
正序分量表示电压和电流的幅值和相位全都相同,负序分量表示电压和电流的幅值相同但相位互差120度,零序分量表示电压和电流的幅值都为零。
2.2 不平衡故障的分析利用对称分量法,可以将不平衡故障分解为正序、负序和零序三个分量。
通过分析这三个分量在电力系统中的传输和变化,可以准确地确定故障的发生位置和类型。
2.3 对称分量的计算方法对称分量的计算主要基于对称分量正负序的定义和性质。
对于三相对称装置,其中包括电源和电路中没有接地的中性点,正序分量可以通过直接测量获得;负序分量可以通过将三相电流线电压和120度相位互差的关系应用于电压计算得到;零序分量可以通过将三相电压和电流进行相加、平均得到。
三、对称分量法的应用3.1 故障分析与检测对称分量法广泛应用于电力系统中不平衡故障的分析与检测。
通过分析电力系统中各个节点的对称分量,可以判断故障的类型、发生位置以及对系统的影响程度。
这对于保护装置的及时动作以及减小故障对电力系统的影响具有重要意义。
3.2 故障定位与隔离利用对称分量法,可以准确地定位和隔离电力系统中的故障。
通过分析故障点处不同分量的幅值和相位变化,可以确定故障的位置,并采取相应的措施进行隔离和修复。
这可以减少故障造成的停电时间和电力系统的恢复成本。
3.3 电力系统设计和优化对称分量法对于电力系统的设计和优化也具有重要意义。
对称分量法

1 3
1 1 1
a a2 1
a2 a
FFba
1
Fc
F120 SFabc
Fabc S 1F120
5
二、序阻抗的概念
• 静止的三相电路元件序阻抗
VVba
Vc
Z Z Z
a 2 Fa1
aFa2
Fa0
Fc
Fc1
Fc2
Fc0
aFa1
a 2 Fa2
Fa0
• 三序量用三相量表示
1 1 1 S 1 a 2 a 1
a a 2 1
Fa1 Fa2
Fa0
• 同步发电机零序电抗在数值上相差很大(绕组结构形式不同):
• 零序电抗典型值
X 0 (0.15 ~ 0.6) X d
20
二、异步电动机和综合负荷的序阻抗
• 异步电机和综合负荷的正序阻抗: Z1=0.8+j0.6或X1=1.2;
• 异步电机负序阻抗:X2=0.2; • 综合负荷负序阻抗:X2=0.35;
➢ 负序网
0 Ia2 (ZG2 Z12 ) Va2
14
三、对称分量法在不对称短路计算中的应用
➢ 零序网
Ia0 Ib0 Ic0 3Ia0
0 Ia0 (Z G0 Z L0 ) 3Ia0 Z n Va0
0 Ia0 (ZG0 Z L0 3Z n ) Va0
结论:在三相参数对称的线性电路中,各序对称分量具有独 立性,因此,可以对正序、负序、零序分量分别进行计算。
对称分量法

如存在另外的中性点,则变压器零序等值如图所示(除
了有外接电抗外类似于 YN、d 连接)。
零序电抗为: x ≈ x + x (非三相三柱式变压器)
(0)
I
II
总结:双绕组变压器提供零序电流一侧必须为 YN 连
接,另外一侧的接线方式有三种:
(1)delta连接:零序电抗为 x ≈ x +x = x = x 。
第一节 对称分量法
对称分量法:在三相对称网络中出现局部不对称情 况(短路)时,分析计算其三相不对称电气量(电 压或电流等)。(即将不对称量分解变换为对称分量)
对于任何三相不对称相量均可分解为:
•
•
•
•
F = F + F + F ⎫ a
a (1)
a(2)
a(0)
⎪ •
•
•
•
F = F + F + F ⎪⎬ b
相”的 3 个序电压和序电流;
4) 求得各相电压和电流
关键在于元件序网的建立。
下面首先介绍各个元件的正、负、零序电抗。最后再
介绍各个序网的生成。
序参数归类说明:
1)旋转元件(发电机、电动机、调相机):x(1)
≠
x (2)
≠
x (0)
2)静止磁耦合元件(输电线、变压器):
x =x ≠x
(1)
(2)
(0)
在中性点接地时: x =(0.15~0.6)x "
(0)
d
在中性点不接地时: x = ∞ (0)
第四节 异步电动机的负序和零序电抗
1、正序电抗:扰动瞬时的正序电抗为 x″; 2、负序电抗:异步电动机的负序参数可以按负序转差 率 2-s 来确定, x ≈ x"
对称分量法公式

对称分量法公式摘要:一、对称分量法简介1.对称分量法的概念2.对称分量法在工程中的应用二、对称分量法公式推导1.基本电路分析2.对称分量法的推导过程3.对称分量法公式三、对称分量法应用实例1.三相电路分析2.发电机和变压器分析3.其他应用场景四、对称分量法的优缺点1.优点2.缺点正文:一、对称分量法简介对称分量法是一种电路分析方法,主要用于解决不对称三相电路的问题。
该方法将三相电路分解为三个独立的单相电路,通过对每个单相电路的分析,可以得到三相电路中各相的电流和电压。
对称分量法广泛应用于电力系统、自动化控制等领域。
二、对称分量法公式推导1.基本电路分析首先,我们分析一个简单的不对称三相电路,包含三个相电压U1、U2、U3 和一个中性线N。
我们用矢量表示电压和电流:U1、U2、U3 和I1、I2、I3。
2.对称分量法的推导过程为了方便分析,我们将电压和电流分解为正序和负序两个分量。
正序分量表示三相电压和电流的平衡部分,负序分量表示三相电压和电流的不平衡部分。
正序分量和负序分量的关系如下:U1p = U1 + U2 + U3I1p = I1 + I2 + I3U1n = U1 - U2 - U3I1n = I1 - I2 - I3其中,U1p、I1p 表示正序分量的电压和电流,U1n、I1n 表示负序分量的电压和电流。
3.对称分量法公式根据对称分量法,我们可以得到以下公式:U1p = U1 + jU2 + jU3I1p = I1 + jI2 + jI3U1n = U1 - jU2 - jU3I1n = I1 - jI2 - jI3其中,j 表示虚数单位。
三、对称分量法应用实例1.三相电路分析通过对称分量法,我们可以将复杂的不对称三相电路分解为三个简单的单相电路。
这样,我们可以分别分析每个单相电路,从而简化电路分析过程。
2.发电机和变压器分析对称分量法广泛应用于发电机和变压器的分析。
通过分解发电机和变压器的不对称电流和电压,我们可以了解设备的运行状态,及时发现故障,保证电力系统的稳定运行。
对称分量法(正序、负序、零序)

对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序.单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量.两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理.在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量.图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1,α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。
对称分量法

对称分量法
一、概述
1918年,加拿大电气学家Charles LeGeyt Fortescue发明对称分量法(method of symmetrical components),对称分量法(method of symmetrical components)将一个不对称的三个相量,分解为三组对称的相量:正序分量、负序分量和零序分量,对称分量法广泛应用于三相交流电参量的不对称程度分析。
二、计算
下图的图a、b、c分别表示三组对称的三相相量:
1、不对称分量的合成
幅值相等,相位依次差120°,称为正序分量;
幅值相等,相位依次差120°,相序与正序分量相反,称为负序分量;
幅值和相位均相等,称为零序分量。
将上述三组对称的三相相量相加,得到一组不对称的三相相量,不对称的三相相量的数学表达式为:
( 1)
由对称性,参见图a、图b、图c,可知:
(2)
式(2)代入式(1)可得:
(3)
2、不对称分量的分解
式(3)的逆关系为:
上式说明三个不对称的相量可以唯一地分解成为三组对称的相量,即对称分量:正序分量、负序分量和零序分量。
三、应用
对称分量法常用于电力系统的三相不对称分析,国标《GB/T15543-2008电能质量三相电压不平衡》定义的三相电压不平衡度就是采用三相电压的负序分量与正序分量的比值或零序分量与正序分量的比值表示。
WP4000变频功率分析仪依据国标要求,求解三相电参量的基波分量的三相不平衡度。
为了简便运算,国际上还有另外一些相关标准对不平衡度计算采取其它的更为简化的运算方式。
详细请参见银河百科:三相不平衡度。
对称分量法和变压器不对称运行分析分析课件

变压器不对称运行的应对措施
调整电源电压
通过调整电源电压,尽量保持三相电 压平衡,减少变压器不对称运行的可 能性。
加强维护和检修
配置合适的保护装置
在变压器上配置合适的保护装置,如 差动保护、过流保护等,以在变压器 发生不对称运行时及时切断电源或发 出报警信号。
定期对变压器进行检查和维护,及时 发现并处理故障,确保变压器正常运 行。
变压器不对称运行分析
变压器不对称运行的原因
电源电压不对称
由于三相电源电压不平衡,导致 变压器输入侧电压不平衡,进而 引发变压器不对称运行。
变压器内部故障
变压器绕组、铁芯等部件发生故 障,导致变压器运行状态异常, 出现不对称运行的情况。
负荷不对称
变压器所带负荷不平衡,如三相 电动机、单相负荷等,也会引起 变压器不对称运行。
对称分量法的应用领域
01
02
03
电力系统
用于分析电力系统的正常 运行和故障状态,包括短 路故障、断线故障等。
电机学
用于分析电机的正常运行 和异常状态,如电机的启 动、制动和调速等。
电子பைடு நூலகம்程
用于分析电子设备的正常 运行和异常状态,如电源、 信号处理和通信设备等。
对称分量法的历史与发展
19世纪末期
对称分量法的概念开始萌芽,主要用于解决三相 交流电的平衡问题。
对称分量法和变压器不对称运行分 析分析课件
对称分量法简介
对称分量法的定义
对称分量法是一种用于分析不对称运行系统的数学方法,它将不对称的三相系统分 解为对称的正序、负序和零序分量。
它基于线性叠加原理,将原始的三相系统中的电压、电流和阻抗等物理量表示为对 称分量的线性组合。
对称分量法(正序、负序、零序)

对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。
在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。
图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。
《对称分量法》课件

06
总结
对称分量法的核心思想与价值
核心思想
对称分量法是一种将不对称分量转换为对称分量的方法,通 过对称性原理,将不对称的电气量转换为三相对称的电气量 ,便于分析和处理。
价值
对称分量法的应用,使得在处理不对称电气量时,能够简化 计算过程,提高分析的准确性和效率,对于电力系统中的故 障诊断、保护和控制等方面具有重要的应用价值。
03
对称分量法在电力系统无功补 偿、继电保护、故障定位等方 面具有广泛的应用。
信号处理中的对称分量法应用
在信号处理中,对称分量法常用于分 析非线性信号,如音频、图像等。
对称分量法在音频处理、图像识别、 雷达信号处理等领域有重要的应用价 值。
通过将非线性信号分解为对称分量, 可以更好地揭示信号的内在结构和特 征。
控制系统中的对称分量法应用
01
在控制系统中,对称分量法主要用于分析系统的稳定性和动态 特性。
02
通过将系统的状态变量或输出分解为对称分量,可以更准确地
描述系统的行为和性能。
对称分量法在控制系统设计、优化和控制算法开发等方面具有
03
广泛的应用。
05
对称分量法的挑战与展望
对称分量法面临的挑战
数学模型的复杂性
对称分量法在各领域的应用前景
电力系统
对称分量法在电力系统中广泛应用于故障诊断、 保护和控制等方面。通过对电气量的对称分量分 析,能够快速准确地定位故障位置,提高电力系 统的稳定性和可靠性。
能源系统
随着可再生能源的广泛应用,能源系统的复杂性 和不确定性不断增加,对称分量法可以用于分析 能源系统的电气量,提高能源系统的稳定性和可 靠性。
并行计算性能优化
通过优化数据传输、减少 通信开销和负载均衡等手 段,提高并行计算的效率 。
对称分量法

对称分量法图4—1(a)、(b)、(c)表示三组对称的三相相量。
第一组相量Fa(1)、相量Fb(1).相量Fc(1),幅值相等。
相位为“a超前b120度,b超前c120度,称为正序;第二组相量Fa(2).相量Fb(2)相量.Fc(2),幅值相等,相序与正序相反,称为负序;第三组相量Fa(0)、相量.Fb(0)、相量Fc(0),幅值和相位均相同,称为零序。
在图4—1(d)中将每一组的带下标a的三个相量合成为Fa,,带下标b的合成为Fb,,带下标c的合成为F是三个小对称的相量,即三组对称的相量合成得相量Fa、Fb、Fc是三个不对称的相量。
写成数学表达式为:由于每一组是对称的,固有下列关系:将式(4-2)代入式(4-1)可得:此式表示上述三个不对称相量和三个对称相量中a相量的关系。
其矩阵形式为:或简写为式(4-4)和式(4-5)说明三相对称相量合成得三个不对称相量。
其逆关系为:或简写为式(4—6)和(4—7)说明由三个不对称的相量可以唯一地分解成三组对称的相量(即对称分量);正序分量、负序分员和不序分量。
实际上,式(4—4)和(4—6)表示三个对称相量Fa、Fb、Fc和另外三个相量Fa(1)、Fa(2)、Fa(0)之间的线性变换关系。
如果电力系统某处发生不对称短路,尽管除短路点外三相系统的元件参数都是对称的,三相电路的电流和电压的基频分量都变成不对称的相量。
将式(4—6)的变换关系应用于基频电流(或电压),则有即将三相不对称电流(以后略去“基频”二字)Ia、Ib、Ic经过线性变换后,可分解成三组对称的电流。
即a相电流Ia分解成Ia(1)、Ia(2)、Ia(0),b相电流Ib分解成Ib(1)、Ib(2)、Ib(0),c相电流Ic分解成Ic(1)、Ic(2)、Ic(0)。
其中Ia(1)、Ib(1)、Ic(1)一组对称的相量,称为正序分量电流;Ia(2)、Ib(2)、Ic(2)也是一组对称的相量。
但相序与正序相反,称为负序分量电流;Ia(0)、Ib(0)、Ic(0)也是一组对称的相量,三个相量完全相等,称为零序分量电流。
对称分量法

对称分量法对称分量法(method of symmetrical components)电工中分析对称系统不对称运行状态的一种基本方法。
广泛应用于三相交流系统参数对称、运行工况不对称的电气量计算。
电力系统正常运行时可认为是对称的,即各元件三相阻抗相同,各自三相电压、电流大小相等,具有正常相序。
电力系统正常运行方式的破坏主要与不对称故障或者断路器的不对称操作有关。
由于整个电力系统中只有个别点是三相阻抗不相等,所以一般不使用直接求解复杂的三相不对称电路的方法,而采用更简单的对称分量法进行分析。
任何不对称的三相相量A,B,C 可以分解为三组相序不同的对称分量:①正序分量A1,B1,C1,②负序分量A2,B2,C2,③零序分量A0,B0,C0。
即存在如下关系:(1)每一组对称分量之间的关系为(2)j120式中,复数算符a=e。
将(2)代入(1)可得;....(3)式中系数矩阵是非奇异的,其逆矩阵存在,所以有(4)任意不对称的电压、电流都可以用式(4)求出它们的正序、负序和零序电压、电流分量。
已知三序分量时,又可用式(3)合成三相向量。
在计算电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为三个平衡的相量成分即正相序(UA1、UB1、UC1)、负相序(UA2、UB2、UC2)和零相序(UA0、UB0、UC0),即有:UA=UA1+UA2+UA0,UB=UB1+UB2+UB0,UC=UC1+UC2+UC0,其正相序的相序(顺时方向)依次为UA1、UB1、UC1,大小相等,互隔120度;负相序的相序(逆时方向)依次为UA2、UB2、UC2,大小相等,互隔120度;零相序大小相等且同相,各相序都是按逆时针方向旋转。
在对称分量法中引用算子a,其定义是单位相量依逆时针方向旋转120度,则有:UA0=1/3(UA+UB+UC),UA1=1/3(UA+aUB+aaUC),UA2=1/3(UA+aaUB+aUC)注意以上都是以A相为基准,都是矢量计算。
对称分量法

对称分量法对称分量法(SymmetricComponentMethod,SCM)是一种复杂现实系统分析方法。
它广泛应用于计算机、软件工程、机器人控制以及其他工业领域的系统分析和控制研究。
它的基本思想是分析一个系统的不同部分,把这些部分归纳为六大类:位置、运动、动力、接口、能量和信息。
这些类别的组合就形成了系统的多层模型,它们能够帮助科学家、工程师、程序员和其他研究者更好地理解和控制现实世界中复杂系统的行为。
系统分析中,对称分量法是用来描述和分析实际系统的一种有效方法。
它假定实际系统可以划分为六个基本部分,即位置、运动、动力、接口、能量和信息。
这样做的优点是,它可以将系统的复杂性减少到六个维度,这样用户就可以对系统进行更容易理解、更加准确的分析。
首先,对位置分量进行分析,即系统中各单元及其连接形式的描述。
其次,对运动分量进行分析,其包括各单元之间的动态关系、各单元的运动特性。
第三,对动力分量进行分析,它能够描述系统中不同部件之间的力学关系,如摩擦力、弹性力等。
第四,对接口分量进行分析,它包括系统的不同单元之间的物理接口,如接头、接线等。
第五,对能量分量进行分析,它能够描述系统中的能量流动,如电信号、声音等。
最后,对信息分量进行分析,它能够描述系统中不同单元之间的信息流动,如指令、数据等。
对称分量法在计算机、软件工程、机器人控制及其他工业领域扮演着重要的角色,它帮助人们更好地理解和控制复杂现实世界中的系统行为。
此外,它还能够帮助用户更准确地建立计算机系统结构、软件设计、机器人控制等,从而更好地满足现有的实际需求。
对称分量法的应用随着科学技术的进步而不断发展,它将会为计算机系统、软件设计、机器人控制等提供更完善的分析和控制方法,从而为科学技术的进步继续做出积极的贡献。
对称分量法的运算口诀

对称分量法的运算口诀
对称分量法的运算口诀如下:任何不对称的三相相量 A,B,C 可以分解为三组相序不同的对称分量:①正序分量A1,B1,C1,②负序分量A2,B2,C2,③零序分量A0,B0,C0。
即存在如下关系:V0=UA0=UB0=UC0
V1=UA1=aUB1=a2Uc1
V2=UA2=a2UB2=aUC2
其中,定义是单位相量"i"依逆时针方向旋转120度。
在计算电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为平衡的相量成分即正相序(UA1、UB1、UC1)、负相序(UA2、UB2、UC2)和同向的零相序(UA0、UB0、UC0),即有:UA=UA1+UA2+UA0,UB=UB1+UB2+UB0,UC=UC1+UC2+UC0,其正相序的相序(顺时方向)依次为UA1、UB1、UC1,大小相等,互隔120度;负相序的相序(逆时方向)依次为UA2、UB2、UC2,大小相等,互隔120度;零相序大小相等且同相,各相序都是按逆时针方向旋转。
在对称分量法中引用算子a,其定义是单位相量依逆时针方向旋转120度,则有:UA0=1/3(UA+UB+UC),UA1=1/3(UA+aUB+a2UC),UA2=1/3(UA+a2UB+aUC)注意以上都是以A相为基准,都是矢量计算。
知道了UA0实际也知道了UB0和UC0,同样知道了UA1也就知道了UB1和UC1,知道了UA2也就知道了UB2和UC2。
故障分析对称分量法

简化,便于计算
无法直接简化 为单相计算!
分解
分析
复合
可以实 施单相 计算。
可以实 施单相 计算。
求解
幅值,相量关系等为 继电保护分析所用
合成
g
g
g
g
例一 U A = U A1 + U A2 + U A0
已知序电压,求相电压
g
g
g
g
g
g
g
U B = U B1 + U B2 + U B0 = a 2 U A1 + a U A2 + U A0
g
g
g
g
例一 U A = U A1 + U A2 + U A0
g
g
g
g
g
g
g
U B = U B1 + U B2 + U B0 = a 2 U A1 + a U A2 + U A0
g
UC
=
g
g
g
U C1 + U C2 + U C0
=
a
g
U
A1
+
a
2
g
U
g
A2 + U A0
(2-1)
零序量三相“同相” 转,间隔0度。
g
U B = U B1 + U B2 + U B0 = a 2 U A1 + a U A2 + U A0
g
UC
=
g
g
g
U C1 + U C2 + U C0
=
a
g
U
A1
对称分量法(零序,正序,负序)的理解与计算

对称分量法(零序【2 】,正序,负序)的懂得与盘算1)求零序分量:把三个向量相加乞降.即A相不动,B相的原点平移到A相的顶端(箭头处),留意B相只是平移,不能迁移转变.同办法把C相的平移到B相的顶端.此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和.最后取此向量幅值的三分一,这就是零序分量的幅值,偏向与此向量是一样的.2)求正序分量:对本来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C 相顺时针转120度,是以得到新的向量图.按上述办法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的办法分离画出B.C两相.这就得出了正序分量.3)求负序分量:留意原向量图的处理办法与求正序时不一样.A相的不动,B相顺时针转120度,C相逆时针转120度,是以得到新的向量图.下面的办法就与正序时一样了.对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;是以,零序电流畅常作为漏电故障断定的参数.负序电流则不同,其重要运用于三相三线的电机回路;在没有漏电的情形下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;负序电流常作为电机故障断定;留意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称.留意了:三相不均衡与零序电流不可混杂呀!三相不均衡时,不必定会有零序电流的;同样有零序电流时,三相仍可能为对称的.(这句话对吗?)前面好几位把两者混杂了吧!正序.负序.零序的消失是为了剖析在体系电压.电流消失不对称现象时,把三相的不对称分量分化成对称分量(正.负序)及同向的零序分量.只如果三相体系,一般针对三相三线制的电机回路,就能分化出上述三个分量(有点象力的合成与分化,但许多情形下某个分量的数值为零).对于幻想的电力体系,因为三相对称,是以负序和零序分量的数值都为零(这就是我们常说正常状况下只有正序分量的原因).当体系消失故障时,三相变得不对称了,这时就能分化出有幅值的负序和零序分量度了(有时只有个中的一种),是以经由过程检测这两个不应正常消失的分量,就可以知到体系出了缺点(特殊是单相接地时的零序分量).下面再介绍用作图法简略得出各分量幅值与相角的办法,先决前提是已知三相的电压或电流(矢量值),当然现实工程上是直接测各分量的.因为上不了图,请大家按文字解释在纸上绘图.从已知前提画出体系三相电流(用电流为例,电压亦是一样)的向量图(为看很清晰,不要画成太极端).总之,零序电流畅常作为漏电故障断定的参数;负序电流常作为电机故障断定;正序电流对电机运行质量是一种评估.留意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称.三相不均衡与零序电流不可混杂呀!三相不均衡时,不必定会有零序电流的;同样有零序电流时,三相仍可能为对称的.两者不能混杂!三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0假如在三相四线中接入一个电流互感器,这时感应电流为零.当电路中产生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)如许互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与破坏区装配预定动作电流值比拟较,如大于动作电流,即使敏锐继电器动作,感化于履行元件失落闸.这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流.产生零序电流的两个前提:1.无论是纵向故障.照样横向故障.照样正常时和平常时的不对称,只要有零序电压的产生;2.零序电流有通路.以上两个前提缺一不可.因为缺乏第一个,就无源泉;缺乏第二个,就是我们平日评论辩论的“有电压是否必定有电流的问题.零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC补充:正序.负序.零序的消失是为了剖析在体系电压.电流消失不对称现象时,把三相的不对称分量分化成对称分量(正.负序)及同向的零序分量.只如果三相体系,就能分化出上述三个分量(有点象力的合成与分化,但许多情形下某个分量的数值为零).对于幻想的电力体系,因为三相对称,是以负序和零序分量的数值都为零(这就是我们常说正常状况下只有正序分量的原因).当体系消失故障时,三相变得不对称了,这时就能分化出有幅值的负序和零序分量度了(有时只有个中的一种),是以经由过程检测这两个不应正常消失的分量,就可以知到体系出了缺点(特殊是单相接地时的零序分量).三相电路不对称时,电流均可分化正序.负序和零序电流.正序斧正常相序的三订交换电(即A.B.C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍均衡),零序指(A.B.C电流分化出来三个大小雷同.相位雷同的相量.零序电流互感器套在三芯电缆上,三相不均衡时在外部就表现出零序电流(因为相量雷同增强)正常电流(幻想情形):只有正序电流单相接地短路:故障相正序.负序.零序电流相等两相短路:故障点零序电流为零,正序和负序电流互为相反数两相短路接地:故障点正序.负序.零序电流均有三相对称短路:只有正序三相对称接地短路:有正序和零序三相不对称短路:有正序和负序三相不对称接地短路:有正序负序和零序一相断线:断口电流有正序.负序和零序两相断线:断口上各序电流相等上述不雅点仅作参考,迎接列位持续评论辩论!。
对称分量法在电力系统不对称故障中的应用

01
近似估算时
03
无阻尼绕组的发电机
02
汽轮发电机及有阻尼绕组的水轮发电机
04
在要求不高的场合,对汽轮发电机和有阻尼绕组的水轮发电机
同步机的中性点不接地时,零序电抗为无穷大; 同步机的中性点接地时,零序电抗为定子绕组对零序电流所呈现的漏电抗。
同步电机的零序电抗
零序漏电抗总是小于正序漏电抗且具有很大的变动范围,通常
实用计算中,如无电机的确定参数,可取表中给 出的平均值。
2 输电线路在各序电压作用下的序阻抗及等值电路 单回路三相架空输电线的正序、负序和零序阻抗 零序阻抗>正序阻抗 正序阻抗=负序阻抗 原因:零序电流三相同相位,互感磁通相互加强
每回线路的零序阻抗将增大。(通过零序电流时,两回线路之间将存在着零序互感磁链。)
即:
式中
分别称为此线路的正序、负序、零序阻抗。
由此可知:(1)各序电压降与各序电流成线性关系;
(2)当电路中流过某一序分量的电流时,只产生 同一分量的电压降。
同一分量的电流。这样就可以对正序、负序、零序分量 别计算
(3)当电路中施加某一序分量的电压时,电路也只产生
只要对于每一序分量来说,只需计算其中的一相(a相) 以上情况可以推广 到一般情况,从而得出:三相元件各 序的序阻抗,分别为元件两端同一序的电压降与电流的 比值
4-3 各元件的序阻抗
4-4 序网络的构成
4-1 对称分量法
4-2 对称分量法在不对称故障中的应用
4-1对称分量法
图4-1(a)、(b)、(c)表示三组对称的三相相量 幅值相等,但相序与正序相反,称为负序; 幅值相等,相序相差120度,称为正序; 幅值和相位均相同,称零序;
对称分量法和变压器不对称运行分析分析

a b
UC
U
C
(Ea0 )
U
c
17
原、副边相量图
带单相负载 时的中性点
带对称负载 时的中性点
原、副边线电压 仍然对称,但相 电压不对称。
发生中性点位移
18
1
a
2
1 a
1 1
I I
A
A
IC
a
a2
1
I
0 A
* 对称分量法应用的是叠加原理;只能用在线性
参数系统中。
6
二、三相变压器各序等效电路
将三相不对称的电流、电压分解成三组对称分量后, 对于正序、负序和零序分量,分别有正序、负序和 零序等效电路。
1.正序、负序等效电路
三相变压器的正序等效电路
三相变压器的负序等效电路
7
2.零序等效电路
三相变压器的零序等效电路
三相变压器对零序电流所表现的阻抗称为零序阻抗,其中激磁
支路的阻抗
Z
0 m
称为零序激磁阻抗。
三相变压器对于零序电流所表现的阻抗与正序和负序有所不同:
正序和零序磁通只是相序不同,其磁路是没有区别的,所以正 序和零序阻抗大小是一样的。零序阻抗的情况与正序或负序阻 抗就不同了。
Z
0 m
Zm
9
2) 三相变压器的零序阻抗与三相绕组的联结有关
Yyn联结
Yd联结
10
YNy联结
YNd联结
11
Yy联结
12
三、Yyn联结的变压器单相负载运行举例
原边加三
相对称线 电压
副边加单 相负载
求解不对称问题的一般方法:
第一步:做出对应例子的各序等效电路;
第二步:列出端口限定条件,计算各序等效电路中电流及电压 的各序分量;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 U 0 U A U B U C 86.6 j50 (40 j 69.3) (0 j50) 42.2 j10.23 V 3 3
1。对称分量法的基本原理
1.3 物理解释 例2
设有一不对称三相电压请将其分解为对称分量。
a 2 U A a U B U 1 C
Z
0 ABC
1 a 2U ) U ( U a U A B C 3 1 2 ) U ( U a U B aU - A C 3 1 U ) U ( U U 0 A B C * U 2U U U A B C
1 / 3 * 86.6 j 50 ( 1 2 j 12.2 j8.33 V
3 2
)(40 j 69.3) 1 2 j
3 2
(0 j50)
1.1 三相对称系统的概念、表达,不对称问题引入
引入复数算子a:
j120
ae
A 复数算子a的一些特性
则三相对称系统的向量表达式
U0 Ue j 0 a 0U U j120 j 240 A ae e j120 a 2U U B U 120 Ue 2 j 240 j120 a e e j 240 U U 240 Ue aU C 3 j 360 j 0
1。对称分量法的基本原理
1.3 物理解释
U U U =U U U U A A A A0 0 2 U U U U U = a U aU B B B B0 0 U U =aU a 2U U U U C C C C 0 0
以A相为参考向量
U0 Ue j 0 U A j120 U B U 120 Ue j 240 U U 240 Ue C
只有一个独立变量U, 用一个U即可表示整个对称三相系统
1。对称分量法的基本原理(汤书p278)
1。对称分量法的基本原理
1.3 物理解释
不对称三相系统分解为三个独立的对称系统:正序系统、负序系统和零序系统
1。对称分量法的基本原理
1.3 物理解释 例1
设有一不对称三相电压请将其分解为对称分量。
u A 2 100cost 30 u B 2 80 cost 60 uC 2 50 cost 90
一。不对称问题分析方法与应用
1。对称分量法的基本原理
–
–
–
1.1 三相对称系统的概念、表达,不对称问题引入 1.2 不对称与对称系统的转换--对称分量法 1.3 物理解释
1。对称分量法的基本原理
1.1 三相对称系统的概念、表达,不对称问题引入
正序、负 序均是对 称系统
三相对称系统的瞬态表达式:
U A 2U cos(t ) U B 2U cos(t 120 ) U 2 U cos( t 240 ) C
对称三相系统的求解, 已经学习和掌握。 用一相的等效电路求解
不对称三相系统的求解, 该怎么办? 转换
等效电路是 由对称系统 构建的
对称分量法 B
B
A
C
A
C
1。对称分量法的基本原理(汤书p278)
1.2 不对称与对称系统的转换--对称分量法
要求解不对称三相系统,就需要将不对称转换为对称系统 转换的方法:对称分量法; 转换的思想:把不对称的三相系统分解为相序分别为正、负、零的三个独 立的对称系统
U A 2U a cos(t ) U B 2U b cos(t ) U C 2U c cos(t )
大小不相同 相差不是120度 但角频率还是相同的 C
A
不对称三相系统的向量表达式:
U [cos(0 ) j sin(0 )] U A a U B U b [cos( ) j sin( )] U C U c [cos( ) j sin( )]
转换的思路: a。假设有独立对称系统U+,U-,Uo,其叠加正好构成不对称三相系统; b。如果能够找到这三个对称系统的表达式,则假设成立; c。相应的,不对称的三相系统也就分解成了三个独立的对称系统 U+,U-,Uo,
1。对称分量法的基本原理
1.2 不对称与对称系统的转换--对称分量法
转 换 的 推 导
三相对称系统的向量表达式1:
A
大小相等、相差120度 正序:A-B-C 负序:A-C-B 零序:A B C 同相 没有相差 三相对称系统的向量表达式2:
B
U [cos(0 ) j sin(0 )] U A U U [cos( 120 ) j sin( 120 )] B U U [cos( 240 ) j sin( 240 )] C
10030 100cos30 j sin 30 86.6 j 50 V U A 80 60 80cos60 j sin 60 40 j 69.3 V U B 5090 50cos90 j sin 90 0 j 50 V U
A B C -
,U ,U 构成对称零序系统 U U A0 B0 C0 0
1。对称分量法的基本原理
1.2 不对称与对称系统的转换--对称分量法
,U ,U 构成对称正序系统 U U ,U =a 2U ,U =aU U U A B C A B C ,U 构成对称负序系统 U U ,U =aU ,U =a 2U U U A,U B C - A B C ,U 构成对称零序系统 U U =U =U U , U U A 0 B 0 C 0 0 A 0 B 0 C 0 0
U U U =U U U U A A A A0 0 2 U U U U U = a U a U B B B B0 0 U U =aU a 2U U U U C C C C 0 0
U
B
a e
e
1
j120
只有一个独立向量U, 用一个向量U即可表示整个对称三相系统a !!!!!
cos(120 ) j sin(120 ) e
1。对称分量法的基本原理(汤书p278)
1.1 三相对称系统的概念、表达,不对称问题引入
不对称三相系统的瞬态表达式: 多种原因引起 B
U U U U A A A A0 U U U U B B B B0 U U U U C C C0 C
,U ,U 构成对称正序系统 U U A B C ,U ,U 构成对称负序系统 U U
U 0 U e j 0 U A a a j U B U b U b e U C U c U c e j
以A相为参考向量
有5个独立变量
1。对称分量法的基本原理(汤书p278)
1.1 三相对称系统的概念、表达,不对称问题引入
i A 2 I cost iB 0 iC 0
注意其物理含 义
I0 I A 0 I B 0 I
C
? I ? I ? I
0
1。对称分量法的基本原理
1.3 物理解释及算例
结论
(1)正序、负序和零序系统都是对称系统。当求得各个对称分量后, 再把各相的三个分量叠加便得到不对称运行情形。 (3)对称分量法根据叠加原理,只适用于线性参数的电路中。
1。对称分量法的基本原理
1.2 不对称与对称系统的转换--对称分量法
Z
ABC 0
1 U A 2 U B a a U C
1 a a2
1 U 1 U 1 U 0
1 a U 1 2 U 1 a 3 1 1 U 0
C
1。对称分量法的基本原理
1.3 物理解释 例1
设有一不对称三相电压请将其分解为对称分量。
1/ 3* U U 2U U A B C
1 / 3 * 86.6 j 50 ( 1 2 j 56.6 j 31.43 V
3 2
)(40 j 69.3) 1 2 j