立体几何的解题技巧

立体几何的解题技巧
立体几何的解题技巧

立体几何大题的解题技巧

——综合提升

【命题分析】高考中立体几何命题特点:

1.线面位置关系突出平行和垂直,将侧重于垂直关系.

2.空间“角”与“距离”的计算常在解答题中综合出现.

3.多面体及简单多面体的概念、性质多在选择题,填空题出现.

4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.

【高考考查的重难点*状元总结】空间距离和角:

“六个距离”:

1两点间距离 221221221)()()(d z z y y x x -+-+-= 2点P 到线l

的距离d = (Q 是直线l 上任意一点,u 为过点P 的直线l 法向量)

3

两异面直线的距离d =

(P 、Q 分别是两直线上任意两点u 为两直线公共法向量)

4点P 到平面的距离

d =

(Q 是平面上任意一点,u 为平面法向量)

5直线与平面的距离【同上】 6平行平面间的距离【同上】

“三个角度”:

1异面直线角【0,

】cos θ=2

121v v v v 【辨】直线倾斜角范围【0,π)

2线面角 【0,2π

】sin θ=n

v vn n v =,cos 或者解三角形

3二面角 【0,π】cos 2

121n n n n ±=θ 或者找垂直线,解三角形

不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.

求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。

【例题解析】

考点1 点到平面的距离

求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题

例1(福建卷)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.

考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.

解:解法一:(Ⅰ)取BC 中点O ,连结AO .

ABC △为正三角形,AO BC ∴⊥.

正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

A

B C

D

1

A

1

C

1

B

A

B

C

D

1

A

1

C

1

B

O F

AO ∴⊥平面11BCC B .

连结1B O ,在正方形11BB C C 中,O D ,分别为

1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.

在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .

(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .

1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.

在1AA D △

中,由等面积法可求得AF

又112AG AB =

sin AG AFG AF ∴=∠.

所以二面角1A A D B

--的大小为

(Ⅲ)1

A BD △

中,1

11A BD BD A D A B S ==∴△1BCD S =△.

在正三棱柱中,1A 到平面1

1BCC B 设点C 到平面1A BD 的距离为d . 由1

1

A BCD C A BD V V --=,得111

33

3

BCD

A BD S S d

=△△

1A BD d ∴=

∴点C 到平面1A BD 2

解法二:(Ⅰ)取BC 中点O ,连结AO .

ABC △为正三角形,AO BC ∴⊥.

在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

AD ∴⊥平面11BCC B .

取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐

标系,则(100)B ,,,(110)D -,,

,1(02A

,(0A ,1(120)B ,,,

1(12AB ∴=,,(210)BD =-,,

,1(1

2BA =-. 12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.

1AB ∴⊥平面1A BD .

(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .

(11AD =-,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,

100AD AA ?=?∴?

=??,,n

n 020x y y ?-+=?∴?=?

?,

,0y x =??∴?=??,. 令1z =

得(=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.

cos

,11

1

33222AB AB AB -->===

n n

∴二面角1A A D

B --的大小为

(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量, 1(200)(12BC AB =-=,

,,,.

∴点C 到平面1A BD 的距离11

22BC AB d AB -===

小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法. 考点2 异面直线的距离

考查异目主面直线的距离的概念及其求法

考纲只要求掌握已给出公垂线段的异面直线的距离.

例2 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解:

如图所示,取BD 的中点F ,连结EF ,SF ,CF ,

EF ∴为BCD ?的中位线,EF ∴∥CD CD ∴,∥面SEF ,

CD ∴到平面SEF 的距离即为两异面直线间的距离.

又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是

AB 、BC 、BD 的中点,

2,2,62

1

,62=====∴SC DF CD EF CD 3

3222621312131=????=????=

∴-SC DF EF V CEF S 在Rt SCE ?中,3222=+=CE SC SE

在Rt SCF ?中,30224422=++=+=CF SC SF

又3,6=∴=

?SEF S EF

由于h S V V SEF CEF S SEF C ??=

=?--3

1

,即332331=

??h ,解得332=h 故CD 与SE 间的距离为

3

3

2. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离

偶尔会再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.

例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离 的方法求解. 解:

解法一 BD ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求

点O 平面11D GB 的距离,

1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,

又?11D B 平面11D GB

∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,

作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1?中,2222

1

2111=??=??=?AO O O S OG O . 又3

6

2,23212111=∴=??=??=

?OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于3

6

2. 解法二 BD ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.

设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则

,由于63222

1

,111111=??=

=?--D GB GBB D D GB B S V V

34

222213111=????=-GBB D V , ,3626

4==∴h

即BD 到平面11D GB 的距离等于

3

6

2. B

A

C

D

O

G

H 1

A 1

C 1D

1

B 1O

小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角【重难点】

此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角. 典型例题 例4

如图,在Rt AOB △中,π6

OAB ∠=,斜边4AB =.Rt AOC △可以通过

Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面

角.D 是AB 的中点.

(I )求证:平面COD ⊥平面AOB ;

(II )求异面直线AO 与CD 所成角的大小.

思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解

:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,

BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =, CO ∴⊥平面AOB ,

又CO ?平面COD .

∴平面COD ⊥平面AOB .

(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.

在Rt COE △中,2CO BO ==,112OE BO ==,

CE ∴

又12

DE AO ==

∴在Rt CDE △中,tan CE CDE DE

=

O

C

A

D

B

E

x

∴异面直线AO 与CD

所成角的大小为

解法2:(I )同解法1.

(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,

,(00A ,,(200)C ,,

,D ,

(00OA ∴=,

,(CD =-, cos OA CD OA CD OA CD

∴<>=

,6322

=

=

∴异面直线AO 与CD 所成角的大小为

小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:??

? ??2,0π.

考点5 直线和平面所成的角

此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题

例5(全国卷Ⅰ理)

四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面

ABCD

.已知45ABC =∠,

2AB =,BC =SA SB ==

(Ⅰ)证明SA BC ⊥;

(Ⅱ)求直线SD 与平面SAB 所成角的大小.

考查目的:本小题主要考查直线与直线,直线与平面的位置关系,

二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .

因为SA SB =,所以AO BO =,

D

B

C

S

又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.

(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥

,由AD BC ==

,SA =

AO =1SO =,SD = SAB △的面积2

1112

2S AB

SA ?=- ?

连结DB ,得DAB △的面积21

sin13522

S AB AD =

= 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得

1211

33

h S SO S =,解得h = 设SD 与平面SAB 所成角为α,则sin h SD α===

所以,直线SD 与平面SBC 所成的我为

解法二:

(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面

ABCD .

因为SA SB =,所以AO BO =.

又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O -0)A ,,(0B ,(0C ,(001)S ,,,(2SA =,(0CB =,0SA CB =,所以SA BC ⊥.

(Ⅱ)取AB 中点E ,0E ???

??

, 连结SE ,取SE 中点G ,连结OG ,12G ???

??

,. y

D

A

12OG ?=????,

,1SE ?=??

??

,(AB =.

0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.

所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与

β互余.

D

,()DS =.

22cos 11

OG DS OG DS

α

=

=

sin β=,

所以,直线SD 与平面SAB 所成的角为

小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值.

考点6 二面角【重点】

此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点 典型例题 例6.(湖南卷)

如图,已知直角,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面

α所成二面的角为30

(I )证明BC PQ ⊥;

(II )求二面角B AC P --的大小.

A

B

C

Q

α

β P

命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.

过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ α

β=,所以CO α⊥,

又因为CA CB =,所以OA OB =.

而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,

所以PQ ⊥平面OBC .因为BC ?平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ α

β=,

BO α?,所以BO β⊥.

过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.

由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=, 不妨设2AC =

,则AO =3sin 302

OH AO ==

. 在Rt OAB △中,45ABO BAO ∠

=∠=,所以BO AO == 于是在Rt BOH △

中,tan 2BO

BHO OH

∠=

==. 故二面角B AC P --的大小为arctan 2.

解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=.

不妨设2AC =,则AO =1CO =. 在Rt OAB △中,45ABO BAO ∠=∠=,

A

B

C

Q

α

β P

O H

Q

所以3BO AO ==. 则相关各点的坐标分别是

(000)O ,,,(300)B ,,,(030)A ,,,(001)C ,

,. 所以(330)AB =-,,,(031)AC =-,,.

设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ?=??=??,得33030x y y z ?-=??-+=?

?,

取1x =,得1(113)n =,,.

易知2(100)n =,,是平面β的一个法向量.

设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,. 所以12125

cos 5||||51

n n n n θ=

==?.

故二面角B AC P --的大小为5

arccos

5

. 小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小. 【课后练习】如图,在四棱锥P -ABCD 中,PA ⊥底面

ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点.

(Ⅰ)试证:CD ⊥平面BEF ;

(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于?30,求k 的取值范围.

过程指引:方法一关键是用恰当的方法找到所求的空间距离和角; 方法二关键是掌握利用空间向量求空间距离和角的一般方法.

【高考热点】空间几何体的表面积与体积

(一 )空间几何体的表面积

1棱柱、棱锥的表面积: 各个面面积之和

2 圆柱的表面积

3 圆锥的表面积:2S rl r ππ=+

4 圆台的表面积22S rl r Rl R ππππ=+++

5 球的表面积24S R π=

6扇形的面积213602

n R S lr π==扇形

(其中l 表示弧长,r 表示半径)

注:圆锥的侧面展开图的弧长等于地面圆的周长 (二)空间几何体的体积 1柱体的体积 V

S h =?底 2锥体的体积 13

V S h =?底

3台体的体积

1)3

V S S h =++?下上( 4球体的体积34

3

V R π=

【例题解析】

考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题

例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.

[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时

AD 长度即可.

解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°?AB =3a .

BD =2a ?正六棱柱体积为V .

V =a a 360sin 2121

62?????)-(=a a ?2212

9)-(

2

22r rl S ππ+=

=a a a 4)21)(21(89--≤33

289)(? . 当且仅当 1-2a =4a ? a =6

1

时,体积最大,

此时底面边长为1-2a =1-2×61=3

2

.

∴ 答案为6

1

.

考点9.简单多面体的侧面积及体积和球的计算

棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积. 棱锥体积V 等于3

1

Sh 其中S 是底面积,h 是棱锥的高.

例15. 如图,在三棱柱ABC -A 1B 1C 1中,AB =2a ,BC =CA =AA 1=a ,

A 1在底面△ABC 上的射影O 在AC 上

① 求AB 与侧面AC 1所成角;

② 若O 恰好是AC 的中点,求此三棱柱的侧面积. [思路启迪] ①找出AB 与侧面AC 1所成角即是∠CAB ; ②三棱锥侧面积转化成三个侧面面积之和,侧面BCC 1B 1是正方形,侧面ACC 1A 1和侧面ABB 1A 1是平行四边形,分别求其面积即可.

解答过程:①点A 1在底面ABC 的射影在AC 上, ∴ 平面ACC 1A 1⊥平面ABC .

在△ABC 中,由BC =AC =a ,AB =2a . ∴ ∠ACB =90°,∴ BC ⊥AC . ∴ BC ⊥平面ACC 1A 1.

即 ∠CAB 为AB 与侧面AC 1所成的角在Rt △ABC 中,∠CAB =45°. ∴ AB 与侧面AC 1所成角是45°.

A 1

B 1

C 1

A

B

C

D

O

② ∵ O 是AC 中点,在Rt △AA 1O 中,AA 1=a ,AO =

2

1a . ∴ AO 1=

2

3a . ∴ 侧面ACC 1A 1面积S 1=212

3a =AO AC ?. 又BC ⊥平面ACC 1A 1 , ∴ BC ⊥CC 1.

又BB 1=BC =a ,∴ 侧面BCC 1B 1是正方形,面积S 2=a 2

. 过O 作OD ⊥AB 于D ,∵ A 1O ⊥平面ABC , ∴A 1D ⊥AB . 在Rt △AOD 中,AO =

2

1

a ,∠CAD =45° ∴ OD =

4

2a 在Rt △A 1OD 中,A 1D =2

22

1

22342)

+()(=a a O +A OD =a 8

7. ∴ 侧面ABB 1A 1面积S 3=a a D =A AB 8721??=2

2

7a .

∴ 三棱柱侧面积 S =S 1+S 2+S 3=

27322

1

a )++(. 例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、

AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB

所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( )

A 、23

B 、

2

3

C 、3

D 、A

B

C

M N

K

L

A

B

C

M

N

K

L

3

[思路启迪]先找出二面角平面角,即∠AKL ,再在△AKL 中求出棱锥的高h ,再利用V =

3

1

Sh 即可. 解答过程:在平面图中,过A 作AL ⊥BC ,交MN 于K ,交BC 于L . 则AK ⊥MN ,KL ⊥MN . ∴ ∠AKL =30°.

则四棱锥A —MNCB 的高h =??30sin AK =

2

3. KL ?2

4

2S MNCB +=

=33?. ∴ 23333

1V MNCB A ??=-=2

3. ∴ 答案 A

【专题综合训练】 一、选择题

1.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1上,

且BD =1,若AD 与侧面AA 1CC 1所成的角为α,则α的值为 ( )

A.

3π B. 4

π

C. 410arctan

D. 4

6

arcsin 2.直线a 与平面α成θ角,a 是平面α的斜线,b 是平面α

内与a 异面的任意直线,则a 与b 所成的角( )

A. 最小值θ,最大值θπ-

B. 最小值θ,最大值

C. 最小值θ,无最大值

D. 无最小值,最大值4

π

3.在一个?45的二面角的一平面内有一条直线与二面角的棱成?45角,则此直线与二面角的另一平面所成的角为( )

A. ?30

B. ?45

C. ?60

D. ?90

4.如图,直平行六面体ABCD -A 1B 1C 1D 1的棱长均为2,

?=∠60BAD ,则对角线A 1C 与侧面DCC 1D 1所成

的角的正弦值为( )

A.

21 B. 2

3 C.

22 D. 4

3

5.已知在ABC ?中,AB =9,AC =15,?=∠120BAC ,它所在平面外一点P 到ABC ?三顶

点的距离都是14,那么点P 到平面ABC ?的距离为( )

A. 13

B. 11

C. 9

D. 7

6.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱

A 1

B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )

A.

2

9

B. 3

C.

5

5

6 D. 2 7.将?=∠60QMN ,边长MN =a 的菱形MNPQ 沿对角线NQ 折成?60的二面角,则MP 与NQ

B

A

C D

D 1 C 1

B 1

A 1

C

B A

1A

1

B 1

C D

A

D

B A

D 1

C 1

B 1

A 1

M N

间的距离等于( )

A.

a 23 B. a 43 C. a 4

6 D.

a 43

8.二面角βα--l 的平面角为?120,在α内,l AB ⊥于B ,AB =2,在β内,l CD ⊥于D ,

CD =3,BD =1, M 是棱l 上的一个动点,则AM +CM 的最小值为( )

A. 52

B. 22

C. 26

D. 62

9.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a , 动点P 在线段AB 上, 动点Q 在线段CD 上,则P 与Q 的最短距离为( )

A.

a 21 B. a 2

2 C. a 23

D.a 10.在一个正四棱锥,它的底面边长与侧棱长均为a ,现有一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为( )

A. a )62(+

B.

a 262+ C. a )31(+ D. a 2

3

1+ 11.已知长方体ABCD -A 1B 1C 1D 1中,A 1A =AB =2,若棱AB 上存在点P ,使PC P D ⊥1,则棱AD 的长的取值范围是 ( )

A. (]1,0

B. (]2,0

C. (]2,0

D. (]

2,1

12.将正方形ABCD 沿对角线AC 折起,使点D 在平面ABC 外,则DB 与平面ABC 所成的角一定不等于( )

A. ?30

B. ?45

C.

?60 D. ?90

二、填空题

1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中

点,则下列四个命题:

① E 到平面ABC 1D 1的距离是

2

1; ② 直线BC 与平面ABC 1D 1所成角等于?45;

D

C

B

A

E

D 1

A 1

C 1

B 1

③ 空间四边形ABCD 1在正方体六个面内的射影围成

面积最小值为

2

1; ④ BE 与CD 1所成的角为10

10arcsin

2.如图,在四棱柱ABCD ---A 1B 1C 1D 1中,P 是A 1C 1

上的动点,E 为CD 上的动点,四边形ABCD 满 足___________时,体积AEB P V -恒为定值(写上 你认为正确的一个答案即可)

3.边长为1的等边三角形ABC 中,沿BC 边高线AD

折起,使得折后二面角B -AD -C 为60°,则点A 到

BC 的距离为_________,点D 到平面ABC 的距离

为__________.

4.在水平横梁上A 、B 两点处各挂长为50cm 的细绳,

AM 、BN 、AB 的长度为60cm ,在MN 处挂长为60cm

的木条,MN 平行于横梁,木条的中点为O ,若木条 绕过O 的铅垂线旋转60°,则木条比原来升高了 _________.

5.多面体上,位于同一条棱两端的顶点称为相邻的.如图正方体的一个顶点A 在α平面内.

其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别是1、2和4. P 是正方体其余四个顶点中的一个,则P 到平面α的距离可能是: ①3;②4;③5;④6;⑤7. 以上结论正确的为 . (写出所有正确结论的编号..

) 6. 如图,棱长为1m 的正方体密封容器的三个面上有三个锈蚀的小孔(不计小孔直径)O 1、O 2、O 3它们分别是所在面的中心.如果恰当放置容器,容器存水的最大容积是_______m 3

.

?O 1 ?O 2

?O 3

A

B

D

C

P

E

A 1

D 1

C 1

B 1

三、解答题

1.在正三棱柱ABC—A1B1C1中,底面边长为a,D为BC为中点,M在BB1上,且BM=1

3

B1M,

又CM⊥AC1;

(1)求证:CM⊥C1D;

(2)求AA1的长.

2.如图,在四棱锥P-ABCD中,底面是矩形且AD=2,AB=PA=2,

PA⊥底面ABCD,E是AD的中点,F在PC上.

(1) 求F在何处时,EF⊥平面PBC;

(2) 在(1)的条件下,EF是不是PC与AD的公垂线段.若是,求

出公垂线段的长度;若不是,说明理由;

(3) 在(1)的条件下,求直线BD与平面BEF所成的角.

3.如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC SC;

(2)求面ASD与面BSC所成二面角的大小;

(3)设棱SA的中点为M,求异面直线DM与SB所成角的

大小.

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

立体几何题型的解题技巧适合总结提高用

第六讲 立体几何新题型的解题技巧 考点1 点到平面的距离 例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 考点2 异面直线的距离 例3已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 考点3 直线到平面的距离 例4.如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 考点4 异面直线所成的角 例5(2007年北京卷文) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小. 例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角. 考点5 直线和平面所成的角 例7.(2007年全国卷Ⅰ理) B A C D O G H 1 A 1 C 1D 1 B 1O Q B C P A D O M A B C D 1 A 1 C 1 B O C A D B E

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

数学立体几何解题技巧

数学立体几何解题技巧 数学立体几何解题技巧 1平行、垂直位置关系的论证的策略: (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 (1)两条异面直线所成的角: ①平移法:②补形法:③向量法: (2)直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。 ②用公式计算. (3)二面角: ①平面角的作法: (i)定义法; (ii)三垂线定理及其逆定理法;(iii)垂面法。 ②平面角的计算法: (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;

(ii)射影面积法; (iii)向量夹角公式. 3空间距离的计算方法与技巧: (1)求点到直线的距离: 经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。 (2)求两条异面直线间距离: 一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。 (3)求点到平面的距离: 一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以 把点到平面的距离转化为直线到平面的距离,从而“转移”到另一 点上去求“点到平面的距离”。求直线与平面的距离及平面与平面 的距离一般均转化为点到平面的距离来求解。 4熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6与球有关的题型 只能应用“老方法”,求出球的半径即可。 7立体几何读题:

高中数学立体几何解题技巧

高中数学立体几何解题技巧 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一

个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 01、合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 02、通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

高中数学立体几何知识点与解题方法技巧

立体几何知识点 & 例题讲解 高考时如果图形比较规则且坐标也比较好计算时就用坐标法(向量法)解决,但平时传统方法和向量法都要熟练。并且要多用传统方法,这样才能把自己的空间想象能力培养上去。 一、知识点 <一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线 平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面 面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面 垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的 射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉 . 8.异面直线所成角:cos |cos ,|a b θ== 21 |||||| a b a b x ?= ?+ (其中θ(090θ<≤)为异面直线a b , 所成角,,a b 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin |||| AB m arc AB m β?=(m 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角 cos ||||m n arc m n θ?=或cos |||| m n arc m n π?-(m ,n 为平面α,β的法向量). 12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所 成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB = ?=14.异面直线间的距离: || || CD n d n ?= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 15.点B 到平面α的距离:|| || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2 2 2 2()222a b c a b c a b b c c a ++=+++?+?+? 222 2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+? 17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=. (立体几何中长方体对角线长的公式是其特例).

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

高中数学《必修》立体几何知识点及解题思路

第一章 空间几何体 一、常见几何体的定义 能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。 二、常见几何体的面积、体积公式 1.圆柱:侧面积rl cl S π2==侧 (其中c 是底面周长,r 是底面半径,l 是圆柱的母线,也是高) 表面积)(2222l r r r rl S S S +=?+=+=πππ底侧表 h r sh V 2π==柱体 2.圆锥:侧面积rl cl S π== 2 1侧 (其中c 是底面周长,r 是底面半径,l 是圆锥的母线) 表面积)(2l r r r rl S S S +=+=+=πππ底侧表 h r sh V 23 131π==椎体 3.圆台:侧面积l R r l R r S )(2 )22(+=+=πππ侧 (其中r 、R 是上下底面半径,l 是圆台的母线) 表面积)()(2222R r Rl rl R r l R r S S S +++=+++=+=ππππ底侧表 h S S S S V )(3 1''++=台体 (其中'S 、S 是上下底面面积,h 是圆台的高) 4.球:表面积24R S π=表,体积33 4R V π=球 三、直观图:会用斜二侧画法画出平面图形的直观图。 画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x 轴平行的线段仍然与x 轴平行,长度不变; 与y 轴平行的线段仍然与y 轴平行,但是长度减半。 四、三视图 1.投影:光线照射物体留在屏幕上的影子。 ①中心投影:光由一点向外散射形成的投影。 ②平行投影:在平行光线照射下形成的投影。 ③正投影:光线正对着投影面时的平行投影。 2.三视图:正视图:光线从前向后的正投影; 侧视图:光线从左向右的正投影; 俯视图:光线从上向下的正投影。 三视图的性质: 侧视图和正视图的高相同;俯视图和正视图的长相同;侧视图和俯视图的宽相同。 第二章:点、直线、平面之间的位置关系 一、立体几何中的公理与基本关系 1.平面公理: 公理1:如果一条直线上有两个点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三个点,有且只有一个平面。 推论1:一条直线和直线外一点确定一个平面。 推论2:两条相交直线确定一个平面。 推论3:两条平行直线确定一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的平面。 公理4:平行于同一条直线的两条直线互相平行。【本公理也称为平行直线的传递性】

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

立体几何的解题技巧

立体几何新题型的解题技巧 【命题趋向】在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;(Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力. 解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥. 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B . 连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥. 在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD . (Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1 A BD . 1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF = 又 11 2AG AB == sin AG AFG AF ∴==∠.所以二面角1A A D B --的大小为 (Ⅲ)1A BD △中,1 11A BD BD A D A B S ==△1BCD S =△.在正三棱柱中,1A 到平面11BCC B 设点C 到平面1A BD 的距离为d .由1 1 A BCD C A BD V V --=,得11133 3BCD A BD S S d =△△,1A BD d ∴=△ A B C D 1 A 1 C 1B A C D 1 A 1 C 1 B O F

高考数学题型归纳:立体几何题型解题方法

高考数学题型归纳:立体几何题型解题方法 精品资料欢迎下载 高考数学题型归纳:立体几何题型解题方法 如何提高学习率,需要我们从各方面去努力。WTT为大家整理了高考数学题立体几何题型解题方法,希望对大家有所帮助。 高考数学题型归纳:立体几何题型解题方法高考数学之立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对

问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、 1 / 3 精品资料欢迎下载 面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:两平行平面没有公共点。 ⑵由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结 一、线线平行的证明方法 1、利用平行四边形; 2、利用三角形或梯形的中位线; 3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。(线面平行的 性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两个直线平行。 7、夹在两个平行平面之间的平行线段相等。 二、线面平行的证明方法 1、定义法:直线和平面没有公共点。 2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。(线面平行的判定 定理) 3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。 4、反证法。 三、面面平行的证明方法 1、定义法:两个平面没有公共点。 2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一个平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一条直线的两个平面平行。 四、线线垂直的证明方法 1、勾股定理; 2、等腰三角形; 3、菱形对角线; 4、圆所对的圆周角是直角; 5、点在线上的射影; 6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。(三垂线定理) 8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。 9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内的任意直线都垂直; 2、点在面内的射影; 3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。(面面垂直的性质 定理) 5、两条平行直线中的一条垂直于平面,那么另一条必垂直于这个平面。 6、一条直线垂直于两个平行平面中的一个平面,那么这条直线必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么它们的交线必垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角是直二面角; 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直;(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。

立体几何的解题技巧

立体几何新题型的解题技巧 【命题趋向】在2007年高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. . 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题 例1(2007年福建卷理)如图,正三棱柱111ABC A B C 的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; A 1 A

高中立体几何解题技巧

αl l αβ βαβαα//,//// ??? ????且相交m l m l m l m l ////??????=?=?βγαγβαγm βαl 高考文科数学立体几何解题技巧 1.判定线面平行的方法 定义:如果一条直线和一个平面没有公共点。 (1)如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行。 ααα////l l m m l ??? ????? (2)两面平行,则其中一个平面内的直线必平行于另一个平面。 αββα////l l ????? (3)平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面。 (4)平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面。 2. 判定面面平行的方法 (1)如果一个平面内有两条相交直线都平行于另一个平面,则两面平行。 (2)垂直于同一直线的两个平面平行。 (3)平行于同一平面的两个平面平行。 3.面面平行的性质 (1)两平行平面没有公共点。 (2)两平面平行,则一个平面上的任一直线平行于另一平面。 (3)垂直于两平行平面中一个平面的直线,必垂直于另一个平面。 (4)两平 行平面被第三个平面所截,则两交线平 行。 m l αm βαl

αα⊥?????????=?⊥⊥l AB AC A AB AC AB l AC l ,//a a αββα??⊥?⊥? ,l a a a l αβαββα⊥??=?⊥???⊥ ?a a b b αα⊥??⊥??? 4.判定线面垂直的方法 定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直。 (1)如果一条直线和一个平面内的两条相交线垂直,则线面垂直。 (2)如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面。 αα⊥?? ??⊥b a b a // (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4)如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面。 (5)如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面。 5.判定两线垂直的方法 (1)直线和平面垂直,则该线与平面内任一直线垂直。 (2)平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 A B C αl β a α a β l α α a b

立体几何(知识点总结,解题方法总结)

数学必修(二)知识梳理与解题方法分析第一章《空间几何体》 一、本章总知识结构 二、各节内容分析 空间几何体的结构 1.本节知识结构

空间几何体三视图和直观图 1、本节知识结构 空间几何体的表面积与体积 1、本节知识结构 。 三、高考考点解析 本部分内容在高考中主要考查以下两个方面的内容: 1.多面体的体积(表面积)问题; 2.点到平面的距离(多面体的一个顶点到多面体一个面的距离)问题—“等体积代换法”。 (一)多面体的体积(表面积)问题 1.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60 ,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60 . (1)求四棱锥P-ABCD的体积; 【解】(1)在四棱锥P-ABCD中,由PO⊥平面ABCD,得 ∠PBO是PB与平面ABCD所成的角,∠PBO=60°. 在Rt△AOB中BO=ABsin30°=1,由PO⊥BO, 于是,PO=BOtan60°=3,

而底面菱形的面积为23. ∴四棱锥P-ABCD 的体积V= 3 1 ×23×3=2. 2.如图,长方体ABCD-1111D C B A 中,E 、P 分别是BC 、11A D 的中点,M 、N 分别是AE 、1CD 的中点,1AD=AA ,a =AB=2,a (Ⅲ)求三棱锥P -DEN 的体积。 【解】 (Ⅲ)1111 24 NEP ECD P S S BC CD ?= =?矩形 222 15444 a a a a = ??+= 作1DQ CD ⊥,交1CD 于Q ,由11A D ⊥面11CDD C 得11AC DQ ⊥ ∴DQ ⊥面11BCD A ∴在1Rt CDD ?中,1122 55 CD DD a a DQ a CD a ??= == ∴13P DEN D ENP NEP V V S DQ --?== ?2152345 a a =?316a =。 (二)点到平面的距离问题—“等体积代换法”。 1 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点, 2, 2.CA CB CD BD AB AD ====== (III )求点E 到平面ACD 的距离。 【解】 (III ) 设点E 到平面ACD 的距离为.h E ACD A CDE V V --=, ∴ 11 .33 ACD CDE h S AO S ??= 在 ACD ?中,2,2,CA CD AD === 22127 22().222 ACD S ?∴=??-= 而2133 1,2,242 CDE AO S ?== ??= C A D B O E

高考数学立体几何解题方法技巧

高考数学立体几何解题方法技巧 立体几何是历年高考数学必考的题目之一,立体几何的学习离不开图形,下面就是给大家带来的高考数学立体几何解题方法技巧,希望大家喜欢! 一、作图 作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决.例1 已知正方体中,点P、E、F分别是棱AB、BC、的中点(如图1).作出过点P、E、F三点的正方体的截面. 分析:作图是学生学习中的一个弱点,作多面体的截面又是作图中的难点.学生看到这样的题目不知所云.有的学生连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可.观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面,由面面平行的性质可得,截面和面的交线一定和PE平行.而F 是的中点,故取的中点Q,则FQ也是一条交线.再延长FQ和的延长线交于一点M,由公理3,点M在平面和平面的交线上,

连PM交于点K,则QK和KP又是两条交线.同理可以找到FR 和RE两条交线(如图2).因此,六边形PERFQK就是所求的截面. 二、读图 图形中往往包含着深刻的意义,对图形理解的程度影响着我们的正确解题,所以读懂图形是解决问题的重要一环.例2 在棱长为a的正方体中,EF是棱AB上的一条线段,且EF=b<a,若Q是上的定点,P在上滑动,则四面体PQEF的体积(). (A)是变量且有最大值(B)是变量且有最小值(C)是变量无最大最小值(D)是常量 分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段EF的位置不定,点P在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体 积要具备哪些条件? 仔细观察图形,应该以哪个面为底面?观察,我们发现它的形状位置是要变化的,但是底边EF是定值,且P到EF的距离也是定值,故它的面积是定值.再发现点Q到面PEF的距离也是定值.因此,四面体PQEF的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题. 三、用图

高考文科数学立体几何解题技巧

高考文科数学立体几何解题技巧 1.平行、垂直位置关系的论证的策略: 1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。 3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2.空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 1两条异面直线所成的角①平移法:②补形法:③向量法: 2直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用 向量计算。 ②用公式计算. 3二面角 ①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。 ②平面角的计算法: i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量 夹角公式. 3.空间距离的计算方法与技巧: 1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角 形中求解,也可以借助于面积相等求出点到直线的距离。 2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直 接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。 3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直 的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时 直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的 距离一般均转化为点到平面的距离来求解。

相关文档
最新文档