钢筋混凝土梁正截面抗弯承载力计算表
(整理)钢筋混凝土受弯构件正截面承载力的计算
第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。
②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。
③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。
比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。
其计算与梁计算原理一样。
b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。
⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。
一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。
当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。
板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。
板中弯起钢筋的弯起角不宜小于30°。
板的受力钢筋直径一般用6、8、10mm。
对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。
b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。
c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。
新版盖梁计算表
1380.3
b’=
1.5
m
s=
1.2
m
Fd=
5070
kN
γ0Tt,d=
1255
≤
fsd*As=8127.9 kN
k4=
5.89
满足规范要求!
注:1、粉色为需要输入部分。 2、
蓝色表示 计算结果 。
3、 红色表示 判定。
4、 对于上宽 下窄盖梁 截面,上b 用于计算 配筋率 (偏安 全),下b 用于计算 受压区高 度进而求 解内力臂z (偏安 全)。
d或de= W0= Ms= Ml= as= c= C1= C2=
C3=
ρte= σss=
32 0.2 8000 6166 79 52
1 1.3854
0.259
0.0650 175.11
满足规范要求!
mm mm kN*m kN*m mm mm
MPa
通过计算 因为
Wcr
C1C2C3
ss Es
cd 0.36 1.7te
4、配筋 受拉区主筋 直径(等代 直径) 受拉区主筋 采用 受压区主筋 直径 受压区主筋 采用 箍筋直径
箍筋采用
5、正截面 抗弯承载 力计算 截面有效高 度 最大弯矩组 合设计值 (基本组 合) 受拉区钢筋 截面面积 受压区钢筋 截面面积 受拉区纵向 钢筋配筋率 支点截面受 压区高度 支点截面内 力臂
Ttd=
0Tt,d fsd As f pd Ap
通 其过抗计压算承载 力安全系数
3236.0
≤ k4=
<h,按拉压杆计算
2304
kN
1.5
m
3-钢筋混凝土受弯构件正截面承载力计算
3.3.1 线弹性梁截面正应力计算原理
一.基本假定
1. 平截面假定成立-变形前的平截面在变形后保持平截面 不变,即截面上的正应变沿截面高度呈线形分布-给出 了截面变形的几何条件或变形协调条件。
2. 材料的应力-应变关系符合Hook定律,即应力应变之间 呈线性关系-给出了材料的物理关系。
有三种基本形式
延性破坏:配筋合适的构件,具有较高的承载力,同时破 坏时具有一定的延性,钢筋的抗拉强度和混凝土的抗压强度 都得到发挥,如适筋梁。 受拉脆性破坏:承载力很小,取决于混凝土的抗拉强度,混 凝土的抗压强度未能发挥,破坏特征与素混凝土构件类似。 虽然由于配筋使构件在破坏阶段表现出很长的破坏过程,但 这种破坏是在混凝土一开裂就产生,没有预兆,如少筋梁。 受压脆性破坏:具有较高的承载力,取决于混凝土抗压强度, 其延性能力取决于混凝土的受压塑性,因而较差,钢筋的受 拉强度没有发挥,如超筋梁 。
正常使用阶段的裂缝宽度和挠度变形验算;
绘制施工图。
桥梁工程系-杨 剑
3.2 试验研究
桥梁工程系-杨 剑
3.2.1 配筋率对正截面破坏形态的影响
一.两个名词
As’
as'
as'
h0 h
AS b
as
桥梁工程系-杨 剑
1.截面的有效高度h0及有效面积 bh0
截面的有效高度h0-截面内纵向受拉钢筋重心至 截面受压边缘的距离;
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
fu f
桥梁工程系-杨 剑
(a) (b) (c)
(d)
(e) (f) ε cu
简支梁正截面抗弯承载力计算表格
4 砼弹性模量
5 钢筋弹性模量
6 预应力弹性模量
7 主筋抗拉强度设计值
8
9 板的铰缝截面积
fcd MPa 13.8 fsd MPa 195 fpd MPa Ec MPa 31500 Es MPa 210000 Ep MPa fsd MPa 280
mm2
三 计算系数及其他参数
1 桥梁结构的重要性系数 γo 2 钢筋与砼的弹性模量比 αES 3 预筋与砼的弹性模量比 αEp 4 纵向受拉钢预筋配筋率 ρ
桥梁承载力计算用表
Ⅰ、基本参数
编号
参数名称
13m简支梁桥钢筋砼主梁正截面抗弯承载力计算表
符号 单位 数值 编号
参数名称
符号 单位 数值 编号
参数名称
符号 单位 数值
一
几何参数
1 梁高
2 梁(腹板)宽
3 受压翼缘板宽
4 受压翼缘板厚
5 受弯构件计算跨径
6 预筋和钢筋合力至拉区边缘
7 钢筋合力至拉区边缘距离
224
91
641 当x≤b'f,则Md=fcdb’f x (ho-x /2) / γo 792 当x>b'f,则Md=fcd[ b x (ho-x /2)+(b'f-b)h'f(ho-h'f/2)] / γo
641
第 1 页,共 1 页
杭州市萧山区交通规划设计处
-
1
- 6.666667
-
0
- 0.01169
5 受拉钢筋截面积
As mm2 6381
6
7 毛截面积
A mm2 545894
8 换算截面积
Ao mm2 582055
《公预规》提供的附录C表C.0.2“圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数”表
C.O.2沿用边均匀配筋的圆形截面钢筋混凝土偏心受压构件,其正截面抗压承载力可用查表法(表C.0.2)并按下列规定计算求得:1当对构件承载力进行复核验算时1)由本规范公式(5.3.9-1)和(5.3.9-2)解得轴向力的偏心距:'0'g cd sd cd sd Bf D f e r Af C f ρρ+=+(C.0.2-1)2)已知cd f 、'sd f 、ρ、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式(C.0.2-1)计算0e 值。
若此0e 值与实际计算偏心距/d d M N η相符(允许偏差在2%以内),则设定的ξ值为所求者;若不相符,重新设定ξ值,重复上述计算,直到相符为止;3)将最后确定的ξ相应的A、B、C、D值代入规范公式(5.3.9-1)或(5.3.9-2)进行构件正截面承载力的复核验算。
2当对构件进行配筋设计时1)由公式(C.0.2-1)变换得截面配筋率:0'cd sd o f Br Ae f Ce Dgr ρ−=•−(C.0.2-2)2)已知cd f 、'sd f 、0e 、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式( C.0.2-2)计算ρ值,计算时式中的0e 应乘以偏心距增大系数η;再再把ρ和A、C值直代入规范公式(5.3.9-1)算得轴向力值。
若此轴向力值与实际作用的轴向力设计值相符(允许偏差在2%以内),则该ξ值及依此计算的ρ值为所求者;若不相符,重新设定ξ值,重复上述计算,直至相符为止。
3)以最后确定的ρ值代入下列公式计算纵向钢筋截面面积:2s A r ρπ=(C.0.2-3)所得钢筋配筋率应符合最小配筋率的要求。
表C.O.2圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数ξA B C D ξA B C DξA B C D0.200.32440.2628-1.52961.4216 0.210.34810.2787-1.46761.4623 0.220.37230.2945-1.40741.5004 0.230.39690.3103-1.34861.5361 0.240.42190.3259-1.29111.5697 0.250.44730.3413-1.23481.6012 0.260.47310.3566-1.17961.6307 0.270.49920.3717-1.12541.6584 0.280.52580.3865-1.07201.6843 0.290.55260.4011-1.01941.7086 0.300.57980.4155-0.96751.7313 0.310.60730.4295-0.91631.7524 0.320.63510.4433-0.86561.7721 0.330.66310.4568-0.81541.7903 0.340.69150.4699-0.76571.8071 0.350.72010.4828-0.71651.8225 0.360.74890.4952-0.66761.8366 0.370.77800.5073-0.61901.8494 0.380.80740.5191-0.57071.8609 0.390.83690.5304-0.52271.8711 0.400.86670.5414-0.47491.8801 0.410.89660.5519-0.42731.8878 0.420.92680.5620-0.379818943 0.430.95710.5717-0.33231.8996 0.440.98760.5810-0.28501.9036 0.451.01820.5898-0.23771.9065 0.461.04900.5982-0.19031.9081 0.471.07990.6061-0.14291.9084 0.481.11100.6136-0.09541.9075 0.491.14220.6206-0.04781.9053 0.501.17350.6271-0.00001.9018 0.51 1.20490.63310.0480 1.8971 0.52 1.23640.63860.0963 1.8909 0.53 1.26800.64370.1450 1.8834 0.54 1.29960.64830.1941 1.8744 0.55 1.33140.65230.2436 1.8639 0.56 1.36320.65590.2937 1.8519 0.57 1.39500.65890.3444 1.8381 0.58 1.42690.66150.3960 1.8226 0.59 1.45890.66350.44851,8052 0.60 1.49080.66510.5021 1.78560.64 1.61880.66610.7373 1.67630.65 1.65080.66510.8080 1.63430.66 1.68270.66350.8766 1.59330.67 1.71470.66150.9430 1.55340.68 1.74660.6589 1.0071 1.51460.691.77840.6559 1.06921.47690.70 1.81020.6523 1.1294 1.44020.71 1.84200.6483 1.1876 1.40450.72 1.87360.6437 1.2440 1.36970.73 1.90520.6386 1.2987 1.33580.74 1.93670.6331 1.3517 1.30280.75 1.96810.6271 1.4030 1.27060.76 1.99940.6206 1.4529 1.23920.77 2.03060.6136 1.5013 1.20860.78 2.06170.6061 1.5482 1.17870.79 2.09260.5982 1.5938 1.14960.80 2.12340.5898 1.6381 1.12120.81 2.15400.5810 1.6811 1.09340.82 2.18450.5717 1.7228 1.06630.83 2.21480.5620 1.7635 1.03980.84 2.24500.5519 1.8029 1.01390.85 2.27490.5414 1.84130.98860.86 2.30470.5304 1.87860.96390.87 2.33420.5191 1.91490.93970.88 2.36360.5073 1.95030.91610.89 2.39270.4952 1.98460.89300.90 2.42150.4828 2.01810.87040.91 2.45010.4699 2.05070.84830.92 2.47850.4568 2.08240.82660.93 2.50650.4433 2.11320.80550.94 2.53430.4295 2.14330.78470.95 2.56180.4155 2.17260.76450.96 2.58900.4011 2.20120.74460.97 2.61580.3865 2.22900.72510.98 2.64240.3717 2.25610.70610.99 2.66850.3566 2.28250.68741.002.69430.3413 2.30820.66921.012.71120.3311 2.33330.65131.022.72770.3209 2.35780.63371.032.74400.3108 2.38170.61651.042.75980.3006 2.40490.59971.082.82000.26092.49240.53561.092.83410.25112.51290.52041.102.84800.24152.53300.50551.112.86150.23192.55250.49081.122.87470.22252.57160.47651.132.88760.21322.59020.46241.142.90010.20402.60840.44861.152.91230.19492.62610.43511.162.92420.18602.64340.42191.172.93570.17722.66030.40891.182.94690.16852.67670.39611.192.95780.16002.69280.38361.202.96840.15172.70850.37141.212.97870.14352.72380.35941.222.9886O.13552.73870.34761.232.99820.12772.75320.33611.243.00750.12012.76750.32481.253.01650.11262.78130.31371.263.02520.10532.79480.30281.273.03360.09822.80800.29221.283.04170.09142.82090.28181.293.04950.08472.83350.27151.303.05690.07822.84570.26151.313.06410.07192.85760.25171.323.07090.06592.86930.24211.333.07750.06002.88060.23271.343.08370.05442.89170.22351.353.08970.04902.90240.21451.363.09540.04392.91290.20571.373.10070.03892.92320.19701.383.10580.03432.93310.18861.393.11060.02982.94280.18031.403.11500.02562.95230.17221.413.11920.02172.96150.16431.423.12310.01802.97040.15661.433.12660.01462.97910.14911.443.12990.01152.98760.14171.453.13280.00862.99580.13451.463.13540.00613.00380.12751.473.13760.00393.01150.12061.483.13950.00213.01910.11400.61 1.52280.66610.5571 1.76360.62 1.55480.66660.6139 1.73870.63 1.58680.66660.6734 1.7103 1.05 2.77540.2906 2.42760.58321.06 2.79060.2806 2.44970.56701.07 2.80540.2707 2.47130.5512 1.49 3.14080.007 3.02640.10751.503.14160.00003.03340.10111.513.14160.00003.04030.09505.3.9沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件(图5.3.9),其正截面抗压承载力计算应符合下列规定:图5.3.9沿周边均匀配筋的圆形截面偏心受压构件计算22'0d cd sdN Ar f C r f γρ≤+(5.3.9-1)33'00d cd sd N e Br f D gr f γρ≤+(5.3.9-2)式中0e ——轴向力的偏心距,0/d d e M N =,应乘以偏心距增大系数η,η可按第5.3.10条的规定计算;A、B——有关混凝土承载力的计算系数,按附录C 的迭代法由表C.O.2查得;C、D——有关纵向钢筋承载力的计算系数,按附录C 的迭代法由表C.O.2查得;r ——圆形截面的半径;g ——纵向钢筋所在圆周的半径s r 与圆截面半径之比,/s g r r =;ρ——纵向钢筋配筋率,2/s A r ρπ=。
普通钢筋混凝土箱梁计算书
A 匝道桥第一联计算书1 普通钢筋混凝土箱梁纵向验算 1.1 荷载组合短期效应组合:永久作用标准值效应与可变作用频遇值效应相组合长期效应组合:永久作用标准值效应与可变作用准永久值效应相组合 标准组合:作用取标准值,汽车荷载考虑冲击系数基本组合:永久作用的设计值效应与可变作用设计值效应相组合偶然组合: 永久作用标准值效应与可变作用某种代表值效应、一种偶然作用标准值效应相组合1.2 验算规则1.2.1 裂缝宽度验算新《公桥规》第6.4条规范以及《城市桥梁设计规范》 A.0.3 3) 条规范: 1.2.1.1 钢筋混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用(或荷载)短期效应组合并考虑长期效应影响进行验算。
1.2.1.2 钢筋混凝土构件 其计算的最大裂缝宽度不应超过下列规范的限值:1)Ⅰ类和Ⅱ类环境 0.25mm 2)Ⅲ类和Ⅳ类环境 0.15mm1.2.1.3 矩形、T 行和I 形截面钢筋混凝土构件,其最大裂缝宽度W fk 可按下列公式计算:12330()0.2810SSfk SSdW C C C E σρ+=+ (mm )0()S Pf fA A bh b b h ρ+=+−1.2.2 正截面抗弯承载力验算新《公桥规》第5.2.2条规范:矩形截面或翼缘位于受拉边的T 形截面受弯构件,其正截面抗弯承载力计算应符合以下规定:()()()'''''''000002d cd sd s s pd p p p x M f bx h f A h a f A h a γσ⎛⎞≤−+−+−−⎜⎟⎝⎠混凝土受压区高度x 应按下式计算:()'''''sd s pd p cd sd s pd po p f A f A f bx f A f A σ+=++−1.2.3 斜截面抗剪承载力验算新《公桥规》第5.2.7条规范:矩形、T 形和I 形截面的受弯构件,当配置箍筋和弯起钢筋时,其斜截面抗剪承载力计算应符合下列规定:0d cs sb pb V V V V γ≤++31230.4510cs V bh ααα−=×30.7510sin sb sd sb s V f A θ−=×∑ 30.7510sin pb pd pb p V f A θ−=×∑新《公桥规》第5.2.9条规范:矩形、T 形和I 形截面的受弯构件,其抗剪截面应符合下列要求:000.5110d V γ−≤× ()kN1.3 计算模型4x20m (8.0m 宽)箱梁纵向计算模型1.4 正常使用极限状态裂缝验算短期效应组合弯矩图(kN*m )短期效应组合裂缝图(kN*m )经计算,最大负弯矩处裂缝宽度为0.12mm ,最大正弯矩处裂缝宽度为0.16mm ,均符合规范要求。
钢筋混凝土受弯构件正截面承载力计算
为保证钢筋混凝土结构的耐久性、防火性以及钢
筋与混凝土的粘结性能,钢筋的混凝土保护层厚
5度、一配般筋不率小于2A 5msm% ; ....4...2()
bh0
用下述公式表示
As bh0
%
公式中各符号含义:
As为受拉钢筋截面面积; b为梁宽;h0为梁的有效 高度,h0=h-as;as为所有受拉钢筋重心到梁底面 的距离,单排钢筋as= 35mm ,双排钢筋as= 55~60mm 。
M/ M u
Mu
1.0
0.8 My
0.6
II
0.4
III III a II a
M cr I a
I
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
说明:
对于配筋合适的梁,在III
阶段,其承载力基本保持不 变而变形可以很大,在完全
M/ M u
Mu
1.0
破坏以前具有很好的变形能 力,破坏预兆明显,我们把
0.8 My
通常采用两点对称集中加荷,加载点位于梁跨度 的1/3处,如下图所示。这样,在两个对称集中荷载间 的区段(称“纯弯段”)上,不仅可以基本上排除剪力的 影响(忽略自重),同时也有利于在这一较长的区段上(L /3)布置仪表,以观察粱受荷后变形和裂缝出现与开 展的情况。在“纯弯段”内,沿梁高两侧布置多排测 点,用仪表量测梁的纵向变形。
梁破坏时的极限弯矩Mu小于在正常情况下的开
裂弯矩Mcr。梁配筋率越小, Mcr -Mu的差值越大; 越大(但仍在少筋梁范围内), Mcr -Mu的差值越小。
当Mcr -Mu =0时,它就是少筋梁与适筋梁的界限。这
时的配筋率就是适筋梁最小配筋率的理论值min。
第三章 钢筋混凝土受弯构件正截面承载力计算
第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第一节钢筋砼受弯构件的构造一、钢筋砼板的构造二、钢筋砼梁的构造一、钢筋砼板(reinforced concreteslabs)的构造1、钢筋砼板的分类:整体现浇板、预制装配式板。
2、截面形式小跨径一般为实心矩形截面。
跨径较大时常做成空心板。
如图所示。
3、板的厚度:根据跨径(span)内最大弯矩和构造要求确定,其最小厚度应有所限制:行车道板一般不小于100mm;人行道板不宜小于60mm(预制板)和80mm(现浇筑整体板)。
4、板的钢筋由主钢筋(即受力钢筋)和分布钢筋组成如图。
钢筋混凝土板桥构造图(1)主筋布置:布置在板的受拉区。
直径:行车道板:不小于10mm;人行道板:不小于8mm。
间距:间距不应大于200mm。
主钢筋间横向净距和层与层之间的竖向净距,当钢筋为三层及以下时,不应小于30mm,并不小于钢筋直径;当钢筋为三层以上时,不应小于40mm,并不小于钢筋直径的1.25倍。
净保护层:保护层厚度应符合下表规定。
序号构件类别环境条件ⅠⅡⅢ、Ⅳ1 基础、桩基承台⑴基坑底面有垫层或侧面有模板(受力钢筋)⑵基坑底面无垫层或侧面无模板465756852 墩台身、挡土结构、涵洞、梁、板、拱圈、拱上建筑(受力主筋)34453 人行道构件、栏杆(受力主筋)22534 箍筋22535 缘石、中央分隔带、护栏等行车道构件34456 收缩、温度、分布、防裂等表层钢筋15225梁构件,在不同环境条件下,保护层厚度值注:请点击<按扭Ⅰ,Ⅱ,Ⅲ&Ⅳ>,以查看不同保护层厚度值(2)分布钢筋(distribution steel bars):垂直于板内主钢筋方向上布置的构造钢筋称为分布钢筋作用:A、将板面上荷载更均匀地传递给主钢筋B、固定主钢筋的位置C、抵抗温度应力和混凝土收缩应力(shrinkage stress)布置:A、在所有主钢筋的弯折处,均应设置分布钢筋B、与主筋垂直C、设在主筋的内侧数量:截面面积不小于板截面面积的0.1%。
钢筋混凝土受弯构件正截面承载力计算
板厚度较大时如水闸,钢筋直径可用12~25mm,Ⅱ级钢筋; ◆ 受力钢筋间距一般在70~250mm之间;要便于混凝土浇捣。 ◆ 垂直于受力钢筋的方向应布置分布钢筋,以便将荷载均匀地传
递给受力钢筋,并便于在施工中固定受力钢筋的位置,同时也 可抵抗温度和收缩等产生的应力,每米不少于3根。
◆ 同时不应小于0.2%
◆ 对于现浇板和基础底板沿每个方向受拉钢筋的最小配筋 率不应小于0.15%。
板常用配筋率: 矩形截面 0.6 %~0.8 %
梁常用配筋率: 0.6%~1.5%
T形截面配筋率: 0.9%~1.8%
第三章 钢筋混凝土受弯构件正截面承载力计算
三、截面配筋计算步骤:
已知材料强度、截面尺寸,M 求 AS ?
结性能,钢筋的混凝土保护层厚度c一般不小于 25mm;
并符合附录四附表4—1的规定。 截面有效高度 h0 h as
Ý¡ 30mm
1.5d cݡ cmin
d
混凝土保护层计算厚度as:
h0
钢筋一层布置时 as=c+d/2 ,
钢筋二层布置时 as=c+d+e/2, a
其中e为钢筋之间净距。
Ý¡ cmin 1.5d
⑴ 等效前后混凝土压应力的合力C大小相等; ⑵ 等效前后两图形中受压区合力C的作用点不变。 见图3-10
第三章 钢筋混凝土受弯构件正截面承载力计算
㈢ 相对受压区高度
混凝土相对受压区高度
正截面混凝土受压区高度x与h0的比值为大小受压区高度
即
x
h0
当截面内纵向受力钢筋达到屈服时,混凝土受压区最
梁正截面抗弯承载力计算
hf=
120 (mm)
bf=
1000 (mm)
支座负弯矩钢筋:5φ22
φf=
22 (mm)
Asf= ρf=
1901 (mm2) 1.121%
跨中正弯矩钢筋:4φ20
Nz=
4
φz=
20 (mm)
Asz= ρz=
1257 (mm2) 0.741%
箍筋:φ6@200
Nj=
2
φj=
6 (mm)
钢筋和混凝土指标
C fck= ftk=
fc= ft= Ec=
25 (CN?/(m20m,225,30,35,40,45,50,55) 混凝土等级
16.7 )(N/mm2 混凝土抗压强度标准值 fck
1.78 )(N/mm2 混凝土抗拉强度标准值 ftk
11.9 )(N/mm2 混凝土抗压强度设计值 fck
dj= ρj=
200 (mm) 0.283
梁宽度 b 梁高度 h 梁保护层厚度 c 梁有效高度 h0 梁计算跨度 l0 梁净距 Sn 梁翼缘高度 hf 梁支座负弯矩截面宽度 bf
支座负弯矩钢筋直径 φf 支座负弯矩钢筋面积 Asf 支座负弯矩钢筋配筋率 ρf
跨中正弯矩钢筋根数 Nz 跨中正弯矩钢筋直径 φz 跨中正弯矩钢筋面积 Asz 跨中正弯矩钢筋配筋率 ρz
300 )(N/mm2 纵筋抗拉压强度设计值 fy
200000 )
1.00
1.0<C50<内插<C80<0.94
0.80
0.8<C50<内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
3.2 正截面承载力计算
3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。
所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。
一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。
ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。
根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。
①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。
适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。
第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。
当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。
当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。
Ⅰa阶段的应力状态是抗裂验算的依据。
第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。
裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。
随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。
第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。
当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。
钢筋混凝土受弯构件正截面承载力计算-混凝土结构设计原理
1 /171第四章 钢筋混凝土受弯构件正截面承载力计算本章学习要点:1、掌握单筋矩形截面、双筋矩形截面和T 形截面承载力的计算方法;2、了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;3、熟悉受弯构件正截面的构造要求。
§4-1 概述一、受弯构件的定义同时受到弯矩M 和剪力V 共同作用,而轴力N 可以忽略的构件(图4—1). 梁和板是土木工程中数量最多,使用面最广的受弯构件。
梁和板的区别:梁的截面高度一般大于其宽度,而板的截面高度则远小于其宽度。
受弯构件常用的截面形状如图4-2所示。
图4-1二、受弯构件的破坏特性正截面受弯破坏:沿弯矩最大的截面破坏,破坏截面与构件的轴线垂直。
斜截面破坏:沿剪力最大或弯矩和剪力都较大的截面破坏。
破坏截面与构件轴线斜交。
进行受弯构件设计时,要进行正截面承载力和斜截面承载力计算。
2 /172图4—3 受弯构件的破坏特性§4—2 受弯构件正截面的受力特性一、配筋率对正截面破坏性质的影响配筋率:为纵向受力钢筋截面面积A s 与截面有效面积的百分比.sA bh 式中 s A —-纵向受力钢筋截面面积。
b -—截面宽度,0h —-截面的有效高度(从受压边缘至纵向受力钢筋截面重心的距离)。
构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但配筋率的影响最大。
受弯构件依配筋数量的多少通常发生如下三种破坏形式: 1、 少筋破坏当构件的配筋率低于某一定值时,构件不但承载力很低,而且只要其一开裂,裂缝就急速开展,裂缝处的拉力全部由钢筋承担,钢筋由于突然增大的应力而屈服,构件立即发生破坏。
图4—4 受弯构件正截面破坏形态2、适筋破坏当构件的配筋率不是太低也不是太高时,构件的破坏首先是受拉区纵向钢筋屈服,然后压区砼压碎。
钢筋和混凝土的强度都得到充分利用.破坏前有明显的塑性变形和裂缝预兆。
3、超筋破坏当构件的配筋率超过一定值时,构件的破坏是由于混凝土被压碎而引起的。
钢筋混凝土矩形截面受弯构件正截面受弯承载力计算系数表
d≦25d=28-40
C15 2.49 1.49 1.63
1.32C20 3.22 1.93
2.11
1.71C25 3.95
2.37 2.59
2.1C30 4.82 2.9
3.16 2.56
≦C350.40.20.15一二三四
中柱和边柱10.80.70.6
角柱、框支柱 1.210.90.8
0.2
分类
轴心受压构件的全部钢筋
偏心受压及偏心受拉构件的受压
钢筋
钢筋混凝土受弯构件最大配筋百分率%
混凝土强度等级Ⅰ级 Ⅱ级
Ⅲ级混凝土构件中纵向受力钢筋的最小配筋率% C40-C600.40.2柱截面纵向钢筋的最小总配筋率百分比 表2—7—3
类别抗震等级
受弯构件、偏心受压构件、大偏
心受拉构件的受拉钢筋及小偏心
受拉构件每一侧的受拉钢筋
全部纵向钢筋一侧纵向钢筋钢筋种类纵向受拉钢筋水平分布钢筋竖向分布钢筋HPB2350.250.250.2HRB335\HRB400\RRB4000.20.20.16 最小配箍率:ρsv.min=0.02*fc/fyv 混凝土构件中纵向受力钢筋的最小配筋率% 表2—7—1
受压构件受力类型 最小配筋百分率
0.6
0.2
受弯构件、偏心受拉、轴心受拉构件一侧的受拉钢筋
0.2和45ft/fy中的较大值深梁中钢筋的最小配筋百分率 表2—7—2。
混凝土结构的受弯构件正截面承载力计算
求:Mu≥M 未知数:x 和Mu两个未知数,有唯一解 求解过程:应用基本公式和公式的条件
(2)当 >b时,Mu=?
取M1 s,max 1 fcbh02
(3)当x<2a’时,Mu =?
可偏于安全的按下式计算
Mu f y As (h0 a)
As
As
1 fc
fy
b h0
2
M
1 fcbh02 (1
f y (h0 a)
0.5 )
为使As 、 As’的总量最小,必须使
d ( As As )
d
0
a'
0.5(1 ) 0.55 故取 = b h0 即取 M1 s,max 1 fcbh02
(注:为提高破坏时的延性也可取 = 0.8b)
4.5 正截面受弯承载力计算
1、双筋矩形截面的概念 双筋截面是指同时配置受拉和受压钢筋的情况。
受压钢筋 (不是架立筋)
A s'
As
受拉钢筋
4.5 正截面受弯承载力计算
第四章 受弯构件正截面承载力
2、双筋矩形截面的应用场合---即何时使用?
(一般来说采用双筋是不经济的,工程中通常仅在以下情 况下采用)
▲ 当 M>s,max 1fcbh02 ,而截面尺寸和材料强度受建
4.5 正截面受弯承载力计算
第四章 受弯构件正截面承载力
▲经济配筋率的取值
梁: =(0.5~1.6)% 板: =(0.4~0.8)%
▲由经济配筋率计算截面尺寸
M
f y As (h0
x) 2
fybh02(1 0.5)
h0
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C20 13.4 1.54 9.6 1.1 25500
HPB23 强度 类型 5 fyv N/mm2 210
HPB23
强度 类型 5
fy N/mm2 210
Es N/mm2 210000
直径
8~20
梁截面尺寸
b=
300 (mm)
h=
600 (mm)
c=
35 (mm)
h0=
565 (mm)
l0=
3.000 (m)
300 )(N/mm2 纵筋抗拉压强度设计值 fy
200000 )
1.00
1.0<C50<内插<C80<0.94
0.80
0.8<C50<内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
7.14
αE=Es/Ec
混凝土强度及弹性模量
强度 类型 fck N/mm2 ftk N/mm2 fc N/mm2 ft N/mm2 Ec N/mm2
1.27 )(N/mm2 混凝土抗拉强度设计值 ft
28000 )
混凝土弹性模量 Ec
HPB fyv=
235 (HNP/Bm(m2325,335,400) 箍筋强度等级
210 )
箍筋抗拉压强度设计值 fyv
HRB fy= Es= α1= β1= ξb= αE=
335 (HNR/mB(m2325,335,400) 纵筋强度等级
Nj= φj=
dj=
2 6 (mm) 200 (mm)
ρj=
0.283
跨中正筋直径 φz 跨中正筋面积 Asz 跨中正筋配筋率 ρz
箍筋肢数 Nj 箍筋直径 φj 箍筋间距 dj 配箍率 ρj
梁截面尺寸
b=
300 (mm)
h=
600 (mm)
c=
35 (mm)
h0=
565 (mm)
l0=
3.000 (m)
Sn=
2000 (mm)
hf=
120 (mm)
bf=
1000 mm)
支座负弯矩钢筋:5φ22
Nf=
5
φf=
22 (mm)
Asf=
1901 (mm2)
ρf= 1.121%
ρfmax 2.182%
ξf=
0.283
Muf= 276.626 (kN-m)
梁宽度 b 梁高度 h 梁保护层厚度 c 梁有效高度 h0 梁计算跨度 l0 梁净距 Sn 梁翼缘高度 hf 梁跨中弯矩截面宽度 bf
支座负筋根数 Nf 支座负筋直径 φf 支座负筋面积 Asf 支座负筋配筋率 ρf 支座负筋最大配筋率 ρfmax 支座负筋相对受压区高度 ξf 支座抗弯承载力 Muf
跨中正弯矩钢筋:4φ20
Nz=
4
跨中正筋根数 Nz
φz= Asz=
20 (mm) 1257 (mm2)
ρz= 0.741%
箍筋:φ6@200
dj=
200 (mm)
ρj=
0.283
梁宽度 b 梁高度 h 梁保护层厚度 c 梁有效高度 h0 梁计算跨度 l0 梁净距 Sn 梁翼缘高度 hf 梁支座负弯矩截面宽度 bf
支座负弯矩钢筋直径 φf 支座负弯矩钢筋面积 Asf 支座负弯矩钢筋配筋率 ρf
跨中正弯矩钢筋根数 Nz 跨中正弯矩钢筋直径 φz 跨中正弯矩钢筋面积 Asz 跨中正弯矩钢筋配筋率 ρz
C35 23.4 2.2 16.7 1.57 31500
C40 26.8 2.39 19.1 1.71 32500
C45 29.6 2.51 21.1 1.8 33500
C50 32.4 2.64 23.1 1.89 34500
C55 35.5 2.74 25.3 1.96 35500
Sn=
2000 (mm)
hf=
120 (mm)
bf=
1000 (mm)
支座负弯矩钢筋:5φ22
φf=
22 (mm)
Asf=
1901 (mm2)
ρf= 1.121%
跨中正弯矩钢筋:4φ20
Nz=
4
φz=
20 (mm)
Asz=
1257 (mm2)
ρz= 0.741%
箍筋:φ6@200
Nj=
2
φj=
6 (mm)
箍筋肢数 Nj 箍筋直径 φj 箍筋间距 dj 配箍率 ρj
强度及弹性模量
C25 16.7 1.78 11.9 1.27 28000
C30 20.1 2.01 14.3 1.43 30000
HRB33 HRB40
5
0
300 360
HRB33 HRB40
5
0
300 360
200000 200000
6~50 6~50
钢筋混凝土梁正截面抗弯承载力计算表
钢筋和混凝土指标
C fck= ftk=
fc= ft= Ec=
25 (CN?/(m20m,225,30,35,40,45,50,55) 混凝土等级
16.7 )(N/mm2 混凝土抗压强度标准值 fck
1.78 )(N/mm2 混凝土抗拉强度标准值 ftk
11.9 )(N/mm2 混凝土抗压强度设计值 fck