函数极值的求法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ f ′′( x ) = 6 x + 6,
∵ f ′′( 4) = 18 < 0,
f ′′( 2) = 18 > 0,
故极大值 f (4) = 60, 故极小值 f ( 2) = 48.
f ( x ) = x 3 + 3 x 2 24 x 20 图形如下
M
m
注意: f ′′( x0 ) = 0时, f ( x )在点x0处不一定取极值 , 注意:
一、函数极值的定义
y
y = f (x)
ax
y
1
o
x2
x3
x4
x5
wenku.baidu.com
x6
b
x
y
o
x0
x
o
x0
x
( f 定义 设函数 ( x)在区间 a, b)内有定义, x0是 (a, b)内的一个点 , 如果存在着点x0的一个邻域,对于这邻域内的 , 任何点x,除了点x0外, f ( x) < f ( x0 )均成立 就称 ; f ( x0 )是函数f ( x)的一个极大值 如果存在着点x0的一个邻域,对于这邻域内的 , 任何点x,除了点x0外, f ( x) > f ( x0 )均成立 就称 f ( x0 )是函数f ( x)的一个极小值.
故命题不成立. 故命题不成立.
练习题
一、填空题: 填空题: ________性质 性质. 1、极值反映的是函数的 ________性质. 可导, 2、若函数 y = f ( x ) 在 x = x 0 可导,则它在点 x 0 处到 得极值的必要条件中为___________. 得极值的必要条件中为___________. 3、函 数 y = 2 ( x 1) 的 极 值 点 为 ________ ;
当x < 2时, f ′( x ) > 0; 当x > 2时, f ′( x ) < 0.
M
∴ f ( 2) = 1为f ( x )的极大值 .
三、小结
极值是函数的局部性概念: 极值是函数的局部性概念:极大值可能小于极小 极小值可能大于极大值. 值,极小值可能大于极大值 极小值可能大于极大值 驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点 函数的极值必在临界点取得. 函数的极值必在临界点取得 临界点取得 第一充分条件; 第一充分条件 判别法 第二充分条件; 第二充分条件 (注意使用条件 注意使用条件) 注意使用条件
1 e
二、求下列函数的极值: 求下列函数的极值: 1 、 y = e x cos x ; 2、 y = x ; x2 y 3 、方程e + y = 0 所确定的函数 y = f ( x ) ; x12 4 、 y = e , x ≠ 0 . 0, x = 0 证明题: 三 、证明题: 1 、如果 y = ax 3 + bx 2 + cx + d 满 足条 b 2 3ac < 0 , 则函数无极值. 则函数无极值. 2、 2 、设 f ( x ) 是有连续的二阶导数的偶函数 f ′′( x ) ≠ 0 , 的极值点. 则 x = 0 为 f ( x ) 的极值点.
思考题
下命题正确吗? 下命题正确吗?
的极小值点, 如果 x 0 为 f ( x ) 的极小值点,那么必存在 的某邻域,在此邻域内, x 0 的某邻域,在此邻域内, f ( x ) 在 x 0 的左侧 下降, 的右侧上升. 下降,而在 x 0 的右侧上升
思考题解答
不正确. 不正确.
1 2 2 + x ( 2 + sin ), x ≠ 0 例 f ( x) = x 2, x=0 1 2 当 x ≠ 0时, f ( x ) f ( 0) = x ( 2 + sin ) > 0 x
(4) 求极值 .
例1 求出函数 f ( x ) = x 3 3 x 2 9 x + 5 的极值 . 解
f ′( x ) = 3 x 2 6 x 9 = 3( x + 1)( x 3)
令 f ′( x ) = 0, 得驻点 x1 = 1, x2 = 3. 列表讨论
x
( ∞ ,1) 1
+
仍用定理 2.
注意:函数的不可导点 也可能是函数的极值点 也可能是函数的极值点. 注意:函数的不可导点,也可能是函数的极值点 例3 解
求出函数 f ( x ) = 1 ( x 2) 的极值 .
2 f ′( x ) = ( x 2 ) 3 3 1
2 3
( x ≠ 2)
当x = 2时, f ′( x )不存在 . 但函数 f ( x )在该点连续 .
1 x
练习题答案
2、 2、 f ′( x 0 ) = 0 ; 3 1 1 e 3、(1,2),无 4、 3、(1,2),无; 4、 , ( ) ,0,1; e e π 2 4 + 2 kπ π e 二、1、极大值 y( + 2kπ ) = ,极小值 4 2 π 2 4 + ( 2 k +1) π π y( + ( 2k + 1)π ) = e ( k = 0,±1,±2,) ; 4 2 局部; 一、1、局部; 2、极大值 y(e ) = e ; 3、极小值 y(0) = 1; 4、极小值 y(0) = 0 .
做函数 f ( x ) 的驻点.
注意: 注意 可导函数 f ( x ) 的极值点必定是它的驻 点,
但函数的驻点却不一定 是极值点.
y = x 3 , y ′ x = 0 = 0, 例如, 例如
但x = 0不是极值点. 不是极值点
定理2(第一充分条件) 定理2(第一充分条件) 2(第一充分条件
(1)如 果 (1)如 x ∈( x0 δ , x0 ),有f ' ( x) > 0;而x ∈( x0 , x0 + δ ), x 有f ' ( x) < 0, f (x)在 处 得 大 . 则 取 极 值 (2)如 (2)如 x ∈( x0 δ , x0 ),有f ' ( x) < 0;而x ∈( x0 , x0 + δ ) 果 f ' ( x) > 0, f (x)在x0 处 得 小 . 有 则 取 极 值 ' (3)如 (3)如 当x ∈( x0 δ , x0 )及x ∈( x0 , x0 + δ )时 f ( x) 果 , 符 相 ,则f (x) 在x0 处 极 . 号 同 无 值
0
y
y
+ o
x0
x
+
x0
o
x
(是极值点情形 是极值点情形) 是极值点情形
y
+ +
y
o
x0
x
o
x0
求极值的步骤: 求极值的步骤:
x (不是极值点情形 不是极值点情形) 不是极值点情形
(1) 求导数 f ′( x );
( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号 , 判断极值点;
2 3 1 3
y = 3 2( x + 1) 的极值为__________. 的极值为__________. x 3x , x > 0 4、已知函数 f ( x ) = 当 x = _______ 时 , x + 1, x ≤ 0 y = ________ 为极 小 值 ; 当 x = ________ 时 , y = ________ 为极 大值. 大值.
于是 x = 0为 f ( x ) 的极小值点
当 x ≠ 0时,
1 1 f ′( x ) = 2 x ( 2 + sin ) cos x x 当 x → 0 时,
1 1 2 x ( 2 + sin ) → 0, cos 在–1和1之间振荡 和 之间振荡 x x
的两侧都不单调. 因而 f ( x ) 在 x = 0 的两侧都不单调
(1,3)
3 0
极 小 值
( 3,+∞ )
+
f ′( x ) f ( x)
0
极 大 值



极 值 f (1) = 10,
极 值 f ( 3) = 22.
f ( x ) = x 3 3 x 2 9 x + 5图形如下
M
m
定理3(第二充分条件) 定理3(第二充分条件)设f (x)在 0 处 有 阶 数 3(第二充分条件 x 具 二 导 , 且 f ' ( x0 ) = 0, f '' ( x0 ) ≠ 0, 那 末 f '' ( x0 ) < 0时 函 f ( x)在 0 处 得 大 ; x 取 极 值 (1)当 (1)当 , 数 '' x 取 极 值 (2)当 (2)当f ( x0 ) > 0时 函 f ( x)在 0 处 得 小 . , 数
函数的极大值与极小值统称为极值 使函数取得 函数的极大值与极小值统称为极值,使函数取得 极值 极值的点称为极值点 极值点. 极值的点称为极值点
二、函数极值的求法
定理1 必要条件) 定理1(必要条件) 设 f (x)在点x0 处具有导数,且 处具有导数, 在x0处 得 值 那 必 f ' ( x0 ) = 0. 取 极 , 末 定 定义 使导数为零的点 (即方程 f ′( x ) = 0 的实根 )叫
f ′( x 0 + x ) f ′( x 0 ) 证 (1) ∵ f ′′( x0 ) = lim < 0,
x → 0
x
异号, 故f ′( x0 + x ) f ′( x0 )与x异号,
当x < 0时, 有f ′( x0 + x ) > f ′( x0 ) = 0, 当x > 0时, 有f ′( x0 + x ) < f ′( x0 ) = 0,
所以,函数 所以 函数 f ( x ) 在 x0 处取得极大值
例2 求出函数 f ( x ) = x 3 + 3 x 2 24 x 20 的极值 . 解
f ′( x ) = 3 x 2 + 6 x 24 = 3( x + 4)( x 2)
x 2 = 2.
令 f ′( x ) = 0, 得驻点 x1 = 4,
相关文档
最新文档