核废料处理综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核废料处理方法的综述

一、核废料定义

核废料[1](nuclear waste material),是指在核燃料生产、加工或核反应堆用过的,含有α、β和γ辐射的不稳定元素,并伴随有热产生的无用材料。核废料含有一定放射性,可以对生物体细胞的分裂和生长造成影响,甚至杀死细胞。核废物进入环境后,可以通过呼吸、饮食、皮肤接触等途径进入人体,当放射性辐射超过一定程度时,便可以损害机体的健康。研究表明,长年受放射性污染的人,癌症、白内障、失明、生长迟缓、生育力降低等病症的发病率要远远高于常人。另外,如果母亲在怀孕初期腹部受过 x 光照射,她们生下的孩子可能出现胎儿畸形、流产、死产等遗传效应,而且与母亲不受 x 光照射的孩子相比, 死于白血病的概率要大 50%。因此,核废料具有极大的危害。

二、核废料的分类

核废料按物理状态可以分为固体、液体和气体三种;按比活度又可分为高水平(高放)、中水平(中放)和低水平(低放)三种。高放废料是指从核电站反应堆芯中换下来的燃烧后的核燃料[2]。中放和低放主要指核电站在发电过程中产生的具有放射性的废液、废物,占到了所有核废料的99%。按半衰期不同,将放射性核素分为长寿命(或长半衰期)放射性核素、中等寿命(或中等半衰期)放射性核素和短寿命(或短半衰期)放射性核素。

三、核废料的特征[3]

1.放射性。核废料的放射性不能用任何的物理、化学和生物等人工方法消除,只能靠自身的衰变而减少,而其半衰期往往长达数千年、数万年甚至几十万年。也就是说,在几十万年后!这些核废料还能伤害人类和环境。

2.射线危害。核废料放出的射线通过物质时,发生电离和激发作用,对生物体会引起辐射损伤。而且在这些射线当中,有相当一部分具有极强的穿透力,甚至能穿过几十厘米厚的混凝土。

3.热能释放。核废料中放射性核素通过衰变放出能量,当放射性核素含量较高时,释放的热能会导致核废料的温度不断上升,甚至使溶液自行沸腾,固体自行熔融,比如福岛核电站的堆芯就是这样熔毁的。

四、核废料的管理原则[4]

1.尽量减少不必要的废料产生并开展回收利用。

2.对已产生的核废料分类收集,分别贮存和处理。

3.尽量减少容积以节约运输、贮存和处理的费用。

4.向环境稀释排放时,必须严格遵守有关法规。

5.以稳定的固化体形式贮存,以减少放射性核素迁移扩散。

五、核废料处理技术的介绍

(一)地质处理

1.近地表埋藏处置法[5]

近地表埋藏处置法是中低放废物处置的主要方法,占处置法80%左右。它分为近地表简易处置法、近地表工程处置法两种,其中近地

表工程处置法居主导地位。

1.1近地表简易处置法

近地表简易法是在地表挖掘数米深的沟、坑,将盛装废物的容器、无容器废物固化体堆置其中,或将废物直接固化其中,然后再用粘土或土回填夯实。此法只在低渗透性的粘土层或降水量非常少的地区效果较好,否则会严重影响处置效果,导致放射性废物泄漏。这种处置方法对场址选择要求较高,所以,只有美国、墨西哥、英国、瑞典、南非、巴基斯坦、印度、伊朗、日本等少数国家采用,一般是在核废物处置的早期阶段采用的较多。但有部分已停止运行或关闭。这样近地表简易处置法在世界各国的使用越来越少,这也是世界各国更加重视核废物处置安全性的最好证据。

1.2 近地表工程处置法

近地表工程处置法是在地表挖取几米至数十米深的壕沟,大部分深度在10 m以内,高于地下水位,用混凝土或钢筋混凝土加固壕沟的基底、侧墙。为防降水或渗透水,构建了排水及监测系统。然后将封装放射性废物容器堆置其中,最后用土、粘土、沥青、混凝土等充填物覆盖封顶。另外,一些深度不超过50m的竖井和大口径钻孔等处置设施也属于近地表工程处置法。此类设施可建在粘土、冰川沉积物、风化页岩、风化凝灰岩、砾石、砂、粉砂等地质体中。这种处置效果及安全性较好,被世界各国普遍采用。目前,世界上正在运行的、建设中的以及计划造建的废物处置库绝大多数为近地表工程处置设施,但在欧美及前苏联国家有少量的此类设施已经停止运行或关闭。

2. 废矿井处置法

废矿井处置法[2]是利用深度为60~100m的废弃矿井,经过改造,作放射性废物的处置场。作为处置场的废矿井,必须符合一定的地质条件,如矿井内必须干燥无水、围岩的类型及特性等。世界上只有瑞士、瑞典、捷克共和国、芬兰、挪威和克罗地亚等少数国家,采用或计划采用这种方法,例如,捷克共和国的理查德Ⅱ矿坑,位于地下70~80 m,矿井很干燥,地质体主要为石灰岩和泥灰岩,主要用来处置研究工作中产生的放射性废物(大多数是短寿命的)。瑞典的SFR建于海底之下60m处的结晶岩中。针对不同的低放废物类型、放射性剂量、物质组成和不同的处理需要,设计了不同的岩石硐室;50m深的弹筒状矿坑,用水泥墙加固并增加了一个蒙脱石粘土缓冲带和一套通风系统之后,将放射性活度最强的废物容器置于其中。芬兰的Olk-iluoto与瑞典的SFR相似,具有两个弹筒状深矿坑,一个处置低放废物,另一个处置发热的中放废物,建于地下60~100m,用破碎的围岩作回填材料,用水泥填封含水裂隙带。

将低、中放废物处置在地下废矿井中,是一种较安全的处置方法。可供处置低、中放废物的废矿井有:盐矿、铁矿、铀矿、石灰石矿等矿井。废矿井处置可以利用矿山原有的采矿巷道采空区堆置废物容器。废矿井处置法的优点是:①不占用大片土地;②可充分利用矿山原有的竖井、地下采空区等,处置成本较低;③处置空间大,据统计,按目前美国每年开采盐矿的数量,只要利用其中1%的采空矿山,便可供处置全美国当年产生的所有核废物;④处置深度较大,安全性较好。

该法的局限性在于,废矿井一般离核设施较远,需长途运输废物,而低、中放废物数量多,一般宜于就地处置。

2.1深岩硐地质处置法

深岩硐地质处置法[5]是在地表之下深数百米的稳定岩层中建造处置核废物的设施,使放射性核素与生物圈长期隔离。此种处置方法既可以处置中低放废物,也可以处置高放废物。中低放废物处置的深度一般为300~500m,高放废物的处置深一般为500~1 000m。采用深岩硐地质处置中低放废物效果好,最安全,但费用昂贵,只有少数国家采用。

2.2地下盐穴处理核废料的方法

利用盐穴进行放射性工业废料的填埋处理已经在国外得到很好的利用,具有安全性好、费用低、容量大、符合环保、节省地表面积等很多[6]。优点,随着我国核军事的发展和核能的开发利用,也不可避免的会产生相当的具放射性的工业废料,利用盐穴进行埋藏处理可以有效地减少放射性污染,保护生态环境。除了进行核废料的埋藏处理外,各类难处理的工业废料也都可以利用该项技术进行处理,利用盐穴进行工业废料的处理是一项具有广泛前景的实用技术,值得在我国进行推广。

3.深度钻孔

将核废料埋入地下正成为最受推崇的处理方式之一,深度钻孔这一解决方案仍处在计划阶段[2]。深度钻孔有其优势一面,可以在距离核反应堆很近的地区进行钻孔,缩短高放射性核废料在处理前的运输距离。然而,与将核废料送入太空面临的困难一样,钚回收也是一项

相关文档
最新文档