中考数学第二轮复习专题最值问题
2021重庆中考复习数学几何最值问题专题训练二(含答案)
![2021重庆中考复习数学几何最值问题专题训练二(含答案)](https://img.taocdn.com/s3/m/381a429fd5bbfd0a7856733c.png)
2021年重庆中考复习最值问题专题训练二类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C 的最小值.2、如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC 的最小值是.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和CG,则 CG 的最小值为.3、如图,平行四边形ABCD 中,∠B =60°,BC =12,AB =10,点E 在AD 上,且AE =4,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .A例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.例5、如图,在△ABC 中,∠BAC =120°,AB =AC =6,D 为边AB 上一动点(不与B 点重合),连接CD ,将线段CD 绕着点D 逆时针旋转90°得到DE ,连接BE ,则S △BDE的最大值为 .练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C的最小值为.练习:如图,在矩形ABCD中,AB =1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为.类型七:利用基本不等式求最值2021年重庆中考复习最值问题专题训练二类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.解:如图,取AB的中点N.连接EN,EC,GN,(即将△EAF绕点E逆时针旋转60°得△ENG)作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH =,在Rt△ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM =,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC ==22、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .A解:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB+GC的最小值;在Rt△EBC中,EB=3,BC =6,∴EC=3,∴GB+GC的最小值3.类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .解析:如图,将△ABP 绕着点B 逆时针旋转60°,得到△DBE ,连接EP ,CD ,∴△ABP ≌△DBE ∴∠ABP =∠DBE ,BD =AB =4,∠PBE =60°,BE =PE ,AP =DE ,∴△BPE 是等边三角形 ∴EP =BP ∴AP +BP +PC =PC +EP +DE ,∴当点D ,点E ,点P ,点C 共线时,PA +PB +PC 有最小值CD∵∠ABC =30°=∠ABP ∠+PBC ,∴∠DBE ∠+PBC =30°,∴∠DBC =90°,∴CD==. 练习如图,矩形ABCD 中,AB =2,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC的最小值是 .解:由旋转的性质可知:△PFC 是等边三角形,∴PC =PF ,∵PB =EF , ∴PA +PB +PC =PA +PF +EF ,∴当A 、P 、F 、E 共线时,PA +PB +PC 的值最小, ∵四边形ABCD 是矩形,∴∠ABC =90°,∴tan ∠ACB==,∴∠ACB =30°,AC =2AB =4,∵∠BCE =60°,∴∠ACE =90°,∴AE==2.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .解析:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM ⊥HN ,则CM 即为CG 的最小值,作EP ⊥CM ,可知四边形HEPM 为矩形,则CM =MP +CP =HE+EC =1+=,CG 的最小值为. 练习1、(2019秋•东台市期中)如图,正方形ABCD 中边长为6,E 为BC 上一点,且BE =1.5,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM ⊥HN ,则CM 即为CG 的最小值,作EP ⊥CM ,可知四边形HEPM 为矩形,则CM =MP +CP =HE +EC ==,故答案为:.2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE =2,F 为 AB 边上的一个动点,连接 EF ,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG ,则 CG 的最小值为 .F解析:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动,将△EFB 绕点E 旋转45°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等腰直角三角形,点G 在垂直于HE 的直线HG上,作CM ⊥HG ,则CM即为CG 的最小值,作EN ⊥CM ,可知四边形HENM 为矩形,则CM =MN +CN =HE EC =12+3、如图,平行四边形ABCD 中,∠B =60°,BC =12,AB =10,点E 在AD 上,且AE=4,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .解析:将线段AE 绕点E 逆时针旋转120°得到EH ,连接HG ,过点H 作HM ⊥AD , ∵四边形ABCD 是平行四边形,∴∠A ∠+B =180°,∴∠A =120°,∵将线段AE 绕点E 逆时针旋转120°得到EH ,将线段EF 绕点E 逆时针旋转120°得到EG ,∴EF =EG =4,AE =EH ,∠AEH =∠FEG =120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS ) ∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =4,HM ⊥AD , ∴EM =2,MH =EM =2,∴线段GD 长度的最小值为2,类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为.A解:过E 作EF ⊥AC 于点F . 则∠EFD =90°,∵090ACB ∠=,∴∠EFD=∠C ,∵ED=DB ,∠FED =∠CDB ,∴△EFH ≌△EDC , ∴DF =CB =2,EF CD =,设AD x =,则2AF x =+,5EF CD x ==-, ∴AE ===,∴当32x =时,AE 有最小值2. 例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为 .解:过A作AM⊥BC于M,EN⊥AM于N,如图,∵线段AD绕点A逆时针旋转90°得到AE,∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,,∴AM=CM=3,MD=3﹣x ,∴=,∴CF=﹣x2+x,∴当x=1.5时有最大值,最大值为0.75.例5、如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM 中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM =AC =6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE ==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE 有最大值为.练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .解:过F作FH⊥ED,∵正方形CEFG,∴EF=EC,∠FEC=∠FED+∠DEC=90°,∵FH⊥ED,∴∠FED+∠EFH=90°,∴∠DEC=∠EFH,且EF=EC,∠FHE=∠EDC=90°,∴△EFH≌△EDC(AAS),∴EH=DC=2,FH=ED,∴AF ===∴当AE=1时,AF的最小值为3 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM 中,∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM =AC =2=1,∴BM=AB+AM=2+1=3,设BD=x,则EN=DM=3﹣x,∴S△BDE ==(3﹣x)=﹣(x﹣1.5)2+,∴当BD=1.5时,S△BDE 有最大值为,类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.CAE解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F 上,连接DF ,∴DF =BC=×4=2,∴AC =DE≤DF+EF=2+2,即AC的最大值为2+2.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 .解法一:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH =AD=,∴DE=1,∴DE =CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.解法二:练习:如图,在矩形ABCD中,AB=,1BC=,将ABD∆沿射线DB平移到A B D'''∆,连接B C D C''、,则+B C D C''的最小值为.解法一:解法一:解法三:解法四:类型七:利用基本不等式求最值解:原式=1111+12a a++⨯=11+12a a a ++=2222+32a a a a +++=2232+32a a a a a ++-+=21+32a a a -+=112+3a a -+ 12a a +≥ ,1+35a a ∴+≥,11253a a ∴≤++,11253a a∴-≥-++, 14125+3a a∴-≥+.当2a a =,即a =45,此时2b =.。
2024成都中考数学二轮复习专题:三角形面积求最大值问题——铅垂法
![2024成都中考数学二轮复习专题:三角形面积求最大值问题——铅垂法](https://img.taocdn.com/s3/m/757beb8077eeaeaad1f34693daef5ef7ba0d1288.png)
铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯=.【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++---如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1)二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=,点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x ∆∆=+=⋅=⨯⨯--++=-+,304-<,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-+3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<<,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A -,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =,点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB ∆∆∽,则14OQ OA OB OC ==即134OQ =,解得34OQ =,13(0,4Q ∴或23(0,)4Q -;②AOC BOQ ∆∆∽,则14OB OA OQ OC ==即314OQ =,解得12OQ =,3(0,12)Q ∴或4(0,12)Q -,综上所述,存在y 轴上的点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似,这样的点一共4个:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,故答案为:存在这样的点Q ,坐标分别是:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得22MQ NQ MN ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1)点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2)点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下:抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,22(|4|)42n n ∴-=+,2880n n ∴+-=,4n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,4-+或(1,4--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为31y =+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,231)P n n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n n '+,得出2733PP n n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出7(33C ,4)3-,设(3Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,(3B ,0),设直线AB 的解析式为y kx m =+,∴301k m m ⎧+=⎪⎨=⎪⎩,解得331k m ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为313y x =+,点F 43F ∴点纵坐标为343113=-,F ∴点的坐标为,1)3-,又点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,2PP n '∴=-+,22172222ABP S OB PP n n ∆'==-+=--+,∴当n =ABP ∆,此时P 47)12.(3)211y y x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或x =C ∴,43-,设Q ,)m ,①当AQ 为对角线时,7()3R m ∴+,R 在抛物线2(4y x =--+上,27(43m ∴+=--+,解得443m =-,443Q ∴-,37(3R -;②当AR 为对角线时,73R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=-+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l对称,若存在,求出点P 的坐标及直线l的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =-,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-=,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m2m =,31m =,41m =-,31m =,41m =-不合题意,舍去,当1m =1)2P -,线段PQ的中点为1(1)2-,∴112k +=-,∴1k =,∴直线l的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ的中点为1(2,1)-,∴112-=-,∴1k =,∴直线l的解析式为(1y x =+.综上,点P ,12-,直线l的解析式为(1y x =或点(P 1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。
2025年九年级中考数学二轮复习热点专题突破课件:专题2最值问题
![2025年九年级中考数学二轮复习热点专题突破课件:专题2最值问题](https://img.taocdn.com/s3/m/d68653bd51e2524de518964bcf84b9d529ea2c51.png)
类型 5
例 5
利用二次函数求最值
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点M沿
线段CA从点C向点A运动,同时,点N从点B出发沿BC运动,且BN=
2CM,P是线段MN的中点.在运动过程中,CP的最小值为
_______.
☞变式 如图,在正方形ABCD中,AB=4,P为对角线BD上一动点,
A.
B.3
C.3
D.2+2
PD的最小值为(
C )
4.(2024·绥化) 如图,已知∠AOB=50°,P为∠AOB内部一点,M,N
分别是射线OA,OB上的动点,当△PMN的周长最小时,则∠MPN的
度数是_________.
80°
5.如图,四边形ABCD的两条对角线AC,BD互相垂直,且AC+BD=
分线交BC于点D,M,N分别是AD和AB上的动点.则BM+MN的最小值
是_________.
5
☞变式 (2024·广安) 如图,在▱ABCD中,AB=4,AD=5,∠ABC=
30°,M为直线BC上一动点,则MA+MD的最小值为 _______.
类型 4
例 4
圆中的最值问题
如图,P是边长为1的正方形ABCD内的一个动点,且满足
∵∠ABC=60°,AB=2,
∴AH=AB·sin 60°= .
∴2EN+BN的最小值为2 .
BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD
于点N,连接EN,CN.
(1)求证:EN=CN;
证明:连接AN.
∵四边形ABCD是菱形,
∴点A,C关于直线BD轴对称,
∴AN=CN.
专题4.5圆---利用“瓜豆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
![专题4.5圆---利用“瓜豆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)](https://img.taocdn.com/s3/m/23eebb426fdb6f1aff00bed5b9f3f90f77c64d7d.png)
上述模型在数学江湖中也被称作“捆绑动点轨迹模型”
Q
强化训练
“瓜豆”模型
提升能力
1.如图,正方形ABCD中,AB=12,E是BC边上一点,CE=7,F是正方形内部一点,
且EF=3,连接EF,DE,DF,并将△DEF绕点D逆时针旋转90º得到△DMN(点M,N
10
分别为点E,F的对应点),连接CN,则CN长度的最小值为_____.
2
2
E G
D
A
圆型运动轨迹
典例精讲
考点2-2
【引例】如图,已知A是⊙O外一点,P是⊙O上的动点,线段AP的中点为Q,连
接OA,OP.若⊙O的半径为2,OA=4,则线段OQ的最小值是(
A.0
B.1
C.2
B )
D.3
【思考】当点P在圆O上运动时,Q点轨迹是?
解:连接AO,取AO的中点M,连接QM,PO.
O
A
(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
∠OAM=∠PAQ;
(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q
与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.种圆得圆,种线得线,谓之“瓜豆模型”.
2
倍而得到的,所以点P所在圆的圆心绕点A逆时针旋转90º,
再乘以 2 就是点C所在圆的圆心B´,而半径也缩小
2
2倍,
2
即 2 .根据点圆最值模型,可知:BB´-CB´≤BC≤BB´+CB´,
即3 2 ≤BC≤ 5 2 ,因此最大值与最小值的差为 3 2 .
2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
![2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)](https://img.taocdn.com/s3/m/1c38430f814d2b160b4e767f5acfa1c7aa008230.png)
时2PB+PC最小,最小值为2BD,延长CD交AB于H,则
CH⊥AB,
O D P
B
A
H
易求得DH= ,BH=3,∴BD= ,
C
O
P
∴2PB+PC的最小值为3 .
B
C
针对训练
变式一 系数需要转化(提系数)
知识点三
1.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的
P(x,y),PA=kPB,即:(x+m)2+y2 =k (x-m)2+y2
∴(x+m)2+y2=k2(x-m)2+k2y2
∴(k2-1)(x2+y2)-(2m+2k2m)x+(k2-1)m2=0
2m
2m+2k
∴x2+y2- k2-1 x+m2=0
知识点二
新知探究
解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.除
则 PD+4PC的最小值为_____.
D
A
P
B
C
典例精讲
变式三 求差最大的问题
知识点五
求带系数的两条线段差最大的问题,转化方法和前面所讲完全一样,只是
最后求最值时有所不同,前面求和最小都是运用两点之间线段最短的原理,
求差最大,我们需要运用“三角形两边只差小于第三边”这一原理来解决.
【例6】(1)如图1,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上
【引例】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,⊙C半径为2,P为圆上
2024专题4.3圆---利用“胡不归”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
![2024专题4.3圆---利用“胡不归”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)](https://img.taocdn.com/s3/m/a4bd894b6ad97f192279168884868762cbaebb54.png)
F
由勾股定理可求得OD= 2 ,∴ D(0, 2 )
B
4
4
D
D
O
C
x
典例精讲
胡不归模型
知识点一
【例3】如图,菱形ABCD的对角线AC上有一动点P,BC=6,△ABC=150º,
则线段AP+BP+PD的最小值为___.
E
A
M
F
D
P
C
B
解析:根据对称性,AP+BP+PD=AP+2PB=2(0.5AP+PB),所以只需求0.5AP+PB
胡不归模型
知识点一
“已知在驿道和沙砾道行走的速度分别为v1和v2,显然v1<v2,在BC上求
一定点D,使从点A至点D、再从点D至点B的行走时间最短”
不妨假设在AD上行走的速度为1个单位长度/s,在BD上行走的速度为2
A
个单位长度/s,总共用时为:t= AD1+D1H=AD1+BD1sin30º
第一步:在速度快的线段与起点相异的一侧,
1
AF
DF
点M运动的时间为
2
9
1
AF
DF
的最小值.
.即求
2
9
接下来问题便是如何构造DF/2,考虑BD与x轴夹角
y
为30º,且DF方向不变,故过点D作DM∥x轴,过点F
作FH⊥DM交DM于H点,则任意位置均有FH=DF/2.当
9
D
H
M
F F
A、F、H共线时取到最小值,根据A、D两点坐标可
安徽中考数学复习专题全辑 专题二 几何图形最值问题
![安徽中考数学复习专题全辑 专题二 几何图形最值问题](https://img.taocdn.com/s3/m/701e7e35ddccda38376baf97.png)
21.(2019·黄冈)如图,AC,BD 在 AB 的同侧,AC=2,BD=8,AB=8,点 M 为 AB 的中点,若∠CMD=120°,则 CD 的最大值是________.
而且点移动到不同的位置,我们要研究的图形可能会改变.当一个问题是确定 图形的变量之间关系时,通常建立函数模型求解,当确定图形之间的特殊位置 关系或一些特殊值时,通常建立方程模型求解.在解题时,常常需要作辅助线 帮助理清思路,然后利用直角三角形或圆的有关知识解题.如本题,作辅助线, 利用轴对称的性质将问题转化为三角形中两边之和大于第三边,当 P 点在 A1B 上 时,PA+PB 取得最小值.
A.3 2-1
B.2
C.2 2
D.3 2
2.如图,在 Rt△ABC 中,∠B=90°,AB=3,BC=4,点 D 在 BC 上,以 AC 为
对角线的所有平行四边形 ADCE 中,DE 最小的值是( )
A.2
B.3
C.4
D.5
3.(2019·合肥 42 中一模)如图,AB 是半⊙O 的直径,点 C 在半⊙O 上,AC=8cm,
专题二 几何图形最值问题
类型一 线段最值问题
(2017·安徽)如图,在矩形 ABCD 中,AB=5,AD=3.动点 P 满足 S = △PAB
1
S 矩形 ABCD,则点 P 到 A,B 两点距离之和 PA+PB 的最小值为(
)
3
A. 29
B. 34
C.5 2
D. 41
中考二轮复习题型二:选择压轴题之几何图形最值问题-(数学)AlAKlU
![中考二轮复习题型二:选择压轴题之几何图形最值问题-(数学)AlAKlU](https://img.taocdn.com/s3/m/8c6e0c2b168884868762d6cf.png)
题型二 选择压轴题之几何图形最值问题类型一线段最值问题1. 如图,在△ ABC 中,/ BAC = 90° AB = 3, AC =4,P 为边 BC 上一动点,PE 丄AB 于 E ,PF 丄AC于F , M 为EF 的中点,贝U PM 的最小值为()和AC 上的动点,贝U PC + PQ 的最小值是(3.如图,在 Rt A ABC 中,/ B = 90° AB = 3, BC = 4,点D 在BC 上,以 AC 为对角线的所有 ?ADCE 中,DE 的最小值是()点,贝U PC + PD 的最小值为()A.1.2D. 2.42.如图,在 Rt △ ABC 中,/ ACB = 90°12 A ・5B. 424 C.24D. 5A.3B. 2C.4D. 54.如图,菱形 值是()ABCD 中,/ ABC = 60° 边长为13, P 是对角线BD 上的一个动点,则2PB + PC 的最小C.3D. 2 + ;35. 如图,在△ ABC 中,AC = BC , / ACB = 90° 点D 在BC 上,BD = 3, DC = 1,点P 是AB 上的动A.4C.1.4AC = 6,若P , Q 分别是AD第3题图第4题图C.6第5题图 第6题图6. 如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点,且BE = CF ,连接BF 、 DE ,贝U BF + DE 的最小值为()边BC , CD 上,则△ AMN 周长的最小值为()1BP ,贝U AP + 2BP 的最小值为A.2 .'5B. 4 ,'57. 如图,在四边形 ABCD 中,/ BAD = 120° / C.2 /3D. 4 ! 3B =Z D = 90° AB = 2, AD = 4,点 M ,点 N 分别在A.3 :7D. 118.如图,在直角坐标系中,点 (1,5)和(4,0),点C 是y 轴上的一个动点,且 B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点 C 的坐标是()A.(0,1)B. (0, 2)C.(0, 3)D. (0,4)9.如图,矩形ABCD 中,AB = 8, BC = 6,点 E , F , G , H 分别在矩形 ABCD 各边上,且 AE = CG ,BF = DH ,则四边形 A.4 .'3EFGH 周长的最小值为()C.8 .' 7B. 10li10.如图,在 Rt △ ABC中,/ ACB = 90° CB = 4, CA = 6, O C 半径为2, P 为圆上一动点,连接 AP ,A. 37B. 6C.2 . 17D. 411.如图,在 Rt △ ABC中, / ACB = 90° AC = 8, BC = 6,动点F 在边BC 上运动,连接 AF ,过点C作CD 丄AF 于点D ,交AB 于点E ,则B 、D 两点之间距离的最小值为 ()A.2B. 4C.2 . 13-3D. 2 . 13-4A 、B 的坐标分别为 \II I )第9题图第11题图 第12题图12.如图,在等边△ ABC 中,BF 是AC 边上中线, 点D 在BF 上,连接AD ,在AD 的右侧作等边△ ADE ,接AE 、BF ,交于点 G ,连接DG ,则DG 的最小值为()16.在Rt A ABC 中,/ ACB = 90° AC = 8, BC = 6,点D 是以点 A 为圆心,4为半径的圆上一点,连 接BD ,点M 为BD 中点,线段CM 长度的最大值为()类型二面积最值问题(拓展)1.如图,点E 为边长为4的等边△ ABC 的BC 边上一动点(点E 不与B 、C 重合),以AE 为边作等边△ AEF ,则△ AEF 面积的最小值是()2. (2017合肥蜀山区模拟)如图,O O 的半径是2,直线 两个动点,且在直线I 的异侧,若/ AMB = 45°,则四边形 MANB 面积的最大值是()3. 如图,在矩形 ABCD 中,AD >AB ,点E 、F 分别是BC 、DC 上的点,且 CE + CF = 8,若sin / ABD连接EF ,当△ AEF 周长最小时,/ CFE 的大小是A.30B. 45C.60D. 9013.在平面直角坐标系中,点O 为坐标原点, 占 八A 、B 、C 的坐标分别为 A ( .3, 0)、B (3.'3, 0)、C (0,5),点D 在第一象限内,且/ ADB = 60 °则线段 CD 的长的最小值是( )C.2 .'7 — 2D. 2 . 10 — 214.如图, 在 Rt A ABC 中,/ C = 90° AC = 6, BC = 8,点 F 在边 AC 上,并且 CF = 2, 点E 为边BC上的动点,将△ CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是(A.33C.315.如图, 第14题图第15题图正方形 ABCD 的边长为2,点E 、F 分别是边BC 、CD 的延长线上的动点,且CE =DF ,连A. .;3 — 1B. ,'5 — 1C. ;'3A.8B. 7C.6D. 5A.2l 与O O 相交于A 、B 两点,M 、N 是O O 上的A.2B. 4C.2 .2D. 4 2第1题图C. 34=4,BD = 20,则厶AEF 的面积的最小值为( )5+ Z CBP = 90°连接DP ,。
2022年浙教版九年级数学中考二轮复习圆中最值问题专题突破训练
![2022年浙教版九年级数学中考二轮复习圆中最值问题专题突破训练](https://img.taocdn.com/s3/m/c58c8913a9114431b90d6c85ec3a87c240288adb.png)
2022年春浙教版九年级数学中考二轮复习《圆中最值问题》专题突破训练(附答案)1.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=6,EF=4,点M在以半径为2的⊙D上运动,则MF2+MG2的最大值为()A.104 B.116 C.120 D.1002.Rt△ABC中,AB⊥BC,AB=4,BC=3,P是△ABC内部的一个动点,满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.1 C.D.3.如图,⊙O的半径为4,将劣弧沿弦AB翻折,恰好经过圆心O,点C为优弧AB上的一个动点,则△ABC面积的最大值是()A.B.C.D.4.如图,AB为半圆的直径,AB=8,点P为半圆的三等分点,点D为弧BP上一动点,作OM⊥PD,连接AD交OM于点N,则BN的最小值为.5.如图,⊙O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC 交AD于点E,则OE的最小值是.6.如图,在Rt△ABC中,已知∠A=90°,AB=6,BC=10,D是线段BC上的一点,以C为圆心,CD为半径的半圆交AC边于点E,交BC的延长线于点F,射线BE交于点G,则BE•EG的最大值为.7.如图,已知⊙O的直径AB=4,弦CD⊥AB于点E,点E为OB的中点,点F 为圆O上的一个动点,过点A作AG⊥CF于点G,在点F的运动过程中,线段OG长度的最小值为.8.如图,∠CAB=60°,D为射线AB上一点,AD=2,E为射线AC上一动点,作∠DEF=30°,交射线AB于点F(F在D的右侧),则DF的最小值为.9.如图1,直线l1⊥l2于点M,以l1上的点O为圆心画圆,交l1于点A,B,交l2于点C,D,OM=4,CD=6,点E为AD上的动点,CE交AB于点F,AG ⊥CE于点G,连接DG,AC,AD.(1)求⊙O的半径长;(2)若∠CAD=40°,求劣弧的长;(3)如图2,连接DE,是否存在常数k,使CE﹣DE=k•EG成立?若存在,请求出k的值;若不存在,请说明理由;(4)若DG∥AB,则DG的长为;(5)当点G在AD的右侧时,请直接写出△ADG面积的最大值.10.【发现问题】爱好数学的小明在做作业时碰到这样一道题:如图1,圆O的半径为2,OA=4,动点B在圆O上,连接AB,作等边三角形ABC(A、B、C为顺时针顺序),求OC的最大值.【解决问题】小明经过多次的尝试和探索,终于得到解题思路:在图1中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE;(1)请你找出图中与OC相等的线段,并说明理由;(2)请直接写出线段OC的最大值;【迁移拓展】(3)如图2,BC=,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请求出AC的最值,并说明理由.11.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以原点O为圆心,半径为3的⊙O上,连接OC,过点O作OD⊥OC,OD与⊙O 相交于点D(其中点C,O,D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,点C在⊙O上运动的过程中,当△ABC的面积最大时,请直接写出△ABC面积的最大值是.(3)连接AD,当OC∥AD,点C位于第二象限时,①求出点C的坐标;②直线BC是否为⊙O的切线?并说明理由.12.已知:如图,已知⊙O是△ABC的外接圆,AB为⊙O的直径,AC=6cm,BC=8cm.(1)求⊙O的半径.(2)请用尺规作图作出点P,使得点P在优弧CAB上时,△PBC的面积最大,请保留作图痕迹,并求出△PBC面积的最大值.13.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作α;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当α=°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB 相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)14.问题探究:(1)如图1,点A、B、C是⊙O上三点,∠ACB=35°,那么∠AOB=.(2)如图2,BD是边长为4的正方形ABCD的对角线,在正方形内部(不含边界)找一点O,使得∠AOB=2∠ADB,在图中画出满足条件的点O所形成的图形,并求出△AOB面积的最大值;问题解决:(3)如图3,将百姓家园小区平面图绘制在平面直角坐标系中,点A、B、C 分别是家园小区门房及两个停车场,其中OA=100m,AB=200m,OC=300m,为安全期间,在一点P安装监控使△APB面积最大,且∠APB=2∠ACB,是否存在满足条件的点P?若存在,请求出点P的坐标;若不存在,请说明理由.15.已知:如图,已知⊙O是△ABC的外接圆,AB为⊙O的直径,AC=6cm,BC=8cm.(1)求⊙O的半径;(2)请用尺规作图作出点P,使得点P在优弧CAB上时,△PBC的面积最大,请保留作图痕迹,并求出△PBC面积的最大值.16.已知,在边长为4的正方形ABCD中,以AB为半径作扇形AOC,E是弧AC上一动点,过E作弧AC的切线分别交AD,CD于点M和N.(1)求证:∠MBN=45°;的最大值.并求出此时AM的长度;(2)当E在弧上运动时,求出S△DMN(3)若BM,BN分别于对角线交于P,Q两点,设AM=x,PQ=y,求出y 关于x的函数解析式.17.如图,⊙O的半径为1,等腰直角三角形ABC的顶点B固定且坐标为(,0),顶点A在⊙O上运动,始终保持∠CAB=90°,AC=AB(1)当点A在x轴上时,求点C的坐标;(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;(4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.18.数学课中,李老师提出了下面问题:已知正数x,y满足x2+y2=16,求xy 的最大值.(1)为了求xy的最大值,小王想到了直角三角形,把问题转化为已知直角三角形的斜边求面积最大值的问题,请你画出图形,写出转化后问题的“已知”和“求”;(2)一个直角三角形的斜边固定时,它的直角顶点是可以变化的,请画出问题(1)中直角三角形的直角顶点的所有可能位置所组成的图形,猜想(1)中问题的结论并证明结论;(3)拓展:根据上述思考,你能进一步求出x+y的最大值和最小值吗?19.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,在点C在⊙O运动过程中,△ABC的面积是否存在最大值?并求出△ABC的最大值;(3)直接写出在(2)的条件下D点的坐标.20.如图,在平面直角坐标系xOy中,点A从点O开始沿x轴的正方向移动,点B在∠xOy平分线上移动,移动中保持AB=2不变,以AB为一边,着AB 右侧作矩形ABCD,且BC=1.(1)当AB⊥OA时,请求出OC的长;(2)取AB的中点E,当O、E、C三点共线时,请求出OA、OC的长;(3)设△OAB的外接圆半径为R,请判断着移动过程中R的值是否发生变化,若不变,请求出R的值,若变化,请说明理由;(4)请直接写出线段OC的最大值.21.如图,已知⊙O的半径为2,弦AB的长为2,D是优弧上的任意一点(点D不与A,B重合).(1)连接OA,OB,求∠AOB的度数;(2)连接AD,BD.问:△ABD什么时候面积最大?并求出最大面积.22.如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC 的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.23.如图1,Rt△AOB中OA=OB=6,以O为圆心作一半径为3的圆,点C为⊙O上一动点,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D,∠COD 绕圆心O旋转.(1)当OC∥AB时,∠BOC的度数为;(2)连接AD,当OC∥AD时,如图2,求证:直线BC为⊙O的切线;(3)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.24.⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB =90°,AC=AB,顶点A在⊙O上运动.(1)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(2)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;(3)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.25.我们把三角形内部的一个点到这个三角形三边所在直线距离的最小值叫做这个点到这个三角形的距离.如图1,PD⊥BC于D,PE⊥AC于E,PF⊥AB 于F,如果PE≥PF≥PD,则称PD的长度为点P到△ABC的距离.如图2、图3,在平面直角坐标系中,已知A(6,0),B(0,8),连接AB.(1)若P在图2中的坐标为(2,4),则P到OA的距离为,P到OB的距离为,P到AB的距离为,所以P到△AOB的距离为;(2)若点Q是图2中△AOB的内切圆圆心,求点Q到△AOB距离的最大值;(3)若点R是图3中△AOB内一点,且点R到△AOB的距离为1,请画出所有满足条件的点R所形成的封闭图形,并求出这个封闭图形的周长.(画图工具不限)26.问题背景:如图,点C是半圆O上一动点(点C与A、B不重合),AB=2,连接AC、BC、OC,将△AOC沿直线AC翻折得△ADC,点、E、F、G、H 分别是DA、AO、OC、CD的中点.(1)猜想证明:猜想四边形AOCD以及四边形EFGH的形状,并证明你的结论;(2)拓展探究:探究点C在半圆弧上哪个位置时,四边形EFGH面积最大?求出这个最大值,判断此时四边形EFGH的形状,并说明理由.参考答案1.解:取GF的中点O,连接OM,OD,DM.∵四边形DEFG是矩形,∴∠DGO=90°,DG=EF=4,FG=DE=6,∵MG2+MF2=2GO2+2OM2,∵OG=OF=3,∴OM的值最大时,MG2+MF2的值最大,∵DM=2,OD===5,∴OM≤OD+DM=5+2=7,∴OM的最大值为7,∴MG2+MF2的最大值=2×32+2×72=116,故选:B.2.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在Rt△BCO中,∠OBC=90°,BC=3,OB=2,∴OC===,∴CP=OC﹣OP=﹣2.∴CP最小值为﹣2.故选:D.3.解:如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO,AK.由题意AB垂直平分线段OK,∴AO=AK,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°.∴AH=OA•sin60°=4×=2,∵OH⊥AB,∴AH=BH,∴AB=2AH=4,∵OC+OH≥CT,∴CT≤4+2=6,∴CT的最大值为6,∴△ABC的面积的最大值为××6=12,故选:A.4.解:如图,连接OP,PN.∵点P为半圆的三等分点,∴∠POD=60°,∠POA=120°,∴∠ADP=∠AOP=60°,∵OM⊥PD,∴PM=DM,∴NP=ND,∴∠NPD=∠NDP=60°,∴∠PNM=90°﹣60°=30°,∴∠PNO=180°﹣30°=150°,作△OPN是外接圆⊙K,在优弧AP上取一点J,连接JP,JO,KP,KO,过点K作KH⊥AB于H.则点N的运动轨迹是,∵∠J+∠PNO=180°,∴∠J=30°,∴∠PKO=2∠J=60°,∵KP=KO,∴△KPO是等边三角形,∴OK=OP=KP=4,∴点K在⊙O上,∴KN=KO=4,在Rt△OKH中,∠KOH=60°,∴∠OKH=30°,∴OH=OK=2,KH=OH=2,∴BH=OH+OB=6,∴BK====4,∵BN≥BK=KN=4﹣4,∴BN的最小值为4﹣4.故答案为:4﹣4.5.解:如图,作△AEC的外接圆⊙O′,延长BC交⊙O′于D2R,连接AR,则AR是直径,连接OO′,EO′.∵EC⊥CD,∴∠ECD=90°,∵AB是直径,∴∠ACB=90°,∴BC===4,∵∠D+∠DEC=90°,∠B+∠BAC=90°,∠B=∠D,∴∠DEC=∠BAC=定值,∴∠AEC是定值,∴点E的运动轨迹是,∵∠R+∠AEC=180°,∠AEC+∠DEC=180°,∴∠R=∠DEC=∠BAC,∴∠R+∠B=90°,∴∠BAR=90°,∵∠B=∠B,∠ACB=∠BAR=90°,∴△BCA∽△BAR,∴=,∴=,∴BR=,∴CR=BR﹣BC=,∴AR===,∴EO′=AR=,∵AO=OB,AO′=O′R,∴OO′=BR=,∵OE≥OO′﹣EO′=﹣=,∴OE的最小值为.故答案为:.6.解:如图,过点C作CH⊥EG于点H.∵CH⊥EG,∴EH=GH,∵∠A=∠CHE=90°,∠AEB=∠CEH,∴△ABE∽△HCE,∴=,∴BE•EH=AE•EC,∴BE•2EH=2•AE•EC,∴EB•EG=2AE•EC,设EC=x,在Rt△ABC中,AC===8,∴EB•EG=2x•(8﹣x)=﹣2(x﹣4)2+32,∵﹣2<0,∴x=4时,BE•EG的值最大,最大值为32,故答案为:32.7.解:如图,连接OC,CB,取AC的中点T,连接OT,TG.∵AB⊥CD,OE=EB,∴CO=CB,∵OC=OB,∴OC=OB=CB=2,∴∠B=60°,∵AB是直径,∴∠ACB=90°,∴AC=AB•sin60°=2,∵AT=CT,AO=OB,∴OT=BC=1,∵AG⊥CF,∴∠CGA=90°,∴TG=AC=,∵OG≥TG﹣OT=﹣1,∴OG的最小值为﹣1.故答案为:﹣1.8.解:如图,作△DEF的外接圆⊙O,连接OD,OF,OE,过点O作OT∥AB 交AC于点T,OM⊥AC于点M.∵∠DOF=2∠DEF,∠DEF=30°,∴∠DOF=60°,∵OD=FO,∴△DFO是等边三角形,∴∠ODF=60°,∵∠CAB=60°,∴∠CAB=∠ODF,∴OD∥AC,∵OT∥AD,∴四边形ADOT是平行四边形,∴AD=OT=2,∵∠OTM=∠CAB=60°,∴OM=OT•sin60°=2×=,∵DF=OD=OE≥OM=,∴DF的最小值为.故答案为:.9.解:(1)如图1中,连接OD.∵AB是直径,AB⊥CD,∴CM=MD=CD=3,在Rt△OMD中,OD===5,∴⊙O的半径为5;(2)如图1中,∵AB垂直平分线段CD,∴AC=AD,∴∠CAB=∠DAB=20°,∵OA=OD,∴∠OAD=∠ODA=20°,∴∠AOD=180°﹣20°﹣20°=140°,∴的长==π;(3)如图2中,连接AE,过点A作AT⊥DE交DE的延长线于点E.∵AG⊥CE,AT⊥DT,∴∠AGC=∠T=90°,∵∠ACG=∠ADT,AC=AD,∴△AGC≌△ATD(AAS),∴AG=AT,CG=DT,∵∠AGE=∠T=90°,AE=AE,∴Rt△AEG≌Rt△AET(HL),∴EG=ET,∴CE﹣DE=(CG+EG)﹣(DT﹣ET)=2EG,∵CE﹣DE=k•EG,∴k=2;(4)如图3中,∵DG∥AB,CM=DM,∴CF=FG,∴FM=DG,设FM=x,则DG=2x,∵∠AFG=∠CFM,∠AGF=∠FMC=90°,∴△AGF∽△CMF,∴=,∴=,解得x=3或,∴DG=6或3.故答案为:6或3;(4)如图4中,过点C作CR⊥AD于点R,∵AG⊥CE,∴∠AGC=90°,取AC的中点T,连接OG,过点T作TJ⊥AD于点J,交于点K,点G在以T为圆心,TG为半径的上运动,当点G与K重合时,△ADG的面积最大,∵•CD•AM=•AD•CR,AD==3,∴×6×9=×3×CR,∴CR=,∵TJ∥CR,AT=CT,∴AJ=JR,∴TJ=CR=,∵TK=TG=AC=,∴JK=JK﹣TJ=﹣=,的最大值=•AD•JK=×3×=9.∴S△AGD10.解:【解决问题】(1)如图1中,结论:OC=AE,理由:∵△ABC,△BOE都是等边三角形,∴BC=BA,BO=BE,∠CBA=∠OBE=60°,∴∠CBO=∠ABE,∴△CBO≌△ABE(SAS),∴OC=AE.(2)在△AOE中,AE≤OE+OA,∴当E、O、A共线,∴AE的最大值为6,∴OC的最大值为6.【迁移拓展】(3)如图2中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM(SAS),∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=6定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,如图,由图可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=3+3,∴AC的最大值为3+3.当点A线段BD的右侧时,同法可得AC的最小值为3﹣3.综上,AC的最小值为3﹣3,AC最大值为3+3.11.解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;综上所述,∠BOC的度数为45°或135°,故答案为:45°或135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图1:此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,∴△ABC的面积=CE•AB=×(3+3)×6=9+18;即当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18;故答案是:9+18;(3)①过C点作CF⊥x轴于F,如图2:∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°,∴△OCF∽Rt△AOD,∴=,即=,解得:CF=,在Rt△OCF中,OF===,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:由①得:(﹣,),在Rt△OCF中,OC=3,CF=,∴CF=OC,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线.12.28.解:(1)∵AB为⊙O的直径,∴∠C=90°,在Rt△ABC中,∵AC=6cm,BC=8cm,∴AB==10(cm),∴⊙O的半径为5cm;(2)如图,作BC的垂直平分线交优弧CAB于P,交BC于D,则BD=CD=BC=4(cm),在Rt△OBD中,∵OD==3(cm),∴PD=3+5=8(cm),=PD•BC=×8×8=32(cm2).∴S△PBC13.解:(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE 是矩形,EF=AM=1.想办法求出O′E的长即可.在Rt△MFO′中,∵∠MO′F=30°,MO′=2,∴O′F=O′M•cos30°=,O′E=+1,∴点O′到AB的距离为+1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF 是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,cosα==,∴α=60°故答案为+1,60°.(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.在Rt△O′QM中,O′Q=R•cosα,QP=m,∵O′P=R,∴R•cosα+m=R,∴cosα=.故答案为.(4)如图5中,当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°故答案为90°<α≤120°;当N′落在AB上时,阴影部分面积最大,所以S=﹣•m•m=﹣m2.14.解:(1)∵点A、B、C是⊙O上三点,∴∠AOB=2∠ACB=70°,故答案为:70°;(2)满足∠AOB=2∠ADB的点O在以AB为直径的半圆(不含A、B端点)图形上;∵BD是正方形ABCD的对角线,∴∠ADB=45°,则∠AOB=2∠ADB=90°,∵90°圆周角所对弦为直径,∴点O在以AB为直径的半圆(不含A、B端点)图形上;过点O作OH⊥AB于点H,则OH≤AB,∴S△AOB=AB•OH≤AB2,∵边长为4的正方形ABCD,∴AB=4,∴S△AOB ≤4,即S△AOB最大值为4;(3)存在满足条件的点P;作△ABC的外接圆⊙K,连接AC、BC、AK、BK,当△APB的面积最大,且∠APB=2∠ACB时,点P与点K重合,此时,点P为符合条件的点,连接PC,∵OB=OC=300,∴∠OBC=45°,∴∠CP A=2∠OBC=90°,在Rt△AOC中,由勾股定理得:AC2=OC2+OA2,在Rt△P AC中,由勾股定理得:AC2=AP2+PC2=2AP2,∴2AP2=OC2+OA2=3002+1002=100000,∴AP=100,∴点P在直线x=200上,设直线x=200交x轴于点H,则AH=BH,∵OB=OC=300,OA=100,∴AB=200,∴AH=100,在Rt△P AH中,由勾股定理得:PH==200,∴P(200,200),∴点P关于x轴的对称点P'(200,﹣200)也符合题意;∴存在符合条件的点P,坐标为(200,200)或(200,﹣200).15.解:(1)∵AB为⊙O的直径,∴∠C=90°,在Rt△ABC中,∵AC=6,BC=8,∴AB==10,∴⊙O的半径为5cm;(2)如图,作BC的垂直平分线交优弧CAB于P,交BC于D,则BD=CD=BC=4,在Rt△OBD中,OD==3,∴PD=3+5=8,S△PBC=PD•BC=×8×8=32(cm2).16.解:(1)如图1,连接BE,∵MN与⊙B相切,∴BE⊥MN,∴∠BEM=90°,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠BAD=∠BEM=90°,∵AB=BE,BM=BM,∴Rt△ABM≌Rt△EBM(HL),∴∠ABM=∠EBM,同理得:∠EBN=∠CBN,∴∠EBM+∠EBN=∠ABM+∠CBN,即∠MBN=∠ABM+∠CBN=∠ABC=×90°=45°;(2)如图2,将△ABM绕点B顺时针旋转90°得到△CBM′,∴AM=CM′,BM=BM′,∵∠BAM=∠BCD=∠BCM′=90°,∴M′、C、D三点共线,易证明△BMN≌△BM′N,∴MN=NM′,由(1)得:AM=ME,CN=EN,∵S五边形MABCN =S△ABM+S△BMN+S△CBN=AB•AM+MN•BE+BC•CN=AB•2MN=×4×2MN=4MN,当4MN最小时,S△DMN最大,△DMN中,DM+DN+MN=DM+EM+EN+DN=AD+DC=8,设DM=a,DN=b,∴MN=,∵DM+DN+MN=8,∴a+b+=8,8=+=+≤+=(+1)=(+1)MN,∴MN≥=8(﹣1),当a=b时,MN有最小值是8(﹣1),此时S△DMN最大,△DMN是等腰直角三角形,此时,S△DMN =S正方形ABCD﹣S五边形MABCN=42﹣4MN=16﹣4×8(﹣1)=48﹣32;(3)如图1,∵AM∥BC,∴△AMP∽CBP,∴=,∴,∴PB=,同理得:PC=,∵AC==4,∴PC==,∵∠PBQ=∠PCB=45°,∠BPQ=∠CPB,∴△BPQ∽△CPB,∴PB2=PQ•PC,∴PQ=====;即y=.17.解:(1)当点A的坐标为(1,0)时,AB=AC=﹣1,点C的坐标为(1,﹣1)或(1,1﹣);当点A的坐标为(﹣1,0)时,AB=AC=+1,点C的坐标为(﹣1,+1)或(﹣1,﹣﹣1);(2)直线BC与⊙O相切.如图1,过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,∴OM=OB•sin45°=1∴直线BC与⊙O相切;(3)过点A作AE⊥OB于点E,如图2,在Rt△OAE中,AE2=OA2﹣OE2=1﹣x2,在Rt△BAE中,AB2=AE2+BE2=(1﹣x2)+(﹣x)2=3﹣2x ∴S=AB•AC=AB2=(3﹣2x)=﹣x,其中﹣1≤x≤1,当x=﹣1时,S的最大值为+,当x=1时,S的最小值为﹣;(4)①当点A位于第一象限时(如右图3):连接OA,并过点A作AE⊥OB于点E,∵直线AB与⊙O相切,∴∠OAB=90°,又∵∠CAB=90°,∴∠CAB+∠OAB=180°,∴点O、A、C在同一条直线∵OA=1,OB=,∴AB==1,∴OA=AB,∴∠AOB=45°,∵∠C=45°,∴∠AOB=∠C=45°,在Rt△OAE中,OE=AE=,点A的坐标为(,)过A、B两点的直线为y=﹣x+;②当点A位于第四象限时(如图4),点A的坐标为(,﹣)∵B的坐标为(,0)∴过A、B两点的直线为y=x﹣.18.解:(1)已知:如图,Rt△ABC中,∠C=90°,斜边AB=4,求:△ABC 面积的2倍是最大值;(2)问题(1)中直角三角形的直角顶点的所有位置组成的图形是以AB为直径的圆(A,B两点除外),如图所示,过C作CE⊥AB,根据垂径定理,CD=CE,∵AB=4,∴当CD最大时,△ABC面积最大.又∵CE的最大值为直径的长4,∴CD的最大值是半径2,即当点D与圆心O重合,即x=y时,△ABC面积最大,最大值为4,∴当x=y=2时,xy有最大值8.(3)∵x+y=,而xy的最大值是8,∴x+y≤=4,∴x+y的最大值是4,没有最小值.19.解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°,当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°,∴∠OBA=45°或135°;故答案为:45°或135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图:此时C点到AB的距离最大值为CE的长,∵△OAB为等腰直角三角形,∴OE=AB=3,∴CE=OC+OE=3+3,△ABC的面积=CE•AB=(3+3)×6=9+18,当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)过点D作DH⊥OB,DM⊥AO,由(2)可知点C在⊙O上运动到第三象限的角平分线与圆的交点位置,∴∠COM=45°,∵OD⊥OC,∴∠DOM=45°,∵OD=3,∴DM=,DH=,∴点D坐标是(﹣,).20.解:(1)当AB⊥OA时,∵∠BOA=45°,∴OA=AB=2,∵AD=BC=1,∴OD=OA+AD=3,由勾股定理可知:OC==,(2)当O、E、C三点共线时,如图所示,过点E作EF⊥OB于点F,过点C作CG⊥OB于点G,过点A作AH⊥OB于点H,设CG=x,BG=y,∵E是AB的中点,∴BE=BC=1,∵∠ABC=90°,∴∠FBE+∠CBG=∠CBG+∠BCG=90°,∴∠FBE=∠BCG,在△BFE与△BCG中,∴△BFE≌△BCG(AAS)∴EF=BG=y,BF=CG=x,∵E是AB的中点,EF∥AH,∴AH=2FE=2y,∵∠AOB=45°,∴OH=AH=2y,∵EF∥CG,∴△OEF∽△OCG,=,∴=,∴x2=3y2,在Rt△BEF中,由勾股定理可知:x2+y2=1,∴4y2=1,∴y=或y=﹣(舍)∴x=,∴OG=2x+3y=+,CG=,在Rt△BEC中,∴CE=,∵=,∴,∴OE=,∴OC=OE+CE=∵OA=OH=2y,∴OA=,(3)设△OAB的外接圆M,连接BM并延长交⊙M于N,连接AN,∵,∴∠BOA=∠BNA=45°,∵BN是⊙M的直径,∴∠BAN=90°,∴BN=AB=2,∴R=∴移动过程中R的值不会发生变化,(4)由题意可知:原点O在以AB为弦,半径为的圆O′上,如图所示,∴OC≤OO′+O′C,当O′在线段OC上时,此时OC有最大值,过点O′作O′E⊥AB,交CD于点F,∴由垂径定理与勾股定理可知:O′E=1,∵CF=1,∴由勾股定理可知:O′C==,∴OC的最大值为:+.21.解:(1)作OC⊥AB于C,则AC=BC=AB=,在Rt△AOC中,∵OA=2,AC=,∴cos∠OAC==,∴∠OAC=30°,∴∠AOB=180°﹣2∠OAB=120°;(2)∵∠OAC=30°,∴OC=OA=1,设D点到AB的距离为h,∴S=AB•h=h,△ABD∴当h最大时,S最大,∵当D、O、C在一条直线上时,h最大,∴h=OD+OC=2+1=3,∴S的最大值为3.22.解:(1)由∠B得角平分线、平角∠BXA的平分线、平角∠BYC的角平分线中的任意两条得交点即为所求圆的圆心O;(2)若⊙P与△ABC的BA、BC两条边相切,且面积最大,则点P为∠ABC 的角平分线与AC边的交点,作PH⊥AB于H,∵Rt△ABC两直角边的边长为AC=3,BC=4,∴AB=5,则BH=BC=4,∴AH=1,∵∠A=∠A,∠PHA=∠BCA,∴△APH∽△ABC,∴==,∴PH=AH,在Rt△APH中,PH=AH=,即R1=,同理,⊙P与△ABC的CA、AC两条边相切,R2=,若⊙P与△ABC的CA、BC两条边相切,R3=,故R3>R2>R1,符合要求⊙P的最大面积为:.23.(1)解:∵Rt△AOB中OA=OB=6,∴∠OBA=∠A=45°,当C点在OB左侧,AO上面时,当OC∥AB时,∠ABO=∠BOC,则∠BOC 的度数为45°,当C点在OB右侧,AO下面时,当OC∥AB时,∠BOC的度数为:90°+45°=135°,故答案为:45°或135°;(2)证明:如图2,∵OC∥AD,∠AOB=90°∴∠ADO=∠COD=∠AOB=90°,∴∠1+∠2=90°∠3+∠2=90°∴∠1=∠3在△BOC和△AOD中,,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线;(3)解:当点C在⊙O上运动到∠AOB的平分线OE的反向延长线与⊙O的交点位置C时,△ABC的面积最大,(如图3)过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,OC=3∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴△ABC的面积最大值为:9+18.24.解:(1)直线BC与⊙O相切,过点O作OM⊥BC于点M,∵AB=AC,∠CAB=90°,∴∠ABC=45°,当A在x轴的负半轴上时,∠OBM=∠BOM=45°,∵OB=∴OM=1,∴直线BC与⊙O相切;(2)过点A作AE⊥OB于点E在Rt△OAE中,AE2=OA2﹣OE2=1﹣x2,在Rt△BAE中,AB2=AE2+BE2=(1﹣x2)+(﹣x)2=3﹣2x ∴S=AB•AC=AB2=(3﹣2x)=其中﹣1≤x≤1,当x=﹣1时,S的最大值为,当x=1时,S的最小值为;(3)①当点A位于第一象限时(如右图):连接OA,并过点A作AE⊥OB于点E∵直线AB与⊙O相切,∴∠OAB=90°,又∵∠CAB=90°,∴∠CAB+∠OAB=180°,∴点O、A、C在同一条直线∴∠AOB=∠C=45°,即∠CBO=90°,在Rt△OAE中,OE=AE=,点A的坐标为(,)过A、B两点的直线为y=﹣x+;②当点A位于第四象限时(如右图):点A的坐标为(,﹣)∵B的坐标为(,0)∴过A、B两点的直线为y=x﹣.25.解:(1)如图2,∵P在图2中的坐标为(2,4),∴P到OA的距离为:4,P到OB的距离为:2,∵(6,0),B(0,8),∴OB=8,AO=6,则AB=10,设P到AB的距离为x,则×2×BO+×AO×4+×AB×x=×6×8,解得:x=0.8,故P到AB的距离为:0.8,所以P到△AOB的距离为:0.8;故答案为:4,2,0.8,0.8;(2)当点Q到△AOB三边距离相等即Q为△AOB的内心时,Q到△AOB的距离最大.设这个最大值为h,则×8×h+×6×h+×10×h=×6×8,解得:h=2.∴点Q到△AOB距离的最大值为2.(3)设点Q为△AOB的内心,如图3,连接QA,QB,QO,分别取QA,QB,QO的中点E,F,G,连接EF,FG,GE,则△EFG即为所要画的图形.(只要画图正确即可,不必书写画图过程),由画图可知,△EFG∽△ABO,由上题及已知条件可知,△EFG与△ABO的相似比为,因为△ABO的周长为24,所以△EFG的周长为12.26.解:(1)四边形AOCD是菱形;四边形EFGH是矩形.证明如下:由翻折可得AO=AD,CO=CD.∵OA=OC,∴AO=OC=CD=DA.∴四边形AOCD是菱形;∴AC⊥OD.又∵EF是△AOD的中位线,∴EF∥OD,且EF=OD,同理可得FG∥AC,且FG=AC,EH∥AC,且EH=AC,∴FG平行且等于EH,∴四边形EFGH是平行四边形,且FG⊥EF,∴四边形EFGH是矩形.(2)∵AB为半圆O的直径,∴∠ACB=90°.∴AC⊥BC.∵四边形AOCD 是菱形,∴DC 平行且等于OA ,又∵AO =OB ,∴DC 平行且等于OB ,∴四边形OBCD 是平行四边形,∴DO 平行且等于BC ,∴S 矩形EFGH =EF •EH =OD •AC =BC •AC =×S △ACB , ∴当点C 位于半圆弧中点时,AB 边上的高最大, 即S △ACB 的最大值为1.∴S 矩形EFGH 的最大值为.此时AC =BC ,∴AC =OD .∴EF =FG ,∴矩形EFGH 是正方形.。
2024成都中考数学二轮复习专题:四边形周长求最值问题
![2024成都中考数学二轮复习专题:四边形周长求最值问题](https://img.taocdn.com/s3/m/275c86dea1116c175f0e7cd184254b35eefd1a88.png)
四边形周长求最值问题1.(2021·四川遂宁·中考真题)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由;(3)直线y =1上有M 、N 两点(M 在N 的左侧),且MN =2,若将线段MN 在直线y =1上平移,当它移动到某一位置时,四边形MEFN 的周长会达到最小,请求出周长的最小值(结果保留根号).【答案】(1)()214y x =+-;m =2;(2)存在,()0,12P 或()0,14.5;(3)【分析】(1)根据抛物线的对称性求出A (1,0),再利用待定系数法,即可求解;再把点A 坐标代入直线的解析式,即可求出m 的值;(2)先求出E (-5,12),过点E 作EP ⊥y 轴于点P ,从而得EDP ADO ∽,即可得到P 的坐标,过点E 作EP AE '⊥,交y 轴于点P ',可得P DE ADO '∽,再利用tan ∠ADO =tan ∠PE P ',即可求解;(3)作直线y =1,将点F 向左平移2个单位得到F ',作点E 关于y =1的对称点E ',连接E F ''与直线y =1交于点M ,过点F 作FN ∥E F '',交直线y =1于点N ,在Rt EWF 中和Rt E WF ''中分别求出EF ,E F '',进而即可求解.【详解】(1)解:∵二次函数的图象与x 轴交于A 和B (-3,0)两点,对称轴为直线1x =-,∴A (1,0),设二次函数解析式为:y =a (x -1)(x +3),把C (0,-3)代入得:-3=a (0-1)(0+3),解得:a =1,∴二次函数解析式为:y =(x -1)(x +3),即:()214y x =+-,∵直线y =-2x +m 经过点A ,∴0=-2×1+m ,解得:m =2;(2)由(1)得:直线AF 的解析式为:y =-2x +2,又∵直线y =-2x +2与y 轴交于点D ,与抛物线交于点E ,∴当x =0时,y =2,即D (0,2),联立()22214y x y x =-+⎧⎪⎨=+-⎪⎩,解得:11512x y =-⎧⎨=⎩,2210x y =⎧⎨=⎩,∵点E 在第二象限,∴E (-5,12),过点E 作EP ⊥y 轴于点P,∵∠ADO =∠EDP ,∠DOA =∠DPE =90°,∴EDP ADO ∽,∴P (0,12);过点E 作EP AE '⊥,交y 轴于点P ',可得P DE ADO '∽,∵∠ED P '+∠PED =∠PE P '+∠PED =90°,∴∠ADO =∠ED P '=∠PE P ',即:tan ∠ADO =tan ∠PE P ',∴OA PP OD EP '=,即:125PP '=,解得: 2.5PP '=,∴P '(0,14.5),综上所述:点P 的坐标为(0,12)或(0,14.5);(3)∵点E 、F 均为定点,∴线段EF 长为定值,∵MN=2,∴当EM +FN 为最小值时,四边形MEFN 的周长最小,作直线y =1,将点F 向左平移2个单位得到F ',作点E 关于y =1的对称点E ',连接E F ''与直线y =1交于点M ,过点F 作FN ∥E F '',交直线y =1于点N ,由作图可知:EM E M F M FN ''==,,又∵E M F '',,三点共线,∴EM +FN =E M F M E F ''''+=,此时,EM +FN 的值最小,∵点F 为直线y =-2x +2与直线x =-1的交点,∴F (-1,4),∴F '(-3,4),又∵E (-5,12),∴E '(-5,-10),延长F F '交线段E E '于点W ,∵F F '与直线y =1平行,∴FW ⊥E E ',∵在Rt EWF 中,由勾股定理得:EF =在Rt E WF ''中,由勾股定理得:E F ''=∴四边形MEFN 的周长最小值=ME +FN +EF +MN =2E F EF MN ''++=.【点睛】本题主要考查二次函数与平面几何的综合,掌握待定系数法,相似三角形的判定和性质,添加辅助线,利用轴对称图形的性质,构造线段和的最小值,是解题的关键.2.(2021·新疆沙依巴克·中考三模)如图,抛物线2y ax bx c =++经过点()0,3C ,与x 轴交于点()1,0A -和点B (点B 在点A 的右边),且OB OC =.(1)求抛物线的解析式和顶点坐标;(2)如图1,点D 、E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)如图2,点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.【答案】(1)2y x 2x 3=-++,顶点坐标为(1,4);(2)四边形ACDE 的周长的最小值为11013(3)点P 的坐标为(4,-5)或(8,-45).【分析】(1)根据待定系数法求得a 、b 、c 的值即可确定抛物线的解析式,再利用配方法得出顶点坐标.(2)把C 向下移1个单位得点C ',再作C '关于抛物线的对称轴的对称点C '',连接AC '',与对称轴交于点E ,再在对称轴上E 点上方取点D ,使得1DE =,连接CD ,此时四边形ACDE 的周长最小,根据勾股定理即可得出.(3)分:=35PCB PCA S S :△△或:=53PCB PCA S S :△△两种情况讨论即可.【详解】解:(1)∵点()0,3C ,OB OC =,∴()3,0B ,把A 、B 、C 三点坐标代入2y ax bx c =++,得09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123b b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:2y x 2x 3=-++,∵()222314y x x x =-++=--+,∴顶点坐标为(1,4);(2)把C 向下移1个单位得点C ',再作C '关于抛物线的对称轴的对称点C '',连接AC '',与对称轴交于点E ,再在对称轴上E 点上方取点D ,使得1DE =,连接CD ,此时四边形ACDE的周长最小,则"CD C E C E '==,∵()0,3C ,∴()0,2C ',∵对称轴是直线1x =,∴()2,2C '',∵()1,0A -,∴ACAC ''==,11AE DE CD AC AE EC AE C E''''+++=++=+11AC ''=+=+∴四边形ACDE 的周长的最小值为1(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又∵()()11:::22PCB PCA C P C P S S EB y y AE y y BE AE =⨯-⨯-=△△,则:3:5BE AE =或5:3,则 2.5AE =或1.5,即点E 的坐标为(1.5,0)或(0.5,0),将点E 的坐标代入直线CP 的表达式:3y kx =+,解得:6k =-或-2,故直线CP 的表达式为:23y x =-+或63y x =-+,联立方程组22323y x y x x =-+⎧⎨=-++⎩解得:4x =(不合题意值已舍去),解26323y x y x x =-+⎧⎨=-++⎩,解得:x =8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查二次函数综合题、涉及待定系数法求一次函数和二次函数解析式,二次函数图象与性质,勾股定理、轴对称、一次函数等知识,灵活掌握相关知识是解题的关键3.(2021·山东曹县·九年级期中)如图,抛物线24y ax bx =++的对称轴是直线3x =,与x 轴交于()2,0A -,B 两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,若3MN =,求点M 的坐标.(3)设点D ,E 是直线3x =上两动点,且1DE =,点D 在点E 上方,求四边形ACDE 周长的最小值.【答案】(1)213442y x x =-++;(2)点M 的坐标为(2,6)或(6,4)或()41-或()41+;(3)1【分析】(1)先求得点B 的坐标,再利用待定系数法即可求解;(2)先求得直线BC 的函数表达式,分点M 在直线BC 的上方和下方两种情况讨论,分别得到一元二次方程,解方程即可求解;(3)根据题意知当CD AE +最小时,四边形ACDE 的周长最小.过B 作BF ⊥x 轴于B ,并截取BF =DE =1,过F 作FD ∥BE 交直线x =3于D ,根据轴对称的性质得到CD +AE 的最小值为CF ,利用两点之间的距离公式即可求解.【详解】解:(1)∵点B 与点A 关于直线x =3对称,∴点B 的坐标为(8,0),∴424064840a b a b -+=⎧⎨++=⎩解得14{32a b =-=,∴抛物线的函数表达式为213442y x x =-++;(2)当x =0时,y =4,∴点C 的坐标为(0,4),设直线BC 的函数表达式为y kx m =+,则8k m 0{m 4+==解得1{24k m =-=,142y x ∴=-+设点M 的坐标为213m m m 442⎛⎫-++ ⎪⎝⎭,,则点N 的坐标为1m m 42⎛⎫-+ ⎪⎝⎭,①当点M 在直线BC 的上方时,则2131m m 4m 43422⎛⎫-++--+= ⎪⎝⎭,21234m m ∴-+=,整理得28120m m -+=,解得1m 2=,26m =,∴点M 的坐标为(2,6)或(6,4);②当点M 在直线BC 的下方时,则2113m 4m m 43242⎛⎫-+--++= ⎪⎝⎭,21234m m ∴-=,整理得28120m m --=,解得14m =-24m =+M ∴的坐标为()41-或()41+-;所以点M 的坐标为(2,6)或(6,4)或()41-或()41+-;(3)∵()2,0A -,C (0,4),∴AC ==又DE 1=,∴当CD AE +最小时,四边形ACDE 的周长最小.∵点B 与点A 关于直线x =3对称,∴AE =BE ,过B 作BF ⊥x 轴于B ,并截取BF =DE =1,连接CF ,点F 的坐标为(8,1),过F 作FD ∥BE 交直线x =3于D ,∴四边形FDEB 是平行四边形,∴FD =EB =AE ,∴CD +AE =CD +FD ≥CF ,∴CD +AE 的最小值为CF ,∵C (0,4),F (8,1),∴CF∴四边形ACDE 的周长最小值为AC +DE +CF =1+【点睛】本题是二次函数的综合题,主要考查了待定系数法,一次函数和二次函数的图象与性质,轴对称的性质,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.4.(2021·四川岳池·中考三模)抛物线263y x =--+与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点.(1)如图1,连接CD ,求线段CD 的长;(2)如图2,点P 是直线AC 上方抛物线上一点,PF x ⊥轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是11O B ,当12PE EC +的值最大时,求四边形11PO B C 周长的最小值,并求出对应的点1O 的坐标.【答案】(1;(2)四边形11PO B C 1O 的坐标为⎛⎫ ⎪ ⎪⎝⎭【分析】(1)根据抛物线解析式即可求出点C 和点D 坐标,再利用两点的距离公式即可求出结果.(2)根据题意可求出()A -,)B .从而求出直线AC 的解析式,即可设E x ⎛ ⎝,2P x ⎛-+ ⎝.由此即可用x 表示出PF 和EF 的长.在Rt ACO 中,利用勾股定理可求出AC 30CAO ∠=︒,从而得出2AE EF =,即可用x 表示AE 的长.再利用()1122PE EC PE AC AE +=+-,即可用x 表示12PE EC +的长为:(263x -++,根据二次函数的顶点式即可知,当12PE EC +的值最大时,x =-,此时(P -,由此可求出PC 的长,由题意可知11O B OB ==即要使四边形11PO B C 周长的最小,即11PO B C +的值最小即可.将点P (1P ,连接11PB ,则111PO PB =,再作点1P 关于x 轴的对称点(2P -,则1121P B P B =,由所做图形易得112112PO B C P B B C P C +=+=,即求出2P C 的长即可求出四边形11PO B C 的周长最小值,最后利用1B 点为2P C 的中点,即可求出1B 坐标,从而得到1O 坐标.【详解】(1)当0x =时,代入抛物线解析式得:y =∴(0C ,将抛物线一般式改为顶点式为:(2246363y x x =--+-++,∴D ⎛ ⎝⎭,∴263CD =;(2)在2y =-+中,令0y =,则20=,解得:1x =-2x∴()A -,)B ,∵(0C ,易得直线AC 的解析式为:3y x =设E x ⎛+ ⎝,2P x ⎛-+ ⎝,∴263PF x x =--,EF x在Rt ACO 中,AO =OC =,∴AC =∴30CAO ∠=︒,∴2AE EF ==+∴()21122PE EC x AC AE ⎡⎤⎛+=-+-⎢⎥ ⎢⎥⎝⎝⎣⎦,212⎡⎤=++⎢⎥⎢⎥⎝⎣⎦,263x =--+,2x =++,∴当12PE EC +的值最大时,x =-(P -,∴0C P PC x x =-=-=,∵11O B OB ==∴要使四边形11PO B C 周长的最小,即11PO B C +的值最小,如图,将点P (1P ,连接11PB ,则111PO PB =,再作点1P 关于x 轴的对称点(2P ,则1121P B P B =,∴11211PO B C P B B C +=+,∴连接2P C 与x 轴的交点即为使11PO B C +的值最小时的点1B ,∴2102p c x x B +⎛⎫ ⎪⎝⎭,,即1202B ⎛⎫ ⎪ ⎪⎝⎭.将1B 1O ,∴112PO B C P C +=,∴在12Rt P P C 中,2P C =对应的点1O 的坐标为0⎛⎫- ⎪ ⎪⎝⎭,,即0⎛⎫ ⎪ ⎪⎝⎭.∴四边形11PO B C周长的最小值为1111211PO B C O B PC P C O C B P ++==+++【点睛】本题为二次函数综合题.考查抛物线图象与坐标轴的交点问题,抛物线的顶点式与最值问题,利用待定系数法求一次函数解析式,两点的距离公式以及轴对称变换等知识,为压轴题,困难题型.利用数形结合的思想是解答本题的关键.5.(2021·山东·济南外国语学校九年级月考)如图,抛物线y =ax 2+bx +3经过A (1,0)、B (4,0)两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;不存在,请说明理由.(3)在(2)的条件下,点Q 是线段OB 上一动点,当△BPQ 与△BAC 相似时,求点Q的坐标.【答案】(1)2315344y x x =-+;(2)存在,9;(3)(238,0)或(78,0)【分析】(1)将A (1,0)、B (4,0)代入线y =ax 2+bx +3,求出a 、b 即可;(2)四边形PAOC 的周长最小值为:OC +OA +BC =1+3+5=9;(3)分两种情况讨论:①当△BPQ ∽△BCA ,②当△BQP ∽△BCA .【详解】解:(1)把A (1,0)、B (4,0)代入y =ax 2+bx +3得,3016430a b a b ++=⎧⎨++=⎩,解得34154a b ⎧⎪⎪⎨⎪-⎪⎩==所以,抛物线的解析式为2315344y x x =-+;(2)∵A 、B 关于对称轴对称,如图,连接BC ,与对称轴的交点即为所求的点P ,此时PA +PC =BC ,∴四边形PAOC 的周长最小值为:OC +OA +BC ,∵A (1,0)、B (4,0)、C (0,3),∴OA =1,OC =3,BC =5,∴OC +OA +BC =1+3+5=9;∴在抛物线的对称轴上存在点P ,使得四边形PAOC 的周长最小,四边形PAOC 周长的最小值为9;(3)如图,设对称轴与x 轴交于点D .∵A (1,0)、B (4,0)、C (0,3),∴OB =4,AB =3,BC =5,直线BC :334y x =-+,由二次函数可得,对称轴直线x =52,∴P (52,98),BP =158,①当△BPQ ∽△BCA ,∴BQ BP BA BC=,∴1538358BQ ==,∴98BQ =,∴923488OQ OB BQ =-=-=,∴123(,0)8Q ②当△BQP ∽△BCA ,∴,BQ BP BC BA=,∴1558538BQ ==,∴BQ =258,∴OQ =OB -BQ =4-258=78,∴Q 2(78,0),综上,求得点Q 的坐标(238,0)或(78,0)【点睛】本题考查了二次函数,熟练运用二次函数的性质与相似三角形的性质是解题的关键.6.(2021·云南·曲靖市九年级月考)如图1,在平面直角坐标系中,抛物线2y x bx c =-++经过点A 和点()10B ,,交y 轴于点()0,3C .(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作直线MN x ⊥轴交抛物线于点N ,是否存在点M ,使得AMN 与OBC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--+,()1,4-;(2)()2,3P -;(3)存在,()2,0-或2,03⎛⎫ ⎪⎝⎭【分析】(1)根据点B 、C 的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法将二次函数解析式变形为顶点式,由此即可得出顶点D 的坐标;(2)设点2(,23)P m m m --+,可得223PE m m =--+,2(1)22PG m m =--=--,矩形PEFG 的周长2()PE PG =+,即可求解;(3)设点(,0)M m ,则2(,23)N m m m --+,223MN m m =--+,根据相似三角形的性质,可得关于m 的方程,可得M 点的坐标,要分类讨论,以防遗漏.【详解】解:(1)∵抛物线2y x bx c =-++经过点A 和点()10B ,,交y 轴于点()0,3C ,将B ,C 代入解析式得:013b c c=-++⎧⎨=⎩解得:b =-2,c =3∴抛物线的表达式为:223y x x =--+,∵223y x x =--+2(1)4x =-++∴点(1,4)D -;∴解析式为223y x x =--+,顶点坐标(1,4)D -(2)设点2(,23)P m m m --+,则223PE m m =--+,∵顶点坐标(1,4)D -,2(,23)P m m m --+∴2(1)22PG m m =--=--,矩形PEFG 的周长22()2(2322)PE PG m m m =+=--+--2282m m =--+,20-<,故当824m -=-=--时,矩形PEFG 周长最大,此时,点P 的横坐标为2-;将-2,代入223y x x =--+得y =3∴坐标为()2,3P -;(3)设点(,0)M m ,则2(,23)N m m m --+,223MN m m =--+令y =0,得2x 2x 30--+=解得:123,1x x =-=∴点A (-3,0),()10B ,∴AM =m +3,OB =1,OC =3∵90AMN COB ∠=∠=︒,∴当AM MN BO OC=时AMN BOC ∆∆∽即223133m m m +--+=,解得:23m m =-=-或(舍去)∴(2,0)M -∵90AMN COB ∠=∠=︒,∴当AM MN CO OB=时AMN COB ∆∆∽即223313m m m +--+=,解得:233m m ==-或(舍去)∴2,03M ⎛⎫ ⎪⎝⎭综上所述:存在点M ,即(2,0)M -或者2,03M ⎛⎫ ⎪⎝⎭,使得AMN 与OBC 相似.【点睛】本题考查了二次函数综合题,涉及到待定系数求函数解析式、三角形相似和二次函数的最值;(1)的关键是顶点是函数解析式;解(2)的关键是利用已知条件把PE PG 、表示出来;(3)的关键是利用相似三角形的性质得出关于m 的方程,要分类讨论,以防遗漏.7.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为()3,0-,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x +3),利用对称性可求点Q (-2-x ,-x 2-2x +3),可求MP =-x 2-2x +3,PQ =-2-x -x =-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ =2,可得FG =4,设F (m ,-m 2-2m +3),则G (m ,m +3),用含有m 的式子表示FG 的长度即可求解.【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-=所以223y x x =--+(Ⅱ)2223(1)4y x x x =--+=-++抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x--=--∴2a x=--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x=---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b=+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x =+将2x =-代入3y x =+,得1y =∴(2,1)E -,∴1EM =∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x =--+=-++∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m=+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.8.(2021·山东·济南市济阳区中考模拟预测)如图,抛物线y=2x﹣2x﹣3经过点A(﹣2,a),与x轴相交于B、C两点(B点在C点左侧).(1)求a的值及B、C两点坐标;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△B C'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P(m,-3)是该抛物线上一点,点Q为抛物线的顶点,在x轴、y轴分别找点M、N,使四边形MNQP的周长最小,请求出点M、N的坐标.【答案】(1)5;(-1,0),(3,0)(2)(1,;(1(3)(57,0);(0,53-)【分析】(1)把A(-2,a)代入y=x2﹣2x﹣3可得a的值,分别令y=0求出抛物线与x轴的交点坐标,从而可得B、C点坐标;(2)设对称轴于BC的交点为E,先求出点C,点E坐标,可求BC=4,BH=CH=2,由折叠的性质可得BC'的长,由勾股定理可求C'H,DH的长,即可求解;(4)作Q点关于y轴的对称点Q′(-1,-4),作点P(2,-3)关于x轴的对称点P′(2,3),连接Q′P′分别交x、y轴于点M、N,此时,四边形QPMN的周长最小,即可求解.【详解】解:(1)把A(-2,a)代入y=x2﹣2x﹣3,得a=5;当y=0时,x2﹣2x﹣3=0解得x1=3,x2=-1∵B点在C点左侧∴B(-1,0),C(3,0)(2)如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得2222C H C B BH 4223''=--=,∴点C ′的坐标为(1,3,tan 2332C H C BH BH ''∠===,∴∠C ′BH =60°,由翻折得∠DBH =12∠C ′BH =30°,在Rt △BHD 中,DH =BH •tan ∠DBH =2•tan 30°=33,∴点D 的坐标为(1,33).(3)如图2,∵Q 为抛物线的顶点,∴Q (1,﹣4),∴Q 关于y 轴的对称点Q '(﹣1,﹣4),∵P (m ,-3)在抛物线上,∴P (2,﹣3),∴点P 关于x 轴的对称点P '(2,3),连接Q ′、P ′分别交x 、y 轴于点M 、N ,此时,四边形OPMN 的周长最小,,设直线Q ′P ′的解析式为y =kx +b ,则有234k b k b +=⎧⎨-+=-⎩,解得7353k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线P 'Q '的解析式为y =73x ﹣53,当x =0时,y =﹣53;当y =0时,x =57;∴M (57,0),N (0,﹣53).【点睛】本题是二次函数的综合题,考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质等知识,其中(3),利用对称点性质求解是此类题目的一般解法,需要掌握.9.(重庆市九年级月考)如图1,抛物线y =﹣x 2﹣2x +3与x 轴从左到右交于A 、B 两点,与y 轴交于点C ,顶点为D(1)求直线AC 的解析式与点D 的坐标;(2)在直线AC 上方的抛物线上有一点E ,作EF ∥x 轴,与抛物线交于点F ,作EM ⊥x 轴于M ,作FN ⊥x 轴于N ,长度为PQ 在直线AC 上运动(点P 在点Q 右侧),当四边形EMNF 的周长取最大值求四边形DPQE 的周长的最小值及对应的点Q 的坐标;(3)如图2,平移抛物线,使抛物线的顶点D 在直线AD 上移动,点D 平移后的对应点为D ′,点A 平移后的对应点为A ′,△A ′D ′C 是否能为直角三角形?若能,请求出对应的线段D ′C 的长;若不能,请说明理由.【答案】(1)直线AC 的解析式为:3y x =+,()1,4D -;(2)四边形DPQE 的周长的最小值是+Q 的坐标为33,22Q ⎛⎫- ⎪⎝⎭;(3)'D C == 3.【分析】(1)抛物线223y x x =--+与x 轴从左到右交于A 、B 两点,只要令y =0,即可求出A 、B 两点;与y 轴交于点C ,只要令x =0,即可求出点C ;由点A 、C 的坐标可得直线AC 的解析;D 的坐标用顶点公式或者先求出对称轴代入解析式,即可求出;(2)作点E 关于直线AC 的对称点E'(0,1),将点E'沿AC 方向平移E″(2,3),连接E″D 交直线AC 于点P ,将点P 向下平移Q ,则点Q 为所求点即可求解,再根据个点坐标求出四边形的边长,进而计算周长;(3)分A 'D '是斜边、A'C 是斜边、CD'是斜边三种情况,分别求解即可.【详解】解:(1)∵抛物线223y x x =--+与x 轴从左到右交于A 、B 两点,∴令y =0,即223=0x x --+,解得:12= -3=1x x ,,则()()3,01,0A B -、,∵抛物线223y x x =--+与y 轴交于点C ,∴()0,3C ,由点A 、C 的坐标得,直线AC 的解析式为:3y x =+;∵D 是抛物线223y x x =--+的顶点,抛物线的对称轴为:1x =-,∴()1,4D -;(2)设点2(,23)E m m m --+,∵抛物线的对称轴为:1x =-,//EF x 轴,∴22EF m =--,四边形EMNF 的周长222()2(2322)2(41)l EF EM m m m m m =+=--+--=--+,当2m =-时,l 最大,此时点()2,3E -;∵()2,3E -,()1,4D -;∴ED =∵PQ =且P 、Q 在3y x =+上∴P 、Q 两点横纵坐标差为2,作点()2,3E -关于直线AC 的对称点()'0,1E ,将点'E 沿AC 方向平移个单位得到()2,3E ",由点DE "坐标得,直线DE "的解析式为:111 33y x =-+;联立直线AC 、直线DE "的解析式并解得:12x =,故点17,22P ⎛⎫ ⎪⎝⎭,将点P 沿着直线CA向左向下平移33,22Q ⎛⎫- ⎪⎝⎭;∵()2,3E -,33,22Q ⎛⎫- ⎪⎝⎭,17,22P ⎛⎫ ⎪⎝⎭,()1,4D -;∴EQ =PD =;此时四边形DPQE的周长最小ED PQ EQ PD=+++=;(3)由待定系数法求得直线AD 的解析式为:26y x =+,则设抛物线向右平移m 个单位,则向上平移2m 个单位,∴'A ()3,2m m -、'D ()1,24m m -+,()0,3C ,而点()0,3C ,∴'D C =①当''A D 是斜边时,如图2,分别过点'A 、'D 作y 轴的垂线交于点N 、M ,则''D CM CA N ∠=∠,则tan 'tan 'D CM CA N ∠=∠,即321321m m m m --=-+,解得:0m =(舍去)或85;②当'A C 是斜边时,如图3,过点'D 作x 轴的平行线交y 轴于点N ,交过点'A 作y 轴的平行线于点M ,同理可得:tan 'tan ''ND C MA D ∠=∠,则'''NC MD ND MA =,即22141m m +=-,解得:1m =-;③当'CD 是斜边时,同理可得:22343m m -=-,解得:1m =,故85m =或−1或1则'22(1)(21)D C m m =-++3253.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、点的对称性、解直角三角形等,其中第(3)问,要注意分类求解,避免遗漏.10.(2021·广东·广州市第五中学九年级期中)如图,过原点的抛物线2122y x x =-+与x 轴交于点A ,B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC OB ⊥,垂足为点C .(1)将POC △绕着点P 按顺时针方向旋转90︒,得''PO C △,当点'C 落在抛物线上时,求点P 的坐标.(2)当PB OA ⊥时,将线段PC 绕平面某点旋转180︒得到线段EF ,若点E 、F 都落在抛物线上,求点E 和F 的坐标.(3)当(1)中的点'C 落在抛物线上时,将抛物线向左或向右平移()02n n <<个单位,点B 、'C 平移后对应的点分别记为M 、N ,是否存在n ,使得以O 、M 、N 、A 为顶点的四边形周长最短?若存在,请直接写出n的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)(209,0);(2)51528E ⎛⎫ ⎪⎝⎭,,7728F ⎛⎫ ⎪⎝⎭,;(3)存在27n =,抛物线向左平移【分析】(1),过点B 作BQ ⊥x 轴于Q ,过点C '作C D '⊥O P '于D ,先证明△OQB 是等腰直角三角形,得到∠BOP =45°,从而可以证明△OCP 是等腰直角三角形,OC =CP ,∠OPC =45°,设P (m ,0),则3122C m m ⎛⎫' ⎪⎝⎭,,代入抛物线解析式求解即可;(2)过点C 作CD ⊥OA 于D ,求出C (1,1),将线段PC 绕平面某点旋转180°得到线段EF ,设这个点的坐标为(a ,b ),则22P E P E x x a y y b +⎧=⎪⎪⎨+⎪=⎪⎩,22C F C F x x a y y b +⎧=⎪⎪⎨+⎪=⎪⎩,从而得到()222E a b -,,()2121F a b --,,再根据E 、F 在抛物线上,求解即可;(3)将AC '沿C B '平移,使得C '与B 点重合,点A 落在A '处,,以过B 的直线y =2为对称轴,作A '的对称点A '',连接OA '',当点M 为OA ''与直线y =2的交点时,此时以O 、M 、N 、A为顶点的四边形周长最短,先求出8839A ⎛⎫' ⎪⎝⎭,,则82839A ⎛⎫'' ⎪⎝⎭,,再求出M 的坐标即可得到答案.【详解】解:(1)如图所示,过点B 作BQ ⊥x 轴于Q ,过点C '作C D '⊥O P '于D ,∵点B 是抛物线()221122222y x x x =-+=--+的顶点,∴B (2,2),∴OQ =BQ =2,∴△OQB 是等腰直角三角形,∴∠BOP =45°,又∵PC ⊥OB ,∴∠OCP =90°,∴△OCP 是等腰直角三角形,∴OC =CP ,∠OPC =45°,由旋转的性质可得==45O PC OPC ''o ∠∠,O C C P OC '''==,O P OP '=,OPO '∠=o 90设P (m ,0),则O P OP m '==,∴1122C D O P m ''==,∴3122C m m ⎛⎫' ⎪⎝⎭,∵C '在抛物线2122y x x =-+上,∴21133222m m m ⎛⎫=-⨯+ ⎪⎝⎭即29200m m -=,解得209m =或0m =(舍去),∴P (209,0);(2)如图所示,过点C 作CD ⊥OA 于D ,∵B (2,2),PB ⊥OA ,∴OP =PB =2,△OBP 为等腰直角三角形,P (2,0),由(1)得PC =OC ,∵222OC PC OP +=,∴224PC =,∴2PC OC ==又∵CD ⊥OA ,∴OD =CD =PD =1,∴C (1,1),将线段PC 绕平面某点旋转180°得到线段EF ,设这个点的坐标为(a ,b ),∴22P E P E x x a y y b +⎧=⎪⎪⎨+⎪=⎪⎩,22C F C F x x a y y b +⎧=⎪⎪⎨+⎪=⎪⎩,∴222E E x a y b =-⎧⎨=⎩,2121F E x a y b =-⎧⎨=-⎩,∴()222E a b -,,()2121F a b --,,又∵E 、F 都在抛物线2122y x x =-+上,∴()()()()2212222222121221212a ab a a b ⎧--+-=⎪⎪⎨⎪--+-=-⎪⎩,∴222862526212a a b a a b ⎧-+-=⎪⎨-+-=-⎪⎩解得941516a b ⎧=⎪⎪⎨⎪=⎪⎩∴51528E ⎛⎫ ⎪⎝⎭,,7728F ⎛⎫ ⎪⎝⎭,;(3)存在27n =,抛物线向左平移,理由如下:由(1)可知101039C ⎛⎫' ⎪⎝⎭,,如图将AC '沿C B '平移,使得C '与B 点重合,点A 落在A '处,,以过B 的直线y =2为对称轴,作A '的对称点A '',连接OA '',当点M 为OA ''与直线y =2的交点时,此时以O 、M 、N 、A为顶点的四边形周长最短,∵A 是抛物线2122y x x =-+与x 轴的交点,∴A (4,0)∵//BA AC '',且BA AC ''=,101039C ⎛⎫' ⎪⎝⎭,,B (2,2),∴8839A ⎛⎫' ⎪⎝⎭,,∴82839A ⎛⎫'' ⎪⎝⎭,,设直线OA ''的解析式为y kx =,∴28893k =,解得76k =,∴直线OA ''的解析式为76y x =,∵M 在直线y =2上,∴726x =,解得127x =,∴12,27M ⎛⎫ ⎪⎝⎭∴122277n =-=,∴存在27n =,抛物线向左平移.【点睛】本题主要考查了二次函数综合,旋转的性质,平移的性质,中心对称,等腰直角三角形的性质,一次函数,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.11.(重庆中考招生考试)如图,已知抛物线22y x =--x 轴交于A ,B 两点(A 点位于B 点左侧),与y 轴交于C 点,连接AC .点Q 为抛物线的顶点,点G 为()0,3-.(1)点P 是第四象限内抛物线上的一点,过点P 作//PD x 轴交抛物线于点D ,作PF x ⊥轴于点F ,作DE x ⊥轴于点E ,点P 在点D 右边.点M 是直线BG 上一个动点,点N 是直线PD 上一个动点,当四边形PDEF 的周长最大时,求PM MN +的最小值;(2)如图2,将原抛物线绕其对称轴与x 轴的交点H 旋转180︒得新的抛物线1l ,点A ,Q 的对应点分别记为1A ,1Q ,把抛物线1l 沿直线1GA 平移,1A ,1Q 的对应点分别记为2A ,2Q 是否存在点2A ,使得22GA Q ∆是以2GA 为腰的等腰三角形?若存在,请直接写出2A 的坐标;若不存在,请说明理由.【答案】(1)PM MN +;(2)存在,2(3018A ----或23A -或2(3A --.【分析】(1)设2323P m m ⎛-- ⎝,则223PF m m =-++.然后再确定抛物线的对称轴以及开口方向,即可确定最值;(2)由题意知,抛物线绕其对称轴与x 轴的交点H 旋转180︒得抛物线1l ,点A 的对应1A 与点B重合.设2,)A t ,2)Q t +,然后利用勾股定理得到()2222)(3)GA t =++;然后就22GQ GA =和222GA A Q =分别解答即可.【详解】解:(1)(A ,B ,(0,C -,Q -.设22P m m ⎛-- ⎝,则223PF m m =++抛物线223y x x =--的对称轴为x =2(2PD m m ∴==-∴矩形PDEF 的周长()2PF PD =+23243m m ⎛=+ ⎝28m =++此函数的图象为抛物线,其对称轴为m =,且0m <<.0a =<,∴当m =时,矩形PDEF 的周长最大,此时点P 的坐标为(-.作点P 关于GB 的对称点1P ,30ABG ∠=︒,∴作1P N PC ⊥于N 交GB 于M ,此时PM MN +最小,PM MN +的最小值1PN =.延长BG 交PC 于H ,可求得9HC =-19PP HP ==-,PM MN +的最小值132P N ==.(2)由题意知,抛物线绕其对称轴与x 轴的交点H 旋转180︒得抛物线1l ,点A 的对应1A 与点B 重合.设2(333,)A t t ,2(333)Q t t +,则()2222(33)(433)GQ t t =++,()2222(333)(3)GA t t =++,①当22GQ GA =时,()()2222GQ GA =即22(33)(433)t t ++22(333)(3)t t =++.化简后解得18103t =--.②当222GA A Q =时,()()22222GA A Q =,即22(333)(3)60t t +++=.化简后解得315t =-.综上所述,2(30153,18103)A ----或2(35,315)A -或2(35,315)A --.【点睛】本题属于二次函数综合题,考查了矩形的性质、二次函数图像的性质、勾股定理等知识,掌握二次函数图像的性质和根据勾股定理列方程是解答本题的关键.。
2020年中考数学二轮核心考点讲解第03讲最值问题专题解析版
![2020年中考数学二轮核心考点讲解第03讲最值问题专题解析版](https://img.taocdn.com/s3/m/946633ef0029bd64793e2c04.png)
【中考数学二轮核心考点讲解】第03讲最值问题专题最值的种类你是否都提前总结过?1. 垂线段最值类型:2. 点与点之间,线段最短类型;3. 轴对称最值类型(也称将军饮马型);4. 二次函数最值类型;5. 辅助圆中最值类型;6. 费马点最值类型;7. 胡不归最值类型;8. 阿波罗尼斯圆最值类型.【例题1】(2019•鸡西)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.【分析】本题属于“将军饮马最值类型”【解析】如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC ≥4,∴PD+PC的最小值为4.【例题2】在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为AE AB DE=+;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),8BD=,2AB=,8DE=,若135ACE=︒,求线段AE长度的最大值.【分析】本题属于“两点之间,线段最短类型”【解析】(1)AE AB DE=+;理由:在AE上取一点F,使AF AB=.易得=AE AF EF AB DE=++(2)猜想:12AE AB DE BD=++.证明:在AE上取点F,使AF AB=,连结CF,在AE上取点G,使EG ED=,连结CG.CQ是BD边的中点,12CB CD BD∴==.ACQ平分BAE∠,BAC FAC∴∠=∠.在ACB∆和ACF∆中,AB AFBAC FACAC AC=⎧⎪∠=∠⎨⎪=⎩,()ACB ACF SAS∴∆≅∆,CF CB∴=,BCA FCA∴∠=∠.同理可证:CD CG=,DCE GCE∴∠=∠.CB CD=Q,CG CF∴=120ACE∠=︒Q,18012060BCA DCE∴∠+∠=︒-︒=︒.60FCA GCE∴∠+∠=︒.60FCG∴∠=︒.FGC∴∆是等边三角形.12FG FC BD ∴==. AE AF EG FG =++Q .12AE AB DE BD ∴=++.(3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG . C Q 是BD 边的中点,12CB CD BD ∴==.()ACB ACF SAS ∆≅∆Q ,CF CB ∴=,BCA FCA ∴∠=∠.同理可证:CD CG =,DCE GCE ∴∠=∠ CB CD =Q ,CG CF ∴= 135ACE ∠=︒Q ,18013545BCA DCE ∴∠+∠=︒-︒=︒. 45FCA GCE ∴∠+∠=︒. 90FCG ∴∠=︒.FGC ∴∆是等腰直角三角形.12FC BD ∴=.8BD =Q , 4FC ∴=, 42FG ∴=. 42AE AB DE =++Q . 2AB =Q ,8DE =,1042AE AF FG EG ∴++=+….∴当A 、F 、G 、E 共线时AE 的值最大2,最大值为1042+.故答案为:1042+. 【例题3】(2019•普洱一模)已知菱形ABCD 中,AB =5,∠B =60°,⊙A 的半径为2,⊙B 的半径为3,点E 、F 分别为⊙A 、⊙B 上的动点,点P 为DC 边上的动点,则PE +PF 的最小值为 5 .【分析】本题属于“轴对称最值类型”【解析】当P 与C 重合时,F 点在BC 上,E 点在AC 上,此时PE +PF 的值最小; 连接AC ,∵菱形ABCD ,AB =5,∠B =60°, ∴AC =5,∵⊙A 的半径为2, ∴EC =3,∵⊙B 的半径为3, ∴FC =2, ∴PE +PF =5;故答案为5;【例题4】(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.8【分析】本题属于“圆中常规最值类型”【解析】如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.【例题5】如图,四边形的两条对角线AC、BD相交所成的锐角为60︒,当8+=时,四边形ABCDAC BD的面积的最大值是.【分析】本题属于“二次函数最值类型”【解析】ACQ与BD所成的锐角为60︒,∴根据四边形面积公式,得四边形ABCD 的面积1sin602S AC BD =⨯⨯︒, 设AC x =,则8BD x =-, 所以2133(8)(4)43224S x x x =-⨯=--+, 所以当4x =,S 有最大值43. 故答案为:43.【例题6】(2019•上虞区一模)如图,已知ABC ∆,DEF ∆均为等腰直角三角形,102EF =,顶点D ,E 分别在边AB ,AC 上滑动.则在滑动过程中,点A ,F 间距离的最大值为 .【分析】本题属于“辅助圆最值类型”【解析】DEF ∆均为等腰直角三角形,102EF =,10DE DF ∴==,ABC ∆Q 是等腰直角三角形,以ED 为直角作等腰直角三角形EDM ,以M 为圆心,AM 为半径作圆, 随着D 、E 点运动,A 始终在圆M 上, 当A 、M 、F 三点共线时,AF 最大; AM EM =Q , 52AM ∴=,45DEF MED ∠=∠=︒Q , 90MEF ∴∠=︒, 510MF ∴=, 52510AF ∴=+,故答案为52510+.【例题7】(2019•武汉)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =.点O 是△MNG 内一点,则点O 到△MNG三个顶点的距离和的最小值是.【分析】本题属于“费马点最值类型”【解析】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2【例题8】如图,在ACEe经过点C,且圆的直径AB在线段AE上.∆中,CA CE∠=︒,OCAE=,30(1)试说明CE是Oe的切线;(2)若ACEe的直径AB;∆中AE边上的高为h,试用含h的代数式表示O(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD OD +的最小值为6时,求O e 的直径AB 的长.【分析】本题属于“胡不归最值类型” 【解析】(1)连接OC ,如图1, CA CE =Q ,30CAE ∠=︒,30E CAE ∴∠=∠=︒,260COE A ∠=∠=︒, 90OCE ∴∠=︒,CE ∴是O e 的切线;(2)过点C 作CH AB ⊥于H ,连接OC ,如图2, 由题可得CH h =.在Rt OHC ∆中,sin CH OC COH =∠g , 3sin 60h OC OC ∴=︒=g , 233OC h ∴==,432AB OC h ∴==; (3)作OF 平分AOC ∠,交O e 于F ,连接AF 、CF 、DF ,如图3, 则11(18060)6022AOF COF AOC ∠=∠=∠=︒-︒=︒.OA OF OC ==Q ,AOF ∴∆、COF ∆是等边三角形, AF AO OC FC ∴===, ∴四边形AOCF 是菱形,∴根据对称性可得DF DO =. 过点D 作DH OC ⊥于H ,OA OC =Q ,30OCA OAC ∴∠=∠=︒, 1sin sin302DH DC DCH DC DC ∴=∠=︒=g g , ∴12CD OD DH FD +=+. 根据垂线段最短可得:当F 、D 、H 三点共线时,DH FD +(即1)2CD OD +最小,此时3sin 6FH OF FOH OF =∠==g , 则43OF =,283AB OF ==.∴当12CD OD +的最小值为6时,O e 的直径AB 的长为83.【例题9】阅读以下材料,并按要求完成相应的任务. 已知平面上两点A 、B ,则所有符合(0PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点(,0)C m ,(0,)D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得0::M OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q ,~POM DOP ∴∆∆…… 任务:(1)将以上解答过程补充完整.(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,D 为ABC ∆内一动点,满足2CD =,利用(1)中的结论,请直接写出23AD BD +的最小值.【分析】本题属于“阿波罗尼斯圆最值类型”【解析】解(1)在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q , ~POM DOP ∴∆∆. :MP PD k ∴=, MP kPD ∴=,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值, 即C ,P ,M 三点共线时有最小值,利用勾股定理得2222222()CM OC OM m kr m k r =+++.(2)4AC m==Q,23CDBC=,在CB上取一点M,使得2433CM CD==,∴23AD BD+的最小值为2244104()3+=.1.(2019•乐山)如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4【解析】连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【解析】如图:当点F与点C重合时,点P在P 1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.3.(2019•黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.【解析】如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠F AC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.故选:B.4.(2019•包头)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b 的最大值是()A.﹣B.﹣C.﹣1 D.0【解析】连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.5.如图,正三角形ABC的边长为3+,在正三角形ABC中放入正方形DEMN和EFPH,使得D、E、F 在边AB上,点P、N分别在边CB、CA上,这两个正方形面积和的最小值是,最大值是99﹣54.【解析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A=∠B=60°,AB=3+,在Rt△ADN中,AD=DN=m,在Rt△BPF中,BF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3﹣m,∴S=m2+n2=m2+(3﹣m)2=2(m﹣)2+当点M落在BC上,则正方形DEMN的边长最小,正方形EFPH的边长最大,如图,在Rt△ADN中,AD=DN,AN=DN,∴DN+DN=3+,解得DN=3﹣3,在Rt△BPF中,BF=PF,∴(3﹣3)+3﹣3+EF+PF=3+,解得PF=6﹣9,∴6﹣3≤m≤3﹣3,∴当m=时,S最小,S的最小值为;当m=3﹣3时,S最大,S的最大值=2(3﹣3﹣)2+=99﹣54.故答案为;99﹣54.6.如图,平面直角坐标系中,A、B在x轴上,A(2,0)、B(8,0),点C为y轴上一动点,当∠ACB最大时,C点坐标为(0,4)或(0,﹣4).【解析】当过A、B两点的⊙P与y轴正半轴相切于C时,∠ACB最大时,作PH⊥AB于H,连结PC、P A,如图,∵A(2,0)、B(8,0),∴OA=2,AB=6,∵PH⊥AB,∴AH=BH=3,∴OH=OA+AH=5,∵⊙P与y轴相切,∴PC⊥y轴,∴四边形PHOC为矩形,∴OC=PH,PC=OH=5,在Rt△P AH中,∵AH=3,P A=5,∴PH==4,∴OC=4,∴C点坐标为(0,4),当⊙P与y轴的负半轴相切时,C点坐标为(0,﹣4).故答案为(0,4)或(0,﹣4).7.(2019•威海)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).【解析】如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=(k≠0)的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=k,整理得k=m2+4m,∴A(m,m+4),B(m+4,m),∴M(m+2,m+2),∴OM===,∴OM的最小值为.故答案为.8.(2019•凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【解析】∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.9.(2019•东营)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N 分别是AC、BC的中点,则MN的最大值是.【解析】∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.10.(2019•乐山)如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是3.【解析】∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,∴S△POQ=(﹣+2)•x=﹣(x﹣2)2+3,∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.11.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.12.(2019•北仑区模拟)如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为2.【解析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=2,BC=4,∴EC=2,故答案为2;13.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【解析】∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.14.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC =60°,⊙O的半径为6,则点P到AC距离的最大值是6+3.【解析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.15.(2019•眉山)如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为2.【解析】连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.16.(2019•通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是﹣1.【解析】过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣117(2019•营口)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为8.【解析】过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.18.(2019•舟山)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【解析】∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)19.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A 旋转,当∠ABF最大时,S△ADE=6.【解析】作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.20.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD =120°,则CD的最大值是14.【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.21.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【解析】连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.22.(2019•连云港)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是3.【解析】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.23.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【解析】过点C 作CG ⊥BA 于点G ,作EH ⊥AB 于点H ,作AM ⊥BC 于点M . ∵AB =AC =5,BC =4, ∴BM =CM =2, 易证△AMB ∽△CGB , ∴,即∴GB =8,设BD =x ,则DG =8﹣x , 易证△EDH ≌△DCG (AAS ), ∴EH =DG =8﹣x , ∴S △BDE ===,当x =4时,△BDE 面积的最大值为8. 故答案为8. 24.(2019秋•嘉兴期末)一副三角板(ABC ∆与)DEF ∆如图放置,点D 在AB 边上滑动,DE 交AC 于点G ,DF 交BC 于点H ,且在滑动过程中始终保持DG DH =,若2AC =,则BDH ∆面积的最大值是( )A .3B .33C .32D .33【解析】如图,作HM AB ⊥于M , 2AC =Q ,30B ∠=︒,23AB ∴=, 90EDF ∠=︒Q ,90ADG MDH ∴∠+∠=︒, 90ADG AGD ∠+∠=︒Q , AGD MDH ∴∠=∠,DG DH =Q ,90A DMH ∠=∠=︒,()ADG MHD AAS ∴∆≅∆,AD HM ∴=,设AD x =,则23BD x =-,211113(23)(3)22222BDH S BD MH BD AD x x x ∆∴===-=--+g g , BDH ∴∆面积的最大值是32,故选:C .25.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为 433+ .【解析】将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形, AM MM ∴=',MA MD ME D M MM ME ∴++='+'+, D M ∴'、MM '、ME 共线时最短, 由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得433D E DG GE '=+=+,MA MD ME ∴++的最小值为433+.26.(2012•金牛区校级二模)如图,在△AOB 中,OA =OB =8,∠AOB =90°,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上,若tan CDO =,则矩形CDEF 面积的最大值s =.【解析】设CD =x ,CF =y .过F 作FH ⊥AO 于H .在 Rt △COD 中, ∵,∴.∴.∵∠FCH +∠OCD =90°,∴∠FCH =∠CDO . ∴.∴.∵△AHF 是等腰直角三角形,∴.∴AO =AH +HC +CO . ∴.∴.易知,∴当x =5时,矩形CDEF 面积的最大值为.故答案为:. 27.(2019•雁塔区校级一模)问题提出:(1)如图1,在四边形ABCD 中,AB BC =,3AD CD ==,90BAD BCD ∠=∠=︒,60ADC ∠=︒,则四边形ABCD 的面积为 33 ; 问题探究:(2)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,135ABC ∠=︒,22AB =,3BC =,在AD 、CD 上分别找一点E 、F ,使得BEF ∆的周长最小,并求出BEF ∆的最小周长; 问题解决: (3)如图3,在四边形ABCD 中,2AB BC ==,10CD =,150ABC ∠=︒,90BCD ∠=︒,则在四边形ABCD 中(包含其边沿)是否存在一点E ,使得30AEC ∠=︒,且使四边形ABCE 的面积最大.若存在,找出点E 的位置,并求出四边形ABCE 的最大面积;若不存在,请说明理由.【解析】(1)AB BC =Q ,3AD CD ==,90BAD BCD ∠=∠=︒ ()ABD CBD SAS ∴∆≅∆ADB CDB ∴∠=∠,且60ADC ∠=︒30ADB CDB ∴∠=∠=︒,且90BAD BCD ∠=∠=︒ 3AB BC ∴==∴四边形ABCD 的面积1233332=⨯⨯⨯=故答案为:33(2)如图,作点B 关于AD 的对称点M ,作点B 关于CD 的对称点N ,连接MN ,交AD 于点E ,交CD 于点F ,过点M 作MG BC ⊥,交CB 的延长线于点G , Q 点B ,点M 关于AD 对称BE EM ∴=,22AB AM ==,42BM ∴=Q 点B ,点N 关于CD 对称BF FN ∴=,3BC CN ==BEF ∴∆的周长BE BF EF NF EF EM MN =++=++= 135ABC ∠=︒Q ,45GBM ∴∠=︒,且GM BG ⊥, 45GBM GMB ∴∠=∠=︒BG GM ∴=,且222BG GM BM +=, 4BG GM ∴==,43310GN BG BC CN ∴=++=++=,∴在Rt GMN ∆中,2210016229MN GM GN =+=+=BEF ∴∆的最小周长为229(3)作ABC ∆的外接圆,交CD 于点E ,连接AC ,AE ,过点A 作AM CD ⊥于点M ,作BN AM ⊥于点N , Q 四边形ABCE 是圆内接四边形 180ABC AEC ∴∠+∠=︒ 30AEC ∴∠=︒,BN AM ⊥Q ,AM CD ⊥,90BCD ∠=︒, ∴四边形BCMN 是矩形2BC MN ∴==,BN CM =,90CBN ∠=︒, 150ABC ∠=︒Q ,60ABN ∴∠=︒,且BN AM ⊥ 30BAN ∴∠=︒, 112BN AB ∴==,33AN BN == 32AM ∴=+,1CM =30AEC ∠=︒Q ,AM CE ⊥,2234AE AM ∴==+,3323ME AM ==+ 423CE CM ME AE ∴=+=+=∴点E 在AC 垂直平分线上,ABC ACE ABCE S S S ∆∆=+Q 四边形,且ABC S ∆是定值,AC 长度是定值,点E 在ABC ∆的外接圆上,∴当点E 在AC 的垂直平分线上时,ABCE S 四边形最大()()()232331223184322AMEABCE ABCM S S S ∆++∴=+=⨯++⨯+=+四边形四边形 28.(2010•滨州模拟)如图,在平面直角坐标系中,已知四边形ABCD 是等腰梯形,A 、B 在x 轴上,D 在y 轴上,//AB CD ,17AD BC ==,5AB =,3CD =,抛物线2y x bx c =-++过A 、B 两点.(1)求b 、c ;(2)设M 是x 轴上方抛物线上的一动点,它到x 轴与y 轴的距离之和为d ,求d 的最大值;(3)当(2)中M 点运动到使d 取最大值时,此时记点M 为N ,设线段AC 与y 轴交于点E ,F 为线段EC 上一动点,求F 到N 点与到y 轴的距离之和的最小值,并求此时F 点的坐标.【解析】(1)易得(1A -,0)(4B ,0), 把1x =-,0y =;4x =,0y =分别代入2y x bx c =-++, 得101640b c b c --+=⎧⎨-++=⎩,解得34b c =⎧⎨=⎩.(3分)(2)设M 点坐标为2(,34)a a a -++,2||34d a a a =-++.①当10a -<…时,2224(1)5d a a a =-++=--+, 所以,当0a =时,d 取最大值,值为4; ②当04a <<时,2244(2)8d a a a =-++=--+所以,当2a =时,d 取最大值,最大值为8; 综合①、②得,d 的最大值为8.(不讨论a 的取值情况得出正确结果的得2分)(3)N 点的坐标为(2,6),过A 作y 轴的平行线AH ,过F 作FG y ⊥轴交AH 于点Q ,过F 作FK x ⊥轴于K , 45CAB ∠=︒Q ,AC 平分HAB ∠, FQ FK ∴=1FN FG FN FK ∴+=+-,所以,当N 、F 、K 在一条直线上时,1FN FG FN FK +=+-最小,最小值为5. 易求直线AC 的函数关系式为1y x =+,把2x =代入1y x =+得3y =, 所以F 点的坐标为(2,3).29.(2019•淮安)如图①,在△ABC 中,AB =AC =3,∠BAC =100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE .小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP = 50 °;②连接CE ,直线CE 与直线AB 的位置关系是 EC ∥AB .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解析】(1)①如图②中, ∵∠BPE =80°,PB =PE , ∴∠PEB =∠PBE =50°, ②结论:AB ∥EC .理由:∵AB =AC ,BD =DC , ∴AD ⊥BC , ∴∠BDE =90°, ∴∠EBD =90°﹣50°=40°, ∵AE 垂直平分线段BC , ∴EB =EC ,∴∠ECB =∠EBC =40°, ∵AB =AC ,∠BAC =100°, ∴∠ABC =∠ACB =40°, ∴∠ABC =∠ECB , ∴AB ∥EC .故答案为50,AB ∥EC .(2)如图③中,以P 为圆心,PB 为半径作⊙P . ∵AD 垂直平分线段BC , ∴PB =PC ,∴∠BCE =∠BPE =40°, ∵∠ABC =40°, ∴AB ∥EC .(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.。
2024成都中考数学二轮复习微专题 利用两点之间线段最短解决最值问题(含答案)
![2024成都中考数学二轮复习微专题 利用两点之间线段最短解决最值问题(含答案)](https://img.taocdn.com/s3/m/a59dee918ad63186bceb19e8b8f67c1cfad6eefc.png)
2024成都中考数学二轮复习微专题利用两点之间线段最短解决最值问题模型一“一线两点”型(一个动点+两个定点)类型一线段和最小值问题模型分析问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB的值最小.解题思路:根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.模型演变问题:两定点A、B位于直线l同侧,在直线l上找一点P,使PA+PB的值最小.解题思路:将两定点同侧转化为异侧问题,同“模型分析”即可解决.作点B关于l的对称点B′,连接AB′,与直线l交于点P.注:也可以作点A关于直线l的对称点A′,连接A′B,与直线l交于点P′.模型应用1.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,AC=63,BD=6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为________.第1题图S矩形ABCD,2.如图,在矩形ABCD中,AB=5,AD=3,点P是矩形内一动点,满足S△P AB=13则PA+PB的最小值为________.第2题图模型迁移3.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(3,5)、B(a,-3)两点,与x轴交于点C.第3题图(1)求反比例函数和一次函数的表达式;(2)若点P为y轴上的动点,当PB+PC取最小值时,求△BPC的面积.4.如图,已知抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值.第4题图类型二线段差最大值问题模型分析问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.解题思路:根据两边之差小于第三边,|PA-PB|最大值即AB的长,连接AB并延长,与直线l交于点P,点P即为所求.模型演变问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.解题思路:将两定点异侧转化为同侧问题,同“模型分析”即可解决.作点B关于l的对称点B′,连接AB′并延长与直线l交于点P.模型应用5.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,点P是EF上的动点,则|PA-PB|的最大值为________.第5题图6.如图,在等边△ABC中,AB=4,AD是中线,点E是AD的中点,点P是AC上一动点,则BP-EP的最大值为________.第6题图7.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6,P为对角线BD上一动点,则PM-PN的最大值为________.第7题图模型迁移8.已知抛物线y=x2-2x-8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,P 是抛物线对称轴上的一个动点,当|PB-PC|有最大值时,求点P的坐标.模型二“一点两线”型(两个动点+一个定点)类型一两条线段的和最小值问题模型分析问题:点P是∠AOB的边OB上一定点,在OA上找一点M,在OB上找一点N,使得PM +MN的值最小.解题思路:要使PM+MN的值最小,设法将PM、MN转化到同一条直线上,利用垂线段最短即可解决.作点P关于OA的对称点P′,过点P′作OB的垂线,分别与OA,OB交于点M、N.模型应用9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q 分别是AD,AC上的动点,则PC+PQ的最小值为________.第9题图10.如图,在菱形ABCD中,AB=6,∠A=120°,点M,N分别为BD,CD上的动点,则CM+MN的最小值为________.第10题图类型二周长最小值问题模型分析问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN 的周长最小.解题思路:要使△PMN的周长最小,即PM+MN+PN的值最小,根据两点之间线段最短,将三条线段转化到同一直线上即可解决.分别作点P关于OA、OB的对称点P′、P″,连接P′P″交OA、OB于点M、N.模型应用11.如图,在△ABC中,AB=AC,∠BAC=90°,点D为AB上一定点,点E,F分别为边AC,BC上的动点,当△DEF的周长最小时,则∠FDE=________.第11题图12.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上,且AD=4,点E,F分别为边AC,AB上的动点,则△DEF周长的最小值为________.第12题图模型三“一定长+两定点”型类型一异侧线段和最小值问题(“造桥”问题)模型分析问题:已知l1∥l2,l1,l2之间距离为d,在l1,l2上分别找M,N两点,使得MN⊥l1,且AM +MN+NB的值最小.解题思路:要求AM+MN+NB的最小值,MN为定值,即要求AM+NB的最小值,通过平移构造平行四边形,将AM、NB转化到同一条直线上.将点A向下平移d个单位到点A′,连接A′B交直线l2于点N,过点N作MN⊥l1于点M.模型应用13.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=241.在直线a上有一动点A,直线b上有一动点B,满足AB⊥b,且PA +AB+BQ最小,则PA+BQ=________.第13题图类型二同侧线段和最小值问题(平移型问题)模型应用14.如图,菱形ABCD的边长为3,∠BAD=60°,点E,F在对角线AC上(点E在点F的左侧),且EF=1,则DE+BF的最小值为________.第14题图15.如图,四边形ABCD是平行四边形,AB=4,BC=12,∠ABC=60°,点E、F是AD边上的动点,且EF=2,则四边形BEFC周长的最小值为________.第15题图模型迁移16.如图,已知点A(3,1),B(1,0),PQ是直线y=x上的一条动线段,且PQ=2(点Q在点P的下方),当AP+PQ+QB取得最小值时,求点Q的坐标.第16题图参考答案1.33【解析】如解图,连接DE ,则PD +PE ≥DE ,设DE 交AC 于点M ,当点P 与点M 重合时PD +PE 取得最小值,且最小值为DE .∵在菱形ABCD 中,AC =63,BD =6,∴AO =33,OD =3,AC ⊥BD ,∴AD =OA 2+OD 2=6,∴AD =BD =AB ,∴∠BAD =60°,∵点E 为AB 的中点,∴DE ⊥AB ,∴DE =AD ·sin60°=3 3.第1题解图2.41【解析】如解图,设△PAB 底边AB 上的高为h ,∵S △P AB =13S 矩形ABCD ,∴12AB ·h =13AB ·AD ,∴h =2,即h 为定值,在AD 上截取AE =2,作EF ∥AB ,交CB 于点F ,故点P 在直线EF 上运动,作点A 关于直线EF 的对称点A ′,连接A ′B ,交直线EF 于点P ,此时PA +PB 最小,即为A ′B 的长.由对称得AA ′=2AE =4,∴A ′B =AA ′2+AB 2=42+52=41,即PA +PB 的最小值为41.第2题解图3.解:(1)把点A (3,5)代入y =m x可得m =3×5=15,∴反比例函数的表达式为y =15x,把点B (a ,-3)代入y =15x,可得a =-5,∴B (-5,-3).把点A (3,5),B (-5,-3)代入y =kx +b k +b =55k +b =-3=1=2,∴一次函数的表达式为y =x +2;(2)∵一次函数的表达式为y =x +2,令y =0,则x =-2,∴C (-2,0),如解图,作点C 关于y 轴的对称点C ′,则C ′(2,0),即CC ′=4,连接BC ′交y 轴于点P ,此时PC +PB 有最小值,最小值为BC ′,设直线BC ′的表达式为y =k ′x +b ′,5k ′+b ′=-3k ′+b ′=0,′=37′=-67,则BC ′的表达式为y =37x -67,∴P (0,-67),即OP =67,此时S △BPC =S △BCC ′-S △PCC ′=12×4×3-12×4×67=307.第3题解图4.解:当y =0时,-x 2-2x +3=0,解得x 1=-3,x 2=1,∴点A 坐标为(-3,0),点B 坐标为(1,0).当x =0时,y =3,∴点C 坐标为(0,3).∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴当PB +PC 最小时,△PBC 的周长最小.∵点A ,点B 关于抛物线的对称轴l 对称,∴连接AC ,交l 于点P ,点P 即为所求的点.∵AP =BP ,∴PB +PC +BC =AC +BC .∵A (-3,0),B (1,0),C (0,3),∴AC =32,BC =10,∴△PBC 周长的最小值为32+10.5.3【解析】如解图,延长BA 交EF 于P ′,当点P 位于P ′处时|PA -PB |的值最大,∴|PA -PB |的最大值为AB =3.第5题解图6.7【解析】如解图,连接BE 并延长交AC 于点P ′,此时BP -EP 取得最大值为BE ,在等边△ABC 中,AD 是中线,∴BD =DC =2,∴AD =BD ·tan60°=2×3=23,∵E 为AD的中点,∴DE =12AD =3.∴在Rt △BDE 中,BE =BD 2+DE 2=22+(3)2=7,∴BP -EP 的最大值为7.第6题解图7.2【解析】如解图,以BD 为对称轴作点N 的对称点N ′,连接MN ′并延长交BD 于点P ,连接NP ,根据轴对称性质可知PN =PN ′,∴PM -PN =PM -PN ′≤MN ′,当P ,M ,N ′三点共线时,PM -PN 取得最大值,最大值为MN ′的长,∵正方形的边长为8,∴AC =2AB =82,∵O 为AC 中点,∴AO =OC =42,∵N 为OA 中点,∴ON =22,∴ON ′=CN ′=22,∴AN ′=62,∵BM =6,∴CM =AB -BM =8-6=2,∴CM BM =CN ′AN ′=13,∵∠MCN ′=∠BCA ,∴△CMN ′∽△CBA ,∴∠CMN ′=∠CBA =90°,∵∠N ′CM =45°,∴△N ′CM 为等腰直角三角形,∴MN ′=CM =2,即PM -PN 的最大值为2.第7题解图8.解:如解图,连接PA ,则PA =PB ,当x =0时,y =x 2-2x -8=-8,则C (0,-8),当y =0时,x 2-2x -8=0,解得x 1=-2,x 2=4,则A (-2,0),B (4,0),∴抛物线的对称轴为直线x =1,∴|PB -PC |=|PA -PC |≤AC (当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P ′,设直线AC 的解析式为y =mx +n (m ≠0),把A (-2,0),C (0,-8)代入得2m +n =0=-8=-4=-8,∴直线AC 的解析式为y =-4x -8,当x =1时,y =-4-8=-12,即P ′(1,-12),∴当|PB -PC |有最大值时,点P 的坐标为(1,-12).第8题解图9.245【解析】如解图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC 于点Q,∵AD是∠BAC的平分线.∴PQ=PM,∴PC+PQ=PC+PM=CM,根据垂线段最短可知,此时PC+PQ有最小值,即为CM,∵AC=6,BC=8,∠ACB=90°,∴AB=AC2+BC2=62+82=10,∵S△ABC=12AB·CM=12AC·BC,∴CM=AC·BCAB=6×810=245.第9题解图10.33【解析】如解图,过点A作CD的垂线,垂足为N,与DB的交点记为M,∵四边形ABCD为菱形,∴点A与点C关于对角线BD对称,∴AM=CM,∴CM+MN=AM+MN =AN,根据垂线段最短可知,此时CM+MN有最小值,最小值为AN.∵AB=6,∠A=120°,∴∠ADC=60°,AD=6,∴AN=AD·sin60°=33,∴CM+MN的最小值为3 3.第10题解图11.90°【解析】如解图,作D关于AC的对称点D′,关于BC的对称点D″,连接D′D″交AC于点E,交BC于点F,此时,△DEF的周长最小,最小为D′D″,∵AB=AC,∠BAC =90°,∴∠B=45°,DD′⊥AC,DD″⊥BC,∴∠BDD′=45°,∴∠D′DD″=135°,∴∠D′+∠D″=45°,∵ED′=ED,DF=D″F,∴∠D′=∠D′DE,∠D″=∠D″DF,∴∠D″DF+∠D′DE=45°,∴∠FDE=90°.第11题解图12.4【解析】如解图,作点D关于直线AC的对称点D′,点D关于直线AB的对称点D″,连接D′D″交AC于点E,交AB于点F,此时△DEF的周长最小,最小值为D′D″的长,连接AD′、AD″,在Rt△ABC中,∵∠C=90°,∠B=60°,∴∠BAC=30°,∵∠DAB=∠D″AB,∠DAC=∠D′AC,∴∠D′AD″=2∠BAC=60°,∵AD′=AD,AD″=AD,∴AD′=AD″,∴△AD′D″是等边三角形,∴D′D″=AD′=AD=4,∴△DEF的周长的最小值为4.第12题解图13.10【解析】如解图,过点P作PF⊥b交a于点E,交b于点F,在PF上截取PC=4,连接QC交b于点B,过点B作BA⊥a于点A,此时PA+AB+BQ最短.过点Q作QD⊥PF 于点D.在Rt△PQD中,∵∠D=90°,PQ=241,PD=10,∴DQ=PQ2-PD2=8,CD =PD-PC=6,∵AB=PC=4,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,∴PA +BQ=CB+BQ=QC=DQ2+CD2=10.第13题解图14.10【解析】如解图,作DM∥AC,使得DM=EF=1,连接BM交AC于点F,连接BD,∵DM∥AC,∴∠BDM=90°,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,AB=3,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=3,在Rt△BDM中,BM=12+32=10,∴DE+BF的最小值为10.第14题解图15.14+237【解析】如解图,将点B沿BC向右平移2个单位长度得到点B′,作点B′关于AD的对称点B″,连接CB″,交AD于点F,在AD上截取EF=2,连接B′F,四边形EBB′F为平行四边形,则BE=B′F,B″F=B′F,此时四边形BEFC的周长为BE+EF+FC+BC=B″F+EF+FC+BC=B″C+EF+BC,当点C、F、B″三点共线时,四边形BEFC的周长最小.∵AB=4,BB′=2,∠ABC=60°,∴B′B″经过点A.∴AB′=2 3.∴B′B″=4 3.∵BC=12,∴B ′C =10.∴B ″C =B ′B ″2+B ′C 2=237.∴B ″C +EF +BC =14+237.∴四边形BEFC 周长的最小值为14+237.第15题解图16.解:如解图,过点A 作直线MN ∥直线y =x ,将点A (3,1)沿MN 向下平移2个单位后得到A ′(2,0),作点B (1,0)关于直线y =x 的对称点B ′(0,1),连接A ′B ′交直线y =x 于点Q .∵AA ′=PQ =2,AA ′∥PQ ,∴四边形APQA ′是平行四边形,∴AP =A ′Q .∴AP +PQ +QB =A ′Q +PQ +B ′Q ,且PQ =2,∴当A ′Q +B ′Q 值最小时,AP +PQ +QB 值最小,根据两点之间线段最短,即A ′,Q ,B ′三点共线时A ′Q +B ′Q 值最小.∵B ′(0,1),A ′(2,0),∴直线A ′B ′的解析式y =-12x +1,=x=-12x +1,=23=23,∴点Q 的坐标为(23,23).第16题解图。
2022年中考数学二轮专题复习-最值问题
![2022年中考数学二轮专题复习-最值问题](https://img.taocdn.com/s3/m/c626abc132d4b14e852458fb770bf78a65293a90.png)
1 最值问题知识点一:最值问题最值问题分代数最值和几何最值两类,其中代数最值主要考查方程与不等式及函数的性质,而几何最值涉及到图形的性质、图形的变化、图形与坐标多个维度. 解决几何最值问题的通常思路: 1. 两点之间线段最短2. 直线外一点到直线上,垂线段最短3. 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 解决代数最值问题的通常思路: 1. 利用非负数的性质 2. 利用不等式的性质 3. 利用函数的图像与性质【例1-1】 如图,在直线MN 的异侧有A 、B 两点,按要求画图取点,并写出画图的依据. (1)在直线MN 上取一点C ,使线段AC 最短.依据是 .(2)在直线MN 上取一点D ,使线段AD +BD 最短.依据是 .【例1-2】如图,当四边形P ABN 的周长最小时,a = .N (a +2,0)P (a ,0)B (4,-1)A (1,-3)Oyx【例1-3】 如图,已知AB =10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .A BCDPAB OPxy【例1-4】 在平面直角坐标系中,抛物线()k x k x y --+=12与直线1+=kx y 交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当1=k 时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点C 为抛物线上的一个动点,且在直线AB 下方,过点C 作x 轴的垂线,交于直线AB 于点D ,求CD 线段的最大值及此时点C 的坐标;(3)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标.举一反三1. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .21B .1C .2D .2 2. 在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为 .F DCBA xy OE3. 如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时,点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是________.若将△ABP 中边PA 的长度改为22,另两边长度不变,则点P 到原点的最大距离变为_________.4. 如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M (0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标.知识点二:隐形圆借助“隐圆”解决几何最值问题的理论依据有两个:①定圆的所有弦中,直径最长;②圆外一点与圆心的连线上,该点和此直线与圆的近交点距离最短、远交点距离最长.这类最值问题,首先要判断动点是否在圆上运动,通常有两种判断方法:①无论动点在何处,动点到某一定点的距离不变,则可判断出该动点在以定点为圆心的圆上运动;②运动轨迹是圆,才能借助“隐圆”求最值.【例2-1】如图,在矩形ABCD中,AB=4,AD=6,点E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.210-2 B.6 C.213-2 D.4【例2-2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=D F,连接CF交BD于点G,连接BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是.【例2-3】 如图,∠XOY = 45°,等边三角形ABC 的两个顶点A 、B 分别在OX 、OY 上移动,AB = 2,那么OC 的最大值为 .【例2-4】如图,△ABC 中,∠ABC =90°, AB =6,BC =8,O 为AC 的中点,过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于E 、F ,则EF 的最小值为 .举一反三1. 如图,在△ABC 中,∠ACB =90°,AC =8,BC =6,P 是直线AB 上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B ′CP ,连接B ′A ,B ′A 长度的最小值是m ,B ′A 长度的最大值是n ,则m +n 的值等于 .2. 如图,Rt △ABC 中,A B ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )A .23 B .2 C .13138 D .131312 3. 已知A (2,0),B (4,0)是x 轴上的两点,点C 是y 轴上的动点,当∠ACB 最大时,则点C 的坐标为_____.4. 如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6,点D 在AB 边上,点E 是BC 边上一点 (不与点B 、C 重合),且DA =DE ,则AD 的取值范围是 。
2024年九年级中考数学专题复习之最值问题课件
![2024年九年级中考数学专题复习之最值问题课件](https://img.taocdn.com/s3/m/6b54f18027fff705cc1755270722192e45365896.png)
10.如图,边长为 2 的等边三角形 ABC 的两个顶点 A,B 分别在两条射线 OM,
ON 上滑动.若 OM⊥ON,则 OC 的最大值是________.
1+ 3
解析:如图,取 AB 的中点 D,连 OD,DC, ∴OC≤OD+DC. 当 O,D,C 共线时,OC 有最大值,最大值是 OD+CD. ∵△ABC 为等边三角形,D 为 AB 的中点,BC=AB=2, ∴BD=1,∴CD= BC2-BD2= 3. ∵△AOB 为直角三角形,D 为斜边 AB 的中点, ∴OD=12AB=1, ∴OD+CD=1+ 3,即 OC 的最大值为 1+ 3.
6.如图,这是一个棱长为 1 的正方体纸盒.若一只蚂蚁要沿着正方体纸盒的表
面,从顶点 A 爬到顶点 B 去觅食,则需要爬行的最短路程是( ) C
A. 3 C. 5
B.2 D.3
7.(逆等线问题)如图,在 Rt△ACB 中,∠ACB=90°,AB=10,E,F 是线段 AB 上的动点,且满足 AE=BF,连接 CE 和 CF,则 CE+CF 的最小值为__1_0_____.
14.如图,在△ABC 中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为 D,P
∴BC=AB=AC=6,
∠ABD=∠CBD,
∴△ABC 是等边三角形,
∴∠ABC=∠ACB=60°,
图1
∴∠CBD=30°.
∵PE⊥BC,∴PE=12PB,
∴MP+12PB=PM+PE, ∴当点 M,P,E 共线且 ME⊥BC 时,PM+PE 有最小值, 为 ME,如图 2 所示. ∵AM=2,AC=6,∴MC=4.
由垂线段最短可得,当 CP⊥AB 时,线段 DE 的值最小, 此时,AP=BP, ∴CP=21AB=3 2, ∴DE 的最小值为 3 2.
2024成都中考数学二轮复习专题:几何最值之将军饮马问题
![2024成都中考数学二轮复习专题:几何最值之将军饮马问题](https://img.taocdn.com/s3/m/f4f2218177a20029bd64783e0912a21614797f97.png)
“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现.【抽象模型】如图,在直线上找一点P使得PA+PB最小?【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)题型一:两定一动模型模型作法结论当两定点A、B在直线l异侧时,在直线l上找一点P,使PA+PB最小.连接AB交直线l于点P,点P即为所求作的点.PA+PB的最小值为AB当两定点A、B在直线l同侧时,在直线l上找一点P,使得PA+PB最小.作点B关于直线l的对称点B',连接AB'交直线l于点P,点P即为所求作的点.PA+PB的最小值为AB'当两定点A、B在直线l同侧时,在直线l上找一点P,使得PA PB-最大.连接AB并延长交直线l于点P,点P即为所求作的点.PA PB-的最大值为AB当两定点A 、B 在直线l 异侧时,在直线l 上找一点P,使得PA PB -最大.作点B 关于直线I 的对称点B ',连接AB '并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB '当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最小.连接AB ,作AB 的垂直平分线交直线l 于点P ,点P 即为所求作的点.PA PB -的最小值为0【例1】如图,点C 的坐标为(3,y ),当△ABC 的周长最短时,求y 的值.【解析】解:解:(1)作A 关于x =3的对称点A′,连接A′B 交直线x =3与点C .∵点A 与点A′关于x =3对称,∴AC=A′C .∴AC+BC=A′C+BC .当点B 、C 、A′在同一条直线上时,A′C+BC 有最小值,即△ABC 的周长有最小值.∵点A 与点A′关于x =3对称,∴点A′的坐标为(6,3).设直线BA′的解析式y =kx +b ,将点B 和点A′的坐标代入得:k =34,b =−32.∴y =34x -32.将x =3代入函数的解析式,∴y 的值为34【例2】如图,正方形ABCD 中,AB =7,M 是DC 上的一点,且DM =3,N 是AC 上的一动点,求|DN -MN |的最小值与最大值.【解析】解:当ND=NM 时,即N 点DM 的垂直平分线与AC 的交点,|DN-MN|=0,因为|DN-MN|≤DM ,当点N 运动到C 点时取等号,此时|DN-MN|=DM=3,所以|DN-MN|的最小值为0,最大值为3【例3】如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)【答案】(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,5-或12,)5(4-.【解析】解:1()根据点0(1)A ,,(50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,∵抛物线经过点4(0)C ,,则54a =,解得:45a =,抛物线的表达式为:()()2224416465345555245y x x x x x --+--+===,函数的对称轴为:3x =;2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,设BC 的解析式为:y kx b +=,将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k bb =+⎧⎨=⎩解得:4,54k b ⎧=-⎪⎨⎪=⎩直线BC 的表达式为:4y x 45=-+,当3x =时,85y =,故点835P (,);3()存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形,则512E E OEBF S OB y y ⨯⨯四边形===,点E 在第四象限,故:则125E y =-,将该坐标代入二次函数表达式得:()24126555y x x -+==-,解得:2x =或4,故点E 的坐标为122,5(-或12,5(4-).题型二:一定两动模型模型作法结论点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得△PCD 周长最小.分别作点P 关于OA、OB 的对称点P ′、P ″,连接P ′P ″,交OA 、OB 于点C 、D ,点C 、D 即为所求.△PCD 周长的最小值为P ′P ″点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得PD +CD 最小.作点P 关于OB 的对称点P ′,过P ′作P ′C ⊥OA 交OB 于D ,点C 、点D 即为所求.PD +CD 的最小值为P ′C【例4】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【分析】△PMN 周长即PM +PN +MN 的最小值,此处M 、N 均为折点,分别作点P 关于OB 、OA 对称点P ’、P ’’,化PM +PN +MN 为P ’N +MN +P ’’M .当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【例5】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.【例6】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E 作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【答案】(1)结论:CF=2DG,理由见解析;(2)△PCD的周长的最小值为26.【详解】(1)结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴DGCF=DEDC=12,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=52,552,DH=DE DGEG⋅5∴EH=2DH=25∴HM=DH EHDE⋅=2,∴=1,在Rt△DCK中,,∴△PCD的周长的最小值为.【例7】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【答案】(1)抛物线解析式为y=﹣16x2+56x+4;D点坐标为(3,5);(2)M点的坐标为(0,169)或(0,119);(3)AM+AN.【详解】(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得91504a a cc++=⎧⎨=⎩,解得164ac⎧=-⎪⎨⎪=⎩,∴抛物线解析式为y=﹣16x2+56x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣16×9+56×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,=,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当CM CNCO CB=时,△CMN∽△COB,则∠CMN=∠COB=90°,即4145m m-+=,解得m=169,此时M点坐标为(0,169);当CM CNCB CO=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即4154m m-+=,解得m=119,此时M点坐标为(0,119);综上所述,M点的坐标为(0,169)或(0,119);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN.题型三:两定两动模型模型作法结论点P 、Q 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得四边形PQDC 周长最小.分别作点P 、Q 关于OA 、OB 的对称点P ′、Q ′,连接P ′Q ′,分别交OA 、OB 于点C 、D ,点C 、D 即为所求.PC +CD +DQ 的最小值为P ′Q ′,所以四边形PQDC 周长的最小值为PQ +P ′Q ′【例8】如图,在矩形ABCD 中,4AB =,7BC =,E 为CD 的中点,若P Q 、为BC 边上的两个动点,且2PQ =,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.【答案】103【详解】解:如图,在AD 上截取线段AF=DE=2,作F 点关于BC 的对称点G ,连接EG 与BC 交于一点即为Q 点,过A 点作FQ 的平行线交BC 于一点,即为P 点,过G 点作BC 的平行线交DC 的延长线于H 点.∵E 为CD 的中点,∴CE=2∴GH=DF=5,EH=2+4=6,∠H=90°,∵BC//GH∴QCE~GHE,∴CQ EC GH EH=,∴2 56 CQ=,∴CQ=5 3,∴BP=CB-PQ-CQ=7-2-510 33 =.故答案为10 3.【例9】如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=304,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=______.【答案】16.【详解】作PE⊥l1于E交l2于F,在PF上截取PC=8,连接QC交l2于B,作BA⊥l1于A,此时PA+AB+BQ最短.作QD⊥PF于D.在Rt△PQD中,∵∠D=90°,PQ=,PD=18,∴DQ==,∵AB=PC=8,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,CD=10,∴PA+BQ=CB+BQ=QC===16.故答案为16.题型四:两定点一定长正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2.当四边形BDEF的周长最小时,求点E的坐标.【解析】如图,将点D向右平移2个单位得到D'(2,2),作D'关于x轴的对称点D"(2,-2),连接BD"交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小.理由:∵四边形BDEF的周长为BD+DE+EF+BF,BD与EF是定值.∴BF+DE最小时,四边形BDEF周长最小,∵BF +ED =BF +FD '=BF +FD "=BD "设直线BD "的解析式为y =kx +b ,把B (6,4),D "(2,-2)代入,得6k +b =4,2k +b =-2,解得k =32,b =-5,∴直线BD "的解析式为y =32x -5.令y =0,得x =103,∴点F 坐标为(103,0).∴点E 坐标为(43,0).【例11】村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A 与B 之间的距离最短?ABl 2l 1【解答】设l 1和l 2为河岸,作BD ⊥l 2,取BB '等于河宽,连接AB '交l 1于C 1,作C 1C 2⊥l 2于C 2,则A →C 1→C 2→B 为最短路线,即A 与B 之间的距离最短.提分作业1.如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为()A .3B .4C .33D .3【解析】此处E点为折点,可作点C关于AD的对称,对称点C’在AB上且在AB中点,化折线段CE+EF为C’E+EF,当C’、E、F共线时得最小值,C’F为CB的一半,故选C.2.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是()A3B.2C.3D.4【解析】此处M点为折点,作点N关于BD的对称点,恰好在AB上,化折线CM+MN为CM+MN’.因为M、N皆为动点,所以过点C作AB的垂线,可得最小值,选C.3.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9D.92【答案】A【详解】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE2293 =310.故选A.4.如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE 的最小值_____.【答案】10【详解】解:如图:连接DE交AC于点P,此时PD=PB,PB+PE=PD+PE=DE为其最小值,∵四边形ABCD为正方形,且BE=2,AB=8,∴∠DAB=90°,AD=AB=8,AE=AB-BE=6,在Rt△ADE中,根据勾股定理,得DE22AD AE+2286+=10.∴PB+PE的最小值为10.故答案为10.5.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB 上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.【答案】(32,32).【详解】解:作N 关于OA 的对称点N ′,连接N ′M 交OA 于P ,则此时,PM +PN 最小,∵OA 垂直平分NN ′,∴ON =ON ′,∠N ′ON =2∠AON =60°,∴△NON ′是等边三角形,∵点M 是ON 的中点,∴N ′M ⊥ON ,∵点N (3,0),∴ON =3,∵点M 是ON 的中点,∴OM =1.5,∴PM =2,∴P (32,2).故答案为:(32,2).6.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF 的度数为多少?【答案】∠ECF =30º【解析】过E 作EM ∥BC ,交AD 于N ,如图所示:∵AC =4,AE =2,∴EC =2=AE ,∴AM =BM =2,∴AM =AE ,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD ⊥BC ,∵EM ∥BC ,∴AD ⊥EM ,∵AM =AE ,∴E 和M 关于AD 对称,连接CM 交AD 于F ,连接EF ,则此时EF +CF 的值最小,∵△ABC 是等边三角形,∴∠ACB =60º,AC =BC ,∵AM =BM ,∴∠ECF =∠ACB =30º.7.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点.(1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.【解析】(1)如图,作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小.∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点,∴D (0,2),C (3,4),D '(0,-2).设直线CD '为y =kx +b ,把C (3,4),D '(0,-2)代入,得3k +b =4,b =-2,解得k =2,b =-2,∴直线CD '为y =2x -2.令y =0,得x =1,∴点E 的坐标为(1,0).∴OE =1,AE =2.利用勾股定理得CD =13,DE =5,CE =25,∴△CDE 周长的最小值为13+35.(2)如图,将点D 向右平移1个单位得到D '(1,2),作D '关于x 轴的对称点D ″(1,-2),连接CD ″交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,且四边形CDEF 周长最小.理由:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形BDEF 周长最小,∴DE +CF =D 'F +CF =FD ″+CF =CD ″,设直线CD ″的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4,k +b =-2,解得k =3,b =-5.∴直线CD ″的解析式为y =3x -5,令y =0,得x =53,∴点F 坐标为(53,0),∴点E 坐标为(23,0).8.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值1;(3)12(4,5),(8,45)P P --【详解】(1)∵OB=OC ,∴点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,故-3a=3,解得:a=-1,故抛物线的表达式为:y=-x 2+2x+3…①;对称轴为:直线1x =(2)ACDE 的周长=AC+DE+CD+AE ,其中、DE=1是常数,故CD+AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD=C′D ,取点A′(-1,1),则A′D=AE ,故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE 的周长的最小值=AC+DE+CD+AE=;(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE ,则BE :AE ,=3:5或5:3,则AE=52或32,即:点E 的坐标为(32,0)或(12,0),将点E 、C 的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,故直线CP 的表达式为:y=-2x+3或y=-6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).9.如图,在平面直角坐标系中,矩形OABC 的边BC 交x 轴于点D ,AD x ⊥轴,反比例函数(0)k y x x=>的图象经过点A ,点D 的坐标为(3,0),AB BD =.(1)求反比例函数的解析式;(2)点P 为y 轴上一动点,当PA PB +的值最小时,求出点P 的坐标.【答案】(1)9y x =;(2)12(0,)5【详解】解:(1)∵OABC 是矩形,∴90B OAB ︒∠=∠=,∵AB DB =,∴45BAD ADB ︒∠=∠=,∴45OAD ∠=,又∵AD x ⊥轴,∴45OAD DOA ︒∠=∠=,∴OD AD =,∵(3,0)D ∴3OD AD ==,即(3,3)A 把点(3,3)A 代入的k y x=得,9k =∴反比例函数的解析式为:9y x=.答:反比例函数的解析式为:9y x =.(2)过点B 作BE AD ⊥垂足为E ,∵90B =∠,AB BD =,BE AD⊥∴1322AE ED AD ===,∴39322OD BE +=+=,∴93(,)22B ,则点B 关于y 轴的对称点193(,22B -,直线1AB 与y 轴的交点就是所求点P ,此时PA PB +最小,设直线AB 1的关系式为y kx b =+,将(3,3)A ,193(,)22B -,代入得,339322k b k +=⎧⎪⎨-+=⎪⎩解得:15k =,125b =,∴直线1AB 的关系式为11255y x =+,当0x =时,125y =,∴点12 (0,)5 P答:点P的坐标为12 (0,)5.10.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【详解】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).。
2024专题2.1轴对称---将军饮马模型-中考数学二轮复习必会几何模型剖析(全国通用)
![2024专题2.1轴对称---将军饮马模型-中考数学二轮复习必会几何模型剖析(全国通用)](https://img.taocdn.com/s3/m/ec7b7647876fb84ae45c3b3567ec102de2bddf0e.png)
考点3-3
D
【例3-2】如图,菱形ABCD中,AB=4,∠BAD=60º,M,N
2 5
是AC上两动点,且MN=2,则BM+BN的最小值为_____.
M
A
C
M
N
N
B
B´
课堂小结
将军饮马
知识梳理
将军饮马:这个将军饮的不是马,是数学!
解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称.
解题策略:对称、翻折→化同为异;化异为同;化折为直.
的最小值为_____.
D
A
H
B
E
G´
G
F C
M
强化训练
将军饮马
提升能力
5.如图,在边长为1的菱形ABCD中,∠ABC=60º,将△ABD沿射线BD的方向平移
得到△A´B´D´,分别连接A´C,A´D,B´C,则A´C+B´C的最小值为_____.
3
A´´
造桥选址---一定两动(定长)
A´
A
B
B´
D´
B'
将军沿A-P-B走路程最短.
P1A+P1B=_______
P1A+P1B´ >AB´
图形特征: 两定一动;
适用模型:将军饮马;
N 基本策略: 同侧化异侧、折线化直线;
基本方法: 一个动点一条河,一次对称跑不脱;
基本原理: 两点之间线段最短.
两点之间线段最短
模型分析
考点3-1
派生知识
核心知识
C
A
10
M(8/3,0)N(4,1)
A.如果动点G走过的路程最短为____,则点M、N的坐标为______________.
专题1.8 最值问题-将军饮马模型-2021年中考数学第二轮总复习课件(全国通用)
![专题1.8 最值问题-将军饮马模型-2021年中考数学第二轮总复习课件(全国通用)](https://img.taocdn.com/s3/m/2c8a4adeeff9aef8951e0690.png)
A.5 2 B.6 2 C.2 10 +2 2 D.8 2
A' y A
两个定点----两点之间线段最短
D
B
D
O CC
x
B'
当堂训练
3.如图,抛物线y=0.5x²-4x+4与y轴交于点A,B是OA的中点.一个
动点G从点B出发,先经过x轴上的点M,再经过抛物线对称轴上的
典型例题
【例2】如图,一位将军骑马从驻地A出发,先牵马去河边l喝水, 再回到驻地B.问:这位将军怎样走路程最短?
A B
l P
B' 如图,点A-P-B即为所求的最短路程. 两个定点----两点之间线段最短
模型解读---将军饮马模型
两线段 和最值
图形示例
模型分析
A
若点A,B位于直线l两侧,在直线l上求作点P,使
A,B的距离之和最小,求P点坐标。
y
B
P(1 ,0)
A
3
OP
x
A´
如图,点P即为所求的点.
两个定点----两点之间线段最短
当堂训练
2.如图,在直角坐标系中,点A、B的坐标分别是(1,4)和(3,0),点C
是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC
的周长最小时,点C的坐标是( D )
同侧
l 得PA+PB最小,则连接AB与直线l交于点P即可. P B 理由:两点之间线段最短
异侧
A
若点A,B位于直线l同侧,在直线l上求作点P,使
B 得PA+PB最小,则作点B关于直线l的对称点B´,
P l 连接AB´与直线l交于点P即可.
2021年初中数学二轮复习 专题1.6 最值问题-隐圆模型之瓜豆问题 课件
![2021年初中数学二轮复习 专题1.6 最值问题-隐圆模型之瓜豆问题 课件](https://img.taocdn.com/s3/m/09df6a20c8d376eeafaa31c2.png)
取AP中点Q,当点P在BC上运动时,Q点轨迹是?
【分析】当P点轨迹是直线时,Q点轨 迹也是一条直线.
A
可以这样理解:分别过A、Q向 BC作垂线,垂足分别为M、N,在运动
Q
过程中,因为AP=2AQ,所以QN始终为
AM的一半,即Q点到BC的距离是定值,
故Q点轨迹是一条直线.
BP N M
C
模型解读---轨迹之线段篇
【例1】如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点
为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是( B )
A.0
B.1
C.2
D.3
Q
定点 定长
N NM=0.5 OQ
辅 助 圆
P
M
O N
当堂训练---轨迹之圆篇
1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上
A
O
可得半径MQ=PO.即可确定圆M位置,任意时刻均
有△APO≌△AQM.
【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋 转角度与缩放比例均等于AP与AQ的位置和数量关系.
模型总结---轨迹之圆篇
【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边
作等腰直角△APQ.
【考虑】当点P在圆O上运动时,如何作出Q点轨迹?Q
【分析】Q点满足(1)∠PAQ=45º; (2)AP:AQ= 2:1,故Q点轨迹是个圆.连接 AO,构造∠OAM=45º且AO:AM= 2:1.M点即
P M
为Q点轨迹圆圆心,此时任意时刻均有
△AOP∽△AMQ.即可确定点Q的轨迹圆. A
O
典型例题---轨迹之圆篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学第二轮复习专题最值问题一、两条线段和的最小值。
基本图形解析:(一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:练习题:1.如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.则PB +PE 的最小值是 . 2.如图,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,则PA +PC 的最小值是 .mm ABmmABnnnn mnnm3.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .4.如图,在四边形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为_______.5.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则PA +PB 的最小值为 . 第5题6.已知A (-2,3),B (3,1),P 点在x 轴上,若PA +PB 长度最小,则最小值为 . 若PA —PB 长度最大,则最大值为 .(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短,则最短周长=_____________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.练习题:1.如图,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,则△PQR 周长的最小值为______.2.如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0),N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m =______,n = ______(不必写解答过程);若不存在,请说明理由.第1题 第2题 第3题 第4题 EDmn ABA'B'm nABPQm n AA"A'm n A中考赏析:1.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=PA +PB ,图(2)是方案二的示意图(点A 关于直线X 的对称点是A',连接BA'交直线X 于点P ),P 到A 、B 的距离之和S 2=PA +PB . (1)求S 1、S 2,并比较它们的大小; (2)请你说明S 2=PA +PB 的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.2.如图,抛物线y =x 2-x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.(二)、一个动点,一个定点:(一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:mnPm nB2、两点在直线同侧:(二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:(三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解)(1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)点A 、B 在直线m 同侧:练习题2、 如图1,在锐角三角形ABC 中,AB=4,∠BAC=45°,∠BAC的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 .P mnA Bm nA P'PmO B B'm OPmOABmO A C Q PQ A B E Q PBQ3、如图,在锐角三角形ABC中,AB=,∠BAC=45,∠BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值为.4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.7、如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.13、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.14、如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).15、如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.16、如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x 轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.3、如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;4.如图,抛物线y=x2-x+3和y轴的交点为A,M为OA的中点,若有一动点P,自M点处出发,沿直线运动到x轴上的某点(设为点E),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直线运动到点A,求使点P运动的总路程最短的点E,点F的坐标,并求出这个最短路程的长.5.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OAOC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.6.如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)若C (a ,0),D (a +3,0)是x 轴上的两个动点,则当a 为何值时,四边形ABDC 的周长最短.7、如图11,在平面直角坐标系中,矩形的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB=4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF=2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
(2)点A 、B 在直线m 异侧:m B A B AmB'PP'解析:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’.练习题1.直线2x-y-4=0上有一点P,它与两定点A(4,-1)、B(3,4)的距离之差最大,则P点的坐标是2.已知A、B两个村庄的坐标分别为(2,2),(7,4),一辆汽车(看成点P)在x轴上行驶.试确定下列情况下汽车(点P)的位置:(1)求直线AB的解析式,且确定汽车行驶到什么点时到A、B两村距离之差最大?(2)汽车行驶到什么点时,到A、B两村距离相等?3. 如图,抛物线y=-x2-x+2的顶点为A,与y轴交于点B.(1)求点A、点B的坐标;(2)若点P是x轴上任意一点,求证:PA-PB≤AB;(3)当PA-PB最大时,求点P的坐标.4. 如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.5、在直角坐标系中,点A、B的坐标分别为(-4,-1)和(-2,-5);点P是y轴上的一个动点,⑴点P在何处时,PA+PB的和为最小?并求最小值。