超几何分布、二项分布、正态分布
第9节 二项分布、超几何分布与正态分布
A
[解析]由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)-P(2<X≤2.5)=0.14.
5. (2022年新高考全国Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= .
0.14
考点一 二项分布
【例 1】某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为,用ξ表示5位乘客在第20层下电梯的人数,则P(ξ=4)= .
D
(2)科研人员在另一个实验中发现,疫苗可多次连续注射,白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响,相互独立,试问:如果将实验一中未被感染新冠病毒的白兔的频率当作疫苗的有效率,那么一只白兔注射两次疫苗能否保证有效率达到96%?若能,请说明理由;若不能,请问每支疫苗的有效率至少要达到多少才能满足以上要求.
[解析]每一位乘客是在第20层下电梯为一次试验,且每一位乘客在第20层下电梯的概率都是,因此这是5次独立重复试验,故ξ~B(5,) ,所以P(ξ=4)=() 4×=.
二项分布满足的条件1.每次试验中,同一事件发生的概率是相同的;2.各次试验中的事件是相互独立的;3.每次试验只有两种结果,即事件要么发生,要么不发生;4.随机变量是这n次独立重复试验中事件发生的次数.解此类题时常用互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.
一批产品的一等品率为0.9,从这批产品中每次随机抽取一件,有放回地抽取100次,Χ表示抽到的一等品件数,则D(X)= .
二项分布、超几何分布与正态分布
(1)两点分布是二项分布当n=1时的特殊情形.( √ )
(2)若X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项
分布.( √ )
(3)从装有3个红球、3个白球的盒中有放回地任取一个球,连取3次,则取
到红球的个数X服从超几何分布.( × )
品质型民宿
6 16 4 10 11 10 9 12
民宿点 普通型民宿 品质型民宿
甲乙丙丁戊己庚辛 16 8 12 14 13 18 9 20 6 16 4 10 11 10 9 12
(1)从这8家中随机抽取3家,在抽取的这3家的普通型民宿的房间均不低于 10间的条件下,求这3家的品质型民宿的房间均不低于10间的概率;
返回
第二部分
探究核心题型
题型一 二项分布
例1 (2023·广东大湾区联考)某工厂车间有6台相同型号的机器,各台机
器相互独立工作,工作时发生故障的概率都是
1 4
,且一台机器的故障能由
一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,
方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲、乙
知识梳理
(3)两点分布与二项分布的均值、方差 ①若随机变量X服从两点分布,则E(X)= p ,D(X)= p(1-p) . ②若X~B(n,p),则E(X)= np ,D(X)= np(1-p) .
知识梳理
2.超几何分布 一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机 抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
(4)当μ取定值时,正态曲线的形状由σ确定,σ越小,曲线越“矮胖”.
10.6二项分布超几何分布与正态分布课件(42张)
1 x=μ
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移, 如图(1)所示.
⑥当μ取定值时,正态曲线的形状由σ确定,σ较小时,峰值高,曲线 “瘦高”,表示随机变量X的分布比较集中;σ较大时,峰值低,曲线 “矮胖”,表示随机变量X的分布比较分散,如图(2)所示.
X~N(μ,σ2)
μ
σ2
× √
√ √
2.(教材改编)鸡接种一种疫苗后,有90%不会感染某种病毒,如果
有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率约为( )
A.
B.
C.0.5
D.
答案:A
0.158 5
答案:B
5.(易错)已知随机变量X服从正态分布X~N(3,1),且P(X>2c-1) =P(X<c+3),则c=________.
第六节 二项分布、超几何分布与正态分布
必备知识·夯实双基
关键能力·题型突破
【课标标准】
1.了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的 实际问题.
2.了解超几何分布及其均值,并能解决简单的实际问题. 3.了解服从正态分布的随机变量,了解正态分布的均值、方差及其 含义.
必备知识·夯实双基
望.
题后师说 (1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个 体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对 象的个数;③从中抽取若干个个体,考查某类个体数X的概率分布. (2)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型, 其实质是古典概型.
巩固训练2
共享电动车是一种新的交通工具,通过扫码开锁,实现循环共 享.某校园旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色 两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率 为P=,若从这些共享电动车中任意抽取3辆.80正常Fra bibliotek超重 肥胖
10.8 二项分布、超几何分布与正态分布
§10.8 二项分布、超几何分布与正态分布【一】独学:主干知识 知识梳理一、二项分布1.伯努利试验 只包含 试验叫作伯努利试验;将一个伯努利试验独立地重复进行n 次所组成的随机试验称为 。
2.二项分布若随机变量X 的分布列为 其中0<p <1,p +q =1,k =0,1,2,…,n ,则称X 服从参数为n ,p 的 ,记作X ~B (n ,p ).3.两点分布与二项分布的均值、方差 (1)若随机变量X 服从两点分布,则E (X )= ,D (X )=(2)若X ~B (n ,p ),则E (X )= D (X )=二、超几何分布1.定义:一般地,若一个随机变量X 的分布列为P (X =r )= ,其中r =0,1,2,3,…,l ,l =min{n ,M },则称X 服从 .记为X ~H (n ,M ,N ),并将P (X =r )=C r M C n -r N -M C n N 记为H (r ;n ,M ,N ). 2.E (X )=三、正态分布1.正态密度曲线函数 x ∈R ,其中实数μ(μ∈R )和σ(σ>0)为参数,该函数的图象称为 .2.正态密度曲线的特征:(1)当x <μ时,曲线 ;当x >μ时,曲线 .当曲线向左右两边无限延伸时,以 为渐近线.(2)曲线关于直线 对称.(3)σ越大,曲线越 ;σ越小,曲线越 .(4)在曲线 和 范围内的区域面积为1.3.正态分布若X 是一个随机变量,则对任给区间(a ,b ],P (a <X ≤b )是正态密度曲线下方和x 轴上(a ,b ]上方所围成的图形的面积,我们就称随机变量X 服从参数为μ和σ2的正态分布,简记为X ~N (μ,σ2).4.正态总体在三个特殊区间内取值的概率值考试要求学习重难点 1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态分布曲线了解正态分布的概念,并进行简单应用. 重点:二项分布、超几何分布、正态分布 难点:理解二项分布、超几何分布的概念,能解决一些简单的实际问题.(1)落在区间(μ-σ,μ+σ)内的概率约为(2)落在区间(μ-2σ,μ+2σ)内的概率约为(3)落在区间(μ-3σ,μ+3σ)内的概率约为 .5.正态分布的均值与方差若X ~N (μ,σ2),则E (X )=μ,D (X )=σ2.常用结论1.两点分布是二项分布当n =1时的特殊情形.2.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.3.在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为n 重伯努利试验,进而判定是否服从二项分布.4.超几何分布有时也记为 X ~H (n ,M ,N ),其均值E (X )=nM N ,D (X )=nM N ⎝⎛⎭⎫1-M N ⎝ ⎛⎭⎪⎫1-n -1N -1. 教材改编题1.已知X ~B (20,p ),且E (X )=6,则D (X )等于( )A .1.8B .6C .2.1D .4.22.在含有3件次品的10件产品中,任取4件,X 表示取到的次品的个数,则P (X =2)=________.3.某班有50名同学,一次数学考试的成绩X 服从正态分布N (110,102).已知P (100<X ≤110)=0.34,估计该班学生数学成绩在120分以上的有________人.【二】互学:核心题型题型一 二项分布例1出租车司机从饭店到火车站途中经过六个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数X 的均值与方差.跟踪训练1 (2022·黄冈模拟)某公司为了解会员对售后服务(包括退货、换货、维修等)的满意度,从下半年的会员中随机调查了20个会员,得到会员对售后服务满意度评分的雷达图如图所示.规定评分不低于80分为满意,否则为不满意.(1)求这20个会员对售后服务满意的频率;(2)以(1)中的频率作为所有会员对该公司售后服务满意的概率,假设每个会员的评价结果相互独立,现从下半年的所有会员中随机选取3个会员.①求只有1个会员对售后服务不满意的概率;②记这3个会员中对售后服务满意的会员的个数为X ,求X 的均值与标准差(标准差的结果精确到0.1).题型二 超几何分布例2 为庆祝建军节的到来,某校举行“强国强军”知识竞赛.该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中产生,该班委设计了一个选拔方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23.A ,B 两名学生对每个问题回答正确与否都是相互独立的.(1)分别求A ,B 两名学生恰好答对2个问题的概率;(2)设A 答对的题数为X ,B 答对的题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.跟踪训练2 阳澄湖大闸蟹又名金爪蟹,产于江苏苏州,蟹身青壳白肚,体大膘肥,肉质膏腻,营养丰富,深受消费者喜爱.某水产品超市购进一批重量为100千克的阳澄湖大闸蟹,随机抽取了50只统计其重量,得到的结果如下表所示:(1))(2)某顾客从抽取的10只特大蟹中随机购买了4只,记重量在区间[260,280]上的大闸蟹数量为X ,求X 的概率分布和均值.题型三 正态分布例3 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95,10.12,9.96,9.96,10.01,9.92,9.98,10.04,10.26,9.91,10.13,10.02,9.22,10.04,10.05,9.95经计算得16119.9716i i x x ===∑,16211()16i i s x x ==-∑162211=(16)0.21216i i x x =-=∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值μ,用样本标准差s 作为σ的估计值σ,利用估计值判断是否需对当天的生产过程进行检查?剔除(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则0.9974=,160.99740.9592≈0.0080.09≈.跟踪训练3 (1)(2022·苏锡常镇四市调研)若随机变量X ~B (3,p ),Y ~N (2,σ2),若P (X ≥1)=0.657,P (0<Y <2)=p ,则P (Y >4)等于( )A .0.2B .0.3C .0.7D .0.8(2)为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩近似服从正态分布N (100,17.52).已知成绩在117.5分以上(不含117.5分)的学生有80人,则此次参加考试的学生成绩低于82.5分的概率为________;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有________人.(若X ~N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.68,P (μ-2σ≤X ≤μ+2σ)≈0.96)【三】悟学:总结提升1. 知识点总结:2. 方法小结:3. 存在的疑惑:【四】课后作业:1. 做本节对应的课后习题;2. 复习、订正今天上课内容;3. 预习下一节学案。
16种常见概率分布概率密度函数意义及其应用
16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。
常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。
以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。
1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。
2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。
3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。
4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。
5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。
6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。
二项分布_超几何分布_正态分布
高考总复习.理科.数学
8.3σ原则
在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机 变量X只取(μ-3σ,μ+3σ)之间的值,并简称之为3σ原则.
正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此 区间以外取值的概率只有0.0026,通常认为这种情况在一 次试验中几乎不可能发生,这是统计中常用的假设检验方 法的基本思想.
高考总复习.理科.数学
解析(1)法一:记“取出的 2 个小球上的数字互不相同” 为事件 A,
∵从袋中的 6 个小球中任取 2 个小球的方法共有 C26种, 其中取出的 2 个小球上的数字互不相同的方法有 C23C12C12,
∴P(A)=C23CC1226C12=3×3×2×5 2=45.
法二:记“取出的 2 个小球上的数字互不相同”的事件 记为 A,“取出的 2 个小球上的数字相同”的事件记为 B,则 事件 A 与事件 B 是对立事件.
令k=n得,在n次独立重复试验中,事件A全部发生的概率为P(ξ =n)=Cpn(1-p)0 =pn.
高考总复习.理科.数学
3.超几何分布 在含有 M 件次品的 N 件产品中,任取 n 件,其中恰有 X 件次品数,则事件 “X = k” 发生的概率为: P(X = k) = CkM·CCnNnN--kM,k=0,1,2,…,m,其中 m=min{M,n},且 n≤N, M≤N,n,M,N∈N*,称分布列
高考总复习.理科.数学
正态分布 N(μ,σ2))是由均值 μ 和标准差 σ 唯一决定的分 布.
标准正态总体 N(0,1)在正态总体的研究中占有重要的地 位.
7.正态总体在三个特殊区间内取值的概率值(简称三个 基本概率值)
P(μ-σ<X≤μ+σ)=0.6826; P(μ-2σ<X≤μ+2σ)=0.9544; P(μ-3σ<X≤μ+3σ)=0.9974.
第九章第7讲 二项分布、超几何分布及正态分布
第7讲 二项分布、超几何分布及正态分布[学生用书P207])1.事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )·P (B ). ②如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立. 2.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率,在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ). (3)二项分布的均值与方差若随机变量X 服从参数为n ,p 的二项分布,即X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).3.超几何分布(1)定义:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -M C nN,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,即如果随机变量X 的分布列具有下表形式则称随机变量X 服从超几何分布. (2)均值若X 服从参数为N ,M ,n 的超几何分布,则E (X )=nMN .4.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称; (3)曲线在x =μ处达到峰值1σ2π; (4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.1.辨明两个易误点(1)两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.(2)运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立.2.理解事件中常见词语的含义(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A - B -; (4)A ,B 恰有一个发生的事件为A B -∪A -B ; (5)A ,B 至多一个发生的事件为A B -∪A -B ∪A - B -. 3.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)≈0.682 7; (2)P (μ-2σ<X ≤μ+2σ)≈0.954 5; (3)P (μ-3σ<X ≤μ+3σ)≈0.997 3.1.若事件E 与F 相互独立,且P (E )=P (F )=14,则P (EF )的值等于( )A .0B .116C.14 D .12[答案] B2.已知随机变量X 服从正态分布N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( ) A .0.477 B .0.628 C .0.954D .0.977C [解析] 因为μ=0,所以P (X >2)=P (X <-2)=0.023, 所以P (-2≤X ≤2)=1-2×0.023=0.954.3.(2015·高考全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312A [解析] 3次投篮投中2次的概率为P (X =2)=C 23×0.62×(1-0.6),投中3次的概率为P (X =3)=0.63,所以通过测试的概率为P (X =2)+P (X =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.教材习题改编 抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.[解析] 抛掷两枚骰子,当两枚骰子不出现5点和6点时的概率为46×46=49,所以至少有一次出现5点或6点的概率为1-49=59,用X 表示10次试验中成功的次数,则X ~B ⎝⎛⎭⎫10,59,E (X )=10×59=509.[答案]5095.教材习题改编 国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.[解析] 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A -B -)=P (A -)·P (B -)=[1-P (A )][1-P (B )]=⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12, 甲、乙二人至少有一人去北京旅游的对立事件为甲、乙二人都不去北京旅游,故所求概率为1-P (A - B -)=1-12=12.[答案] 12相互独立事件的概率[学生用书P 208][典例引领](2016·高考山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求“星队”两轮得分之和X 的分布列和数学期望E (X ).【解】 由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112.P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.利用相互独立事件求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.(2017·开封市第一次模拟)某生物产品,每一个生产周期成本为20万元,此产品的产量受气候影响、价格受市场影响均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示1个生产周期此产品的利润,求X 的分布列;(2)连续3个生产周期,求这3个生产周期中至少有2个生产周期的利润不少于10万元的概率.[解] (1)设A 表示事件“产品产量为30吨”,B 表示事件“产品市场价格为0.6万元/吨”,则P (A )=0.5,P (B )=0.4,因为利润=产量×市场价格-成本, 所以X 的所有值为50×1-20=30,50×0.6-20=10, 30×1-20=10,30×0.6-20=-2,则P (X =30)=P (A -)P (B -)=(1-0.5)×(1-0.4)=0.3,P (X =10)=P (A -)P (B )+P (A )P (B -)=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =-2)=P (A )P (B )=0.5×0.4=0.2, 则X 的分布列为(2)设C i 表示事件“第i 个生产周期的利润不少于10万元”(i =1,2,3),则C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =30)+P (X =10)=0.3+0.5=0.8(i =1,2,3),连续3个生产周期的利润均不少于10万元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512,连续3个生产周期中有2个生产周期的利润不少于10万元的概率为P (C 1C -2C 3)+P (C 1C 2C 3)+P (C 1C 2C -3)=3×0.82×0.2=0.384,所以连续3个生产周期中至少有2个生产周期的利润不少于10万元的概率为0.512+0.384=0.896.独立重复试验与二项分布(高频考点)[学生用书P 209]独立重复试验与二项分布是高考命题的热点,多以解答题的形式呈现,试题难度稍大,多为中高档题目.高考对独立重复试验与二项分布的考查主要有以下两个命题角度: (1)已知二项分布,求二项分布列及均值;(2)已知随机变量服从二项分布,求某种情况下的概率.[典例引领](2017·沈阳质量监测)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”“待定”“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列及数学期望. 【解】 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.因为甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, 所以P (A )=C 23⎝⎛⎭⎫132⎝⎛⎭⎫231+C 33⎝⎛⎭⎫133=727.(2)所含“获奖”和“待定”票票数之和X 的可能取值为0,1,2,3. P (X =0)=⎝⎛⎭⎫133=127;P (X =1)=C 13⎝⎛⎭⎫231⎝⎛⎭⎫132=627=29; P (X =2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫131=1227=49;P (X =3)=⎝⎛⎭⎫233=827. 因此X 的分布列为所以X 的数学期望为EX =0×127+1×627+2×1227+3×827=2.(1)独立重复试验满足的条件独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.(2)二项分布满足的条件①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中事件发生的次数.[题点通关]角度一 已知二项分布,求二项分布列及均值1.小王在某社交络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个. (1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X ,求X 的分布列和期望.[解] (1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49.(2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝⎛⎭⎫233=827, P (X =5)=C 12×13×⎝⎛⎭⎫232=827,P (X =10)=⎝⎛⎭⎫132×23+⎝⎛⎭⎫232×13=627, P (X =15)=C 12×⎝⎛⎭⎫132×23=427,P (X =20)=⎝⎛⎭⎫133=127. 所以X 的分布列为E (X )=0×827+5×827+10×627+15×427+20×127=203.角度二 已知随机变量服从二项分布,求某种情况 下的概率2.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥2)的值为( )A.3281 B .1127C.6581D .1681B [解析] 因为随机变量X ~B (2,p ),Y ~B (4,p ),又P (X ≥1)=1-P (X =0)=1-(1-p )2=59,解得p =13,所以Y ~B ⎝⎛⎭⎫4,13,则P (Y ≥2)=1-P (Y =0)-P (Y =1)=1127.超几何分布[学生用书P209][典例引领](2017·云南省第一次统一检测)某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率P (A );(2)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.【解】 (1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635. 所以事件A 的概率为635.(2)由题意知,X 服从超几何分布, 随机变量X 的所有可能取值为1,2,3,4.由已知得P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列和数学期望.[解] (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-xC 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3,P (X =k )=C k 5C 3-k 5C 310,k =0,1,2,3.于是可得其分布列为则E (X )=0×112+1×512+2×512+3×112=32.正态分布[学生用书P210][典例引领](1)(2017·长春质检)已知随机变量X 服从正态分布N (1,σ2),若P (X >2)=0.15,则P (0≤X ≤1)=( )A .0.85B .0.70C .0.35D .0.15(2)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)≈68.27%,P (μ-2σ<ξ<μ+2σ)≈95.45%)A .4.56%B .13.59%C .27.18%D .31.74%【解析】 (1)P (0≤X ≤1)=P (1≤X ≤2)=0.5-P (X >2)=0.35.(2)由正态分布的概率公式知P (-3<ξ<3)≈0.682 7,P (-6<ξ<6)≈0.954 5,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=0.954 5-0.682 72=0.135 9=13.59%,故选B .【答案】 (1)C (2)B正态分布下的概率计算常见的两类问题(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.[通关练习]1.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于________.[解析] 根据题意,函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.[答案] 42.(2017·福建省毕业班质量检测)若随机变量X ~N (μ,σ2),且P (X >5)=P (X <-1)=0.2,则P (2<X <5)=________.[解析] 因为随机变量X ~N (μ,σ2),所以正态曲线关于直线x =μ对称.又P (X >5)=P (X <-1)=0.2,所以μ=5-12=2,所以P (2<X <5)=P (X >2)-P (X >5)=0.5-0.2=0.3.[答案] 0.3[学生用书P210])——离散型随机变量的综合问题(本题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.[思维导图](1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意知A 1与A 2相互独立,A 1A 2与A 1 A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2+A 1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,(2分)所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,(3分)P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-25×12=12.(5分) 故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(6分)(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝⎛⎭⎫3,15.(7分) 于是P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫151⎝⎛⎭⎫452=48125,P (X =2)=C 23⎝⎛⎭⎫152⎝⎛⎭⎫451=12125, P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125.(10分) 故X 的分布列为(11分)X 的数学期望为E (X )=3×15=35.(12分)(1)解答此类问题,应注意答题要求,严格按照题目及相关知识的要求答题.(2)注意分布列要用表格的形式列出来,不要认为求出各个相应的概率就结束了.[学生用书P376(独立成册)]1.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一个发生的概率是( )A.512 B .12C.712D .34C [解析] 依题意,得P (A )=12,P (B )=16,且事件A ,B 相互独立,则事件A ,B 中至少有一个发生的概率为1-P (A -·B -)=1-P (A -)·P (B -)=1-12×56=712,故选C.2.已知⎝⎛⎭⎫1x 2+x 64展开式中的常数项为a ,且X ~N (1,1),则P (3<X <a )=( ) (附:若随机变量X ~N (μ,σ2),则P (μ-σ<X <μ+σ)≈68.27%,P (μ-2σ<X <μ+2σ)≈95.45%,P (μ-3σ<X <μ+3σ)≈99.73%)A .0.043B .0.021 4C .0.341 3D .0.477 2B [解析] 因为⎝⎛⎭⎫1x 2+x 64展开式中的常数项为a ,所以a =C 14⎝⎛⎭⎫1x 23x 6=4.因为X ~N (1,1),所以正态曲线关于直线x =1对称,因为P (-1<X <3)=P (1-2<X <1+2)≈95.45%,P (-2<X <4)=P (1-3<X <1+3)≈99.73%,所以P (3<X <4)=12[P (-2<X <4)-P (-1<X <3)]=12(99.73%-95.45%)=0.021 4,故选B .3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.[解析] 记不发芽的种子数为Y ,则Y ~B (1 000,0.1),所以E (Y )=1 000×0.1=100.又X =2Y ,所以E (X )=E (2Y )=2E (Y )=200. [答案] 2004.(2017·贵州省七校第一次联考)在某校2016年高三11月月考中理科数学成绩X ~N (90,σ2)(σ>0),统计结果显示P (60≤X ≤120)=0.8,假设该校参加此次考试的有780人,那么试估计此次考试中,该校成绩高于120分的有________人.[解析] 因为成绩X ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤X ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78人.[答案] 785.(2016·高考天津卷)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.[解] (1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.6.为督导学校课外选修课的开展情况,某市教育督导部门从一所高中的四个选修专业中利用分层抽样的方法选出了14名学生进行调查,已知样本中各专业学生人数如下表:(1)若从这14名学生中随机选出两名,求这两名学生来自同一选修专业的概率; (2)现要从这14名学生中随机选出两名学生参加座谈,设其中来自剪纸专业的人数为X ,令Y =2X -1,求随机变量Y 的分布列及数学期望E (Y ).[解] (1)设“两名学生来自同一选修专业”为事件A ,则P (A )=C 22+C 23+C 24+C 25C 214=2091.故两名学生来自同一选修专业的概率为2091.(2)因为剪纸专业有3人,非剪纸专业有11人,所以来自剪纸专业的人数X 服从超几何分布H (14,2,3).则X 的所有可能取值是0,1,2,其中P (X =i )=C i 3C 2-i11C 214(i =0,1,2),对应的Y 的所有可能取值为-1,1,3.则P (Y =-1)=P (X =0)=C 03C 211C 214=5591;P (Y =1)=P (X =1)=C 13C 111C 214=3391;P (Y =3)=P (X =2)=C 23C 011C 214=391.所以Y 的分布列为所以E (Y )=(-1)×5591+1×3391+3×391=-17.7.(2017·石家庄市第一次模考)某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数; (2)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X 表示第4次投篮后的总分,将频率视为概率,求X 的分布列和数学期望.[解] (1)设该运动员到篮筐中心的水平距离的中位数为x ,因为0.20×1=0.20<0.5,且(0.40+0.20)×1=0.6>0.5, 所以x ∈(4,5).由0.40×(5-x )+0.20×1=0.5,解得x =4.25,所以该运动员到篮筐中心的水平距离的中位数是4.25米.(2)由频率分布直方图可知投篮命中时到篮筐中心距离超过4米的概率为P =35,随机变量X 的所有可能取值为-4,-2,0,2,4. P (X =-4)=⎝⎛⎭⎫254=16625, P (X =-2)=C 14⎝⎛⎭⎫253⎝⎛⎭⎫351=96625,P (X =0)=C 24⎝⎛⎭⎫252⎝⎛⎭⎫352=216625, P (X =2)=C 34⎝⎛⎭⎫251⎝⎛⎭⎫353=216625, P (X =4)=⎝⎛⎭⎫354=81625, 所以X 的分布列为E (X )=(-4)×16625+(-2)×96625+0×216625+2×216625+4×81625=45.8.在2016年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为23,且每题正确回答与否互不影响.(1)分别写出甲、乙两考生正确回答题数的分布列,并计算其数学期望; (2)试用统计知识分析比较两考生的通过能力.[解] (1)设考生甲、乙正确回答的题目个数分别为ξ,η,则ξ的可能取值为1,2,3,P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,所以考生甲正确回答题数的分布列为E (ξ)=1×15+2×35+3×15=2.又η~B ⎝⎛⎭⎫3,23,其分布列为所以E (η)=np =3×23=2.(2)因为D (ξ)=(2-1)2×15+(2-2)2×35+(2-3)2×15=25,D (η)=np (1-p )=3×23×13=23,所以D (ξ)<D (η).因为P (ξ≥2)=35+15=0.8,P (η≥2)=1227+827≈0.74,所以P (ξ≥2)>P (η≥2).从回答对题数的数学期望考查,两个水平相当;从回答对题数的方差考查,甲较稳定;从至少完成2题的概率考查,甲通过的可能性大.因此可以判断甲的通过能力较强.9.(2017·湖南衡阳一中月考)上购物逐步走进大学生活,某大学学生宿舍4人积极参加购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为1或2的人去淘宝购物,掷出点数大于2的人去京东商城购物,且参加者必须从淘宝和京东商城中选择一家购物.(1)求这4个人中恰有2人去淘宝购物的概率;(2)用X ,Y 分别表示这4个人中去淘宝购物的人数和去京东商城购物的人数,求这4个人中去淘宝购物的人数大于去京东商城购物的人数的概率;(3)记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).[解] (1)每个人去淘宝购物的概率都为13,去京东商城购物的概率都为1-13=23,这4个人中恰有2人去淘宝购物的概率为C 24⎝⎛⎭⎫132⎝⎛⎭⎫1-132=827. (2)由题意可知X ~B (4,p )⎝⎛⎭⎫其中p =13, 则P (X =k )=C k 4p k (1-p )4-k(k =0,1,2,3,4), 这4个人中去淘宝购物的人数大于去京东商城购物的人数的概率为P (X =3)+P (X =4)=19. (3)ξ可取0,2,4,P (ξ=0)=P (X =2)=827,P (ξ=2)=P (X =1)+P (X =3)=4081,P (ξ=4)=P (X =0)+P (X =4)=1781.所以随机变量ξ的分布列为E (ξ)=14881.10.云南省2016年全省高中男生身高统计调查数据显示:全省100 000名高中男生的身高服从正态分布N (170.5,16).现从云南省某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5 cm 和187.5 cm 之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方式得到的频率分布直方图.(1)试评估该校高三年级男生在全省高中男生中的平均身高状况; (2)求这50名男生身高在177.5 cm 以上(含177.5 cm)的人数;(3)从这50名男生身高在177.5 cm 以上(含177.5 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前135名的人数记为ξ,求ξ的数学期望.参考数据:若ξ~N (μ,σ2),则 P (μ-σ<ξ≤μ+σ)≈0.682 7, P (μ-2σ<ξ≤μ+2σ)≈0.954 5, P (μ-3σ<ξ≤μ+3σ)≈0.997 3.[解] (1)由频率分布直方图知,该校高三年级男生平均身高为160×0.1+165×0.2+170×0.3+175×0.2+180×0.1+185×0.1=171.5(cm),该校高三年级男生的平均身高高于全省高中男生身高的平均值170.5(cm).(2)由频率分布直方图知,后两组频率和为0.2,所以人数和为0.2×50=10,即这50名男生中身高在177.5 cm 以上(含177.5 cm)的人数为10.(3)因为P (170.5-3×4<ξ≤170.5+3×4)≈0.997 3, 所以P (ξ≥182.5)=1-0.997 32=0.001 35,又0.001 35×100 000=135.所以身高在182.5 cm 以上(含182.5 cm)的高中男生可排进全省前135名.因为该校这50名男生中身高在182.5 cm 以上(含182.5 cm)的有5人,身高在177.5 cm 以上(含177.5 cm)的有10人,随机变量ξ可取0,1,2,于是P (ξ=0)=C 25C 210=1045=29,P (ξ=1)=C 15C 15C 210=2545=59,P (ξ=2)=C 25C 210=1045=29.所以E (ξ)=0×29+1×59+2×29=1.。
二项分布与两点分布 超几何分布 正态分布 的区别
用个例子解答吧:假设一批产品有100件,其中次品为10件。
那么:
(1)从中抽取一件产品,为正品的概率?像这种可能结果只有两种(抽的结果正品或次品)情况下就可以归纳为两点分布。
(2)有放回的抽样,抽n次,出现正品数的分布。
这个就就是二项分布了,首先,这n次试验可能出现的正品数为0~n;它相当于做了n次试验,每次都就是两点分布,也就就是说您这抽取n次,每次就是正品的概率都就是0、9。
(3)如果不放回抽取m(≤100)个,这m件产品次品数的分布如何?此问就就是超几何分布了,当然这个时候要讨论m与10谁大,以便确认分布的可能取值,这里不赘述了。
(4)正态分布就是自然界最常见的一种分布。
该分布由两个参数——平均值与方差决定。
它与其它各种分布都有着直接或间接的联系,比如说此题中二项分布,其实每个人抽取n次,最后的结果都就是不尽相同的,这就是由于抽样误差引起的。
但就是,如果好多人(N)都做这么一次试验(每个人都抽n次,并记录下正品数),那么这N个人抽到的正品数的分布就就是一个正态分布了。
(正太分布往往就是与其它分布的极限分布联系起来的,也就就是说N→∞;如果N为有限的<假设为4个>那么N的分布最复杂也就就是4个结果)
超几何分布与二项分布都就是离散型分布
超几何分布与二项分布的区别:
超几何分布需要知道总体的容量,而二项分布不需要;
超几何分布就是不放回抽取,而二项分布就是放回抽取(独立重复)
当总体的容量非常大时,超几何分布近似于二项分布、、、、、、、、、阅读(131)|评论(1)。
2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布
第1页共13页2023年高考数学一轮总复习第51讲:二项分布、超几何分布、正态分布【教材回扣】1.二项分布:(1)概念:一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=________________,k =0,1,2,…,n .如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从____________________,记作______________.(2)均值与方差:如果X ~B (n ,p ),那么E (X )=________,D (X )=________.2.超几何分布(1)概念:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=____________,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.(2)均值:E (X )=np .3.正态分布:(1)有关概念:对任意的x ∈R ,f (x )=1σ2πe -(x -μ)22σ2>0(μ∈R ,σ>0为参数),我们称f (x )为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,若随机变量X 的概率分布密度函数为f (x ),则称随机变量X 服从正态分布,记作__________________.特别地,当μ=__________,σ=________时称随机变量X 服从标准正态分布.(2)正态曲线的特点:①它的图象在□10________上方;②x 轴和曲线之间的区域的面积为□11________;③曲线是单峰的,它关于直线□12________对称;④曲线在x =μ处,达到峰值1σ2π;⑤当|x |无限增大时,曲线无限接近□13________.(3)均值与方差:若x ~N (μ,σ2),则E (X )=□14________,D (X )=□15________.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.()2.二项分布和超几何分布都是放回抽样.()3.正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()4.一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()题组二教材改编。
二项分布与两点分布 超几何分布 正态分布 的区别
用个例子解答吧:假设一批产品有100件,其中次品为10件.之杨若古兰创作
那么:
(1)从中抽取一件产品,为正品的概率?像这类可能结果只要两种(抽的结果正品或次品)情况下就可以归纳为两点分布.
(2)有放回的抽样,抽n次,出现正品数的分布. 这个就是二项分布了,首先,这n次试验可能出现的正品数为0~n;它相当于做了n次试验,每次都是两点分布,也就是说你这抽取n次,每次是正品的概率都是0.9.
(3)如果不放回抽取m(≤100)个,这m件产品次品数的分布如何?此问就是超几何分布了,当然这个时候要讨论m与10谁大,以便确认分布的可能取值,这里不赘述了.
(4)正态分布是天然界最罕见的一种分布.该分布由两个参数——平均值和方差决定.它和其它各种分布都有着直接或间接的联系,比方说此题中二项分布,其实每个人抽取n次,最初的结果都是不尽不异的,这是因为抽样误差惹起的.但是,如果好多人(N)都做这么一次试验(每个
人都抽n次,并记录下正品数),那么这N个人抽到的正品数的分布就是一个正态分布了.
(正太分布常常是和其它分布的极限分布联系起来的,也就是说N→∞;如果N为无限的<假设为4个>那么N的分布最复杂也就是4个结果)
超几何分布和二项分布都是离散型分布
超几何分布和二项分布的区别:
超几何分布须要晓得整体的容量,而二项分布不须要;
超几何分布是不放回抽取,而二项分布是放回抽取(独立反复)
当整体的容量非常大时,超几何分布近似于二项分布.........
浏览(131)|评论(1)。
二项分布、超几何分布与正态分布-高考数学复习
其中 n , N , M ∈N*, M ≤ N , n ≤ N , m =max{0, n - N +
M }, r =min{ n , M }.如果随机变量 X 的分布列具有上式的形式,
那么称随机变量 X 服从超几何分布.
目录
提醒
超几何分布中的随机变量为抽到的某类个体的个数.主要特征
为:①考察对象分两类;②已知各类对象的个数;③从中抽取若干
对于超几何分布 X ~ H ( n , M , N ),则 E ( X )= , D
−
( X )= ·(1- )· .
−1
3. 对于正态分布 X ~ N (μ,σ2), E ( X )=μ, D ( X )=σ2.
目录
1. 已知一盒子中有棋子10粒,其中7粒黑子,3粒白子.任意取出2粒,
好 n , p 和 k 的值,再准确利用公式 P ( X = k )= pk (1-
p ) n - k , k =0,1,2,…, n 求概率.
目录
考向2 二项分布
【例2】
设甲、乙两位同学上学期间,每天7:30之前到校的概率均
2
为 ,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校
3
1
位,移动的方向为向上或向右,并且向上、向右移动的概率都是 .
2
5
则质点 P 移动五次后位于点(2,3)的概率是 16 .
解析:由于质点每次移动一个单位,移动的方向为向上或向右,移
动五次后位于点(2,3),所以质点 P 必须向右移动两次,向上移
1
1
1
5
3
3
3
2
5
动三次,故其概率为 5 ( ) ( ) = 5 ( ) = .
超几何分布、二项分布、正态分布[1]
超几何分布、二项分布、正态分布1、超几何分布:一般地,若一个随机变量x的分布列为:P(x=r)=①其中r=0,1,2,3,…… ,,=min(n,M),则称x服从超几何分布。
记作x~H(n,M,N),并将P(x=r)=,记为H(r,n,M,N)。
如:在一批数量为N件的产品中共有M件不合格品,从中随机取出的n件产品中,不合格品数x的概率分布列如表一所示:(表一)其中=min(n,M),满足超几何分布。
2、伯努利试验(n次独立重复试验),在n 次相互独立试验中,每次试验的结果仅有两种对立的结果A与出现,P(A)=p∈(0,1),这样的试验称为n 次独立重复试验,也称为伯努利试验。
P()=1-p=q,则在n次独立重复试验中,事件A恰好发生k次的概率(0≤k≤n)为P(k)=(k=0,1,2,3,……,n),它恰好是(q+p)n的二项展开式中的第k+1项。
3、二项分布:若随机变量x的分布列为p(x=k)=,其中0<p<1,p+q=1,k =0,1,2,……,n,则称x服从参数为n、p的二项分布,记作x~B(n,p)。
如:n次射击中,击中目标k次的试验或投掷骰子n次,出现k次数字5的试验等均满足二项分布。
3、正态分布曲线。
(1)概率密度曲线:当数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,则称此曲线为概率密度曲线。
(2)正态密度曲线:概率密度曲线对应表达式为P(x)=(x∈R)的曲线称之为正态密度曲线。
正态密度曲线图象特征:①当x<μ时曲线上升;当x>μ时曲线下降;当曲线向左右两边无限延伸时,以x轴为渐近线。
②正态曲线关于直线x=μ对称。
③σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡。
④在正态曲线下方和x轴上方范围内的区域面积为1。
4、正态分布:若x是一个随机变量,对任意区间,P恰好是正态密度曲线下方和x轴上上方所围成的图形的面积,我们就称随机变量x服从参数为μ和σ的正态分布,简记为x~N(μ,σ2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超几何分布、二项分布、正态分布
【学习目标】
1、通过实例,理解超几何分布及其特点,掌握超几何分布列及其导出过程,并能进行简单的应用。
2、理解n次独立重复试验(即n重伯努利试验)及其意义,理解二项分布并能解决一些简单的实际问题。
3、借助直观图,了解是正态分布曲线与正态分布,认识正态分布曲线的特点及曲线表示的意义。
4、会查标准正态分布表,会求满足正态分布的随机变量x在某一范围内的概率。
【重点与难点】
重点:正确理解超几何分布、二项分布、正态分布的意义。
难点:正确进行超几何分布、二项分布、正态分布有关概率的计算。
【知识要点】
1、超几何分布:
一般地,若一个随机变量x的分布列为:P(x=r)=①
其中r=0,1,2,3,…… ,,=min(n,M),则称x服从超几何分布。
记作x~H(n,M,N),并将P(x=r)=,记为H(r,n,M,N)。
如:在一批数量为N件的产品中共有M件不合格品,从中随机取出的n件产品中,不合格品数x的概率分布列如表一所示:
(表一)
其中=min(n,M),满足超几何分布。
2、伯努利试验(n次独立重复试验),在n 次相互独立试验中,每次试验的结果仅有两种对立的结果A与出现,P(A)=p∈(0,1),这样的试验称为n 次独立重复试验,也称为伯努利试验。
P()=1-p=q,则在n次独立重复试验中,事件A恰好发生k次的概率(0≤k≤n)为P(k)=(k=0,1,2,3,……,n),它恰好是(q+p)n的二项展开式中的第k+1项。
3、二项分布:若随机变量x的分布列为p(x=k)=,其中0<p<1,p+q=1,k
=0,1,2,……,n,则称x服从参数为n、p的二项分布,记作x~B(n,p)。
如:n次射击中,击中目标k次的试验或投掷骰子n次,出现k次数字5的试验等均满足二项分布。
3、正态分布曲线。
(1)概率密度曲线:当数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,则称此曲线为概率密度曲线。
(2)正态密度曲线:概率密度曲线对应表达式为P(x)=(x∈R)的曲线称之为正态密度曲线。
正态密度曲线图象特征:
①当x<μ时曲线上升;当x>μ时曲线下降;当曲线向左右两边无限延伸时,以x轴为渐近线。
②正态曲线关于直线x=μ对称。
③σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡。
④在正态曲线下方和x轴上方范围内的区域面积为1。
4、正态分布:若x是一个随机变量,对任意区间,P恰好是正态密度曲线下方和x轴上上方所围成的图形的面积,我们就称随机变量x服从参数为μ和σ的正态分
布,简记为x~N(μ,σ2)。
在现实世界中很多随机变量遵循正态分布。
如:反复测量某一个物理量,其测量误差x通常被认为服从正态分布;某一地区同性别同年龄组儿童的体重W也近似地服从正态分布。
若x~N(μ,σ2),则随机变量x在μ的附近取值的概率很大,在离μ很远处取值的概率很少。
如图一所示:随机变量x取值落在区间(μ-σ,μ +σ)上的概率约为68.3%,落在区间(μ-2σ,μ+2σ)上的概率约为95.4%,落在区间(μ-3σ,μ+3σ)上的概率约为99.7%。
其中,μ实际上就是随机变量x 的均值,σ2为随机变量x的方差,它们分别反映x取值的平均大小和稳定程度。
5、标准正态分布:正态分布N(0,1)称为标准正态分布,此时,P(x)=(x∈R),通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率。
数学家们发现,在多种微小因素影响下,如果没有一种影响占主导地位,则这样的随机变量服从正态分布,特别是在独立地大数量重复试验时,就平均而言,任何一个随机变量的分布都将趋近于正态分布,这就是中心极限定理,中心极限定理告诉我们在平均重复观察多次后,我们可以利用正态分布对随机事件进行分析和预报。
可以证明,对任一正态分布x~N(μ,σ2)来说,都可以通过z=转化为标准正态分布z~N(0,1)。
6、利用Excel进行有关概率计算。
(1)超几何分布函数计算:按“插入/函数/统计”选择超几何分布函数“HYPGEOMDIST”,然后依次输入r、n、M、N的值,或直接在单元格内输入“=HYPGEOMDIST(4;5,10,30)”即可得到后边例1中H(4;5,10,30)的值,约为0.029472443。
(2)二项分布函数计算:选择“插入/函数/统计”,选择二项分布函数“BINOMDIST”,然后依提示输入相应的参数k、n、p的值,或在单元格内直接输入“=BINOMDIST(80,10000,0.006,1)”即可得到后面例4中P(x≤80)的值,约为0.994。
(3)正态分布函数计算:选择“插入/函数/统计”,选择正态分布函数“NORMDIST”,输入相应参数x、μ、σ的值,或在单元格内直接输入“=NORMDIST(184.5,184,2.5,1)”,就可得到后边例6中P(x≤184.5)的值,约为0.5793。
7、二项分布的近似计算。
对于二项分布函数,当n比较大,而p比较小(p≤0.1),而乘积np大小“适中”时,可以利用近似公式P(x=k)=来计算。
【典型例题分析】
例1:高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同,一次从中摸出5个球,摸到4个红球一个白球就中一等奖,求中一等奖的概率。
解:以30个球为一批产品,其中红球为“不合格品”,随机抽取5个球,x表示抽到的红球数,
则x服从超几何分布H(5,10,30),
由超几何分布公式可得:H(4;5,10,30)=≈0.0295,
所以获一等奖的概率约为2.95%。
例2:生产方提供50箱的产品中,有两箱不是合格产品,采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若其中的不合格产品不超过一箱,则接收该批产品,问:该批产品被接收的概率是多少?
解:用x表示5箱中的不合格品的箱数,
则x服从超几何分布H(5,2,50),
这批产品被接收的条件是5箱中有0或1箱不合格产品,
故该产品被接收的概率为P(x≤1)即:
P(x≤1)=P(x=0)+P(x=1)=
==
=
=≈0.992
答:该批产品被接收的概率约为99.2%。
例3:求抛掷100次均匀硬币,正好出现50次正面向上的概率。
分析:将一枚均匀硬币随机抛掷100次,相当于做了100次独立重复试验,每次试验有两个可能结果,即出现正面(A)与出现反面()且P(A)=P()=0.5。
解:设x为抛掷100次硬币出现正面的次数,
依题意随机变量x~B(100,0.5),
则P(x=50)=≈8%。
答:随机抛掷100 次均匀硬币,正好出现50 次正面的概率约为8%。
例4:某保险公司规定:投保者每人每年交付公司保险费120元的人身意外保险,则投保者意外伤亡时,公司将赔偿10000元,如果已知每人每年意外死亡的概率为0.006,若该公司吸收10000人参加保险,问该公司赔本及盈利额在400000元以上的概率分别有多大?
解:设这10000人中意外死亡的人数为x,
根据题意,x~B(10000,0.006),P(x=k)=,
当死亡人数为x人时,公司要赔偿x万元,
此时,公司的利润为(120-x)万元,
由上述分布,公司赔本的概率为:
P(120-x<0)=1-P(x≤120)=1-=1-≈0,这说明,公司几乎不会赔本,利润不少于400000元的概率为:
P(120-x≥40)=P(x≤80)==≈0.994,
即公司约有99.4%的概率可以赚到400000元以上。
例5:若随机变量z~N(0,1),查标准正态分布表,求:
(1)P(z≤1.52);(2)P(z>1.52);(3)P(0.57<z≤2.3);(4)P(z≤-1.49)。
解:(1)P(z≤1.52)=0.9357。
(2)P(z>1.52)=1-P(z≤1.52)=1-0.9357=0.0643。
(3)P(0.57<z≤2.3)=P(z≤2.3)-P(z≤0.57)=0.9893-0.7157=0.2736。
(4)P(z≤-1.49)=P(z≥1.49)=1-P(z≤1.49)=1-0.9319=0.0681。
例6:某批待出口的水果罐头,每罐净重x(g)服从正态分布N(184,2.52),求:
(1)随机抽取一罐,其实际净重超过184.5g的概率。
(2)随机抽取一罐,其实际净重在179g与189g之间的概率。
解:(1)P(x>184.5)=P=P(z>0.2)=1-P(z≤0.2)=1-0.5793=0.4207。
(2)P(179<x≤189)=P
=P(-2<z≤2)=P(z≤2)-P(z≤-2)
=P(z≤2)-P(z≥2)=P(z≤2)-[1-P(z≤2)]
=2P(z≤2)-1=2×0.9772-1=0.9544
答:随机抽取一罐,其实际净重超过184.5g的概率是0.4207,在179g与189g之间的概率是0.9544。
例7:某电话站为300个电话用户服务,在一个小时内每一个电话用户,使用电话的概率等于0.01,求在一个小时内有4个用户使用电话的概率。
解:设A表示一个用户在这一小时内使用电话的事件,
记p=P(A)=0.01,q=P()=0.99,
本题相当于进行300次独立的贝努利试验,事件A出现的次数k=4,
故其所求概率为P(k)=≈=
≈0.169。