中考数学培优易错试卷(含解析)之相似附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t (0<t<10).

(1)请直接写出B、C两点的坐标及抛物线的解析式;

(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?

(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.

【答案】(1)解:在y=ax2+bx+4中,令x=0可得y=4,

∴C(0,4),

∵四边形OABC为矩形,且A(10,0),

∴B(10,4),

把B、D坐标代入抛物线解析式可得,

解得,

∴抛物线解析式为y= x2+ x+4;

(2)解:由题意可设P(t,4),则E(t, t2+ t+4),

∴PB=10﹣t,PE= t2+ t+4﹣4= t2+ t,

∵∠BPE=∠COD=90°,

当∠PBE=∠OCD时,

则△PBE∽△OCD,

∴,即BP•OD=CO•PE,

∴2(10﹣t)=4( t2+ t),解得t=3或t=10(不合题意,舍去),

∴当t=3时,∠PBE=∠OCD;

当∠PBE=∠CDO时,

则△PBE∽△ODC,

∴,即BP•OC=DO•PE,

∴4(10﹣t)=2( t2+ t),解得t=12或t=10(均不合题意,舍去)

综上所述∴当t=3时,∠PBE=∠OCD

(3)解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,

∴∠CQO+∠AQB=90°,

∵∠CQO+∠OCQ=90°,

∴∠OCQ=∠AQB,

∴Rt△COQ∽Rt△QAB,

∴,即OQ•AQ=CO•AB,

设OQ=m,则AQ=10﹣m,

∴m(10﹣m)=4×4,解得m=2或m=8,

①当m=2时,CQ==,BQ==,

∴sin∠BCQ==,sin∠CBQ==,

∴PM=PC•sin∠PCQ= t,PN=PB•sin∠CBQ=(10﹣t),

∴ t =(10﹣t),解得t=,

②当m=8时,同理可求得t=,

∴当四边形PMQN为正方形时,t的值为或

【解析】【分析】(1)先求出抛物线与y轴的交点C的坐标,再根据矩形ABCO及点A的坐标为(10,0),求出点B的坐标,然后利用待定系数法,将点B、D的坐标分别代入函数解析式求出二次函数解析式。

(2)设P(t,4),利用抛物线的解析式表示出点E的坐标,可求出PB、PE的长,再分情况讨论:当∠PBE=∠OCD时,可证△PBE∽△OCD,利用相似三角形的性质,的长BP•OD=CO•PE,建立关于t的方程,求出符合题意的t的值;当∠PBE=∠CDO时,可得△PBE∽△ODC,利用相似三角形的性质得出BP•OC=DO•PE,建立关于t的方程,求出t 的值,综上所述就可得出符合题意的t的值。

(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,再证明Rt△COQ∽Rt△QAB,利用相似三角形的性质得出OQ•AQ=CO•AB,设OQ=m,则AQ=10

﹣m,建立关于m的方程,求出m的值,再分别根据m的值求出CQ、BQ的长,再利用解直角三角形用含t的代数式分别表示出PM、PN的长,由PM=PN可得出关于t的方程,再解方程,就可求出符合题意的t的值。

2.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.

(1)若AB=3,AD= ,求△BMC的面积;

(2)点E为AD的中点时,求证:AD= BN .

【答案】(1)解:如图1中,

在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,

∴BM=AD= ,∴AM= =1,∴CM=CA﹣AM=2,∴S△BCM= •CM•BA= ×23=3.

(2)解:如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.

∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,

∴△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC

∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC=

EC,∴AD=2EC,∴2NC= AD,∴AD= NC,∵BN=NC,∴AD= BN.

【解析】【分析】(1)首先利用SAS判断出△ABM≌△CAD,根据全等三角形对应边相等得出BM=AD= ,根据勾股定理可以算出AM,根据线段的和差得出CM的长,利用

S△BCM= •CM•BA即可得出答案;

(2)连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.根据直角三角形斜边上的中线等于斜边的一半得出AE=CE=ED,根据等边对等角得出∠EAC=∠ECA,根据全等三角形对应角相等得出∠ABM=∠CAD,从而得出∠ABM=∠MCE,根据对顶角相等及三角形的内角和得出∠CEM=∠BAM=90°,从而判断出△ABM∽△ECM,由相似三角形对应边成比例得出BM∶CM= AM∶EM,从而得出BM∶AM= CM∶EM,根据两边对应成比例及夹角相等得出△AME∽△BMC,故∠AEM=∠ACB=45°,∠AEC=135°,易知∠PEQ=135°,故∠PEQ=∠AEC,∠AEQ=∠EQC,又∠P=∠EQC=90°,故△EPA≌△EQC,故EP=EQ,根据角平分线的判定得出BE平分∠ABC,故∠NBC=∠ABN=22.5°,根据中垂线定理得出NB=NC,根据等腰三角形的性质得出∠NCB=∠NBC=22.5°,故∠ENC=∠NBC+∠NCB=45°,△ENC的等腰直角三角形,根据等腰直角三角形边之间的关系得出NC= EC,根据AD=2EC,2NC= AD,AD= NC,又BN=NC,故AD= BN.

3.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。

(1)若点N在BC之间时,如图:

①求证:∠NPQ=∠PQN;

②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;

(2)当△PBN与△NCQ的面积相等时,求AP的值.

【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°,

AB//CD,∴∠APM=∠DQM,∵M是AD边的中点,∴AM=DM,

在△APM和△DQM中,,∴△APM≌△DQM(AAS),∴PM=QM,

相关文档
最新文档