Strongart自学数学的非常故事(100%的真实经历,感人啊!)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

80后牛人Strongart自学数学的非常故事(超级感人啊!)

女士们先生们,我是Strongart。记得在我24岁生日那天,曾经写过一段自学数学的小故事。现在又是一年多过去了,就再介绍一点回到家之后的情况吧,顺便把以前的故事精简一下。

其实我从小启蒙教育就比较好,倒不是有什么专门的培训,只是上小学之前都在家里,有意无意地从爷爷那里学了很多东西。到上小学的时候,我就已经能熟练掌握四则运算,可惜后来进了学校就停滞了,对数字的感觉明明已经非常敏锐了,还得跟他们一起背什么乘法口诀表!直到四年级的时候为准备竞赛,数学老师给我们几个数学好的学生开小灶。在不到一个学期的时间里学完了五六年级的数学,一点都不觉得有什么困难。

此后又是一段长期的停滞,直到一天我偶然发现一本书,是讲如何教育孩子成材的,其中有许多天才成长的故事深深打动了我。记得里面有一句大意是这样的:在孩子成熟之前,只要有一个小小的起点,让他体会到自己独特的价值并为之努力,那么他成年后将远远超过其他一般的人。那时我不知是初一还是初二,只是对这样的语句有一种模糊的体验。

后来,在放假前无意间有个顽皮的同学送了我一本高中的《立体几何》,促使我真正走上了自学数学的道路,再结合家里一些已经发黄了的中等数学教辅,到中考前已经完成相当于高中的数学课程。幸

好当时能在大学附近的一个临时的小书店里买到了两本《数学分析》,然后就开始为按定义证明极限苦恼,能问老师吗?我不敢,因为直觉告诉我这是犯规的,可能这就是“潜规则”的压力了。

刚开始看《数学分析》真的很困难,手头只有一本教科书,习题只能做开头的几道。特别是极限初论讲完之后直接进入极限绪论,像有限覆盖定理之类的东西直到后来看到拓扑才真正明白。直到后来看到微分学,又在一堆中高考的辅导书里挖掘到一本微积分词典,才算是稍微送了口气。记得当时“违规”用导数做出道难题,反倒没办法讲给别人听,只轻轻说了“导数”两个字(据说现在高中数学讲导数了,很人性啊!那时的标准答案是用了一个BT的不等式的技巧),惹得他们看外星人一样的看我!

回顾高中以前的经历,运气要占了很大的因素,可后来就没那么巧了。第一年没考上大学,又买不到合适的数学书,就这样看了大半年像什么概率统计、数学物理方法、离散数学之类的东西,然后就是给工科研究生看的近现代数学基础,结果就完全不知所云了(所以又买了一本类似的,还是不行)。最后的一本这样的东西是在上大学之前的暑假里看的,是给工科用的《模糊数学及其应用》(实在很烦最后这四个字),就前几章还有点意思;同时还看了一本《天才引导的历程》,是讲数学家故事的,深受感动!

在那段日子里,我有了一些收获,至少给我后面学习专业的理论打下了一定的基础。可是直到我在图书馆里找到了正规的书籍,自学

的生涯才算是真正开始。最早是一拿到书,先看前面是不是数学专业的,如果不是一般就不看;然后就去翻后面,看有没有习题解答。就这样看了不少土著的书:大多是八十年代的自学丛书,现在看来是叙述罗嗦观点陈旧,实在不是什么好东西。下面我就按照学科的顺序来具体谈谈那时的情况,可能专业的东西要多一些了。

先从分析谈起,虽然看了两本《数学分析》,但当时有许多地方都不是太明白。进大学之前有幸买到一本相关习题集(只有单变量的情形),把它完成之后果然收获不少。而多变量的情形,我后来看了弗列明的《多元函数》,不过到反函数定理部分没看明白,而切映射和外微分形式知道后来看《微分流形初步》的时候才算弄清楚。而实

变函数则是用的那本蓝色的自学书,后来当时没什么感觉,在《多元函数》里也有一点Lebesgue积分,才算是稍微明白一些。后来还看了H-S的《实分析与抽象分析》,可能稍微早了一点,只看了前四大段,却用了一个学期。复变函数因为高中时浏览过那本自学丛书(放暑假的时候赖在手里没还给图书馆),所以就换了一本叫解析函数什么的,接着又看了本选论,但到讲亚纯函数的时候就完全糊涂了。此后,翻过Ahlfors的那本,是为了练习看原版书,不过后来还是直接看中文的了;又看了一点李忠的《复分析导引》,原来是准备作为黎曼曲面的参考书的,没想到被吸引过去了。看泛函分析则最有意思,先看的是《巴拿赫空间引论》(因为后面有详细的习题解答),计划在一个暑假看完的,结果只看了两章。后来看了一本初级的导论(应用的部分略过),虽然是给工科的,但前言中说也可以作为数学专业的入门书。看完它之后,再看剩下的内容,除了像次加泛函这样过于专门的内容外,其他的都大体能看明白,接着又看了这个作者的另一本讲拓扑线性空间的入门书。而在最后的日子里,则看了一点Rudin 的《泛函分析》,结果又受到了挫折。同样的挫折也发生在看周民强的《调和分析讲义》上,原来有答案的书也不是太容易读的,可能是之间跳过了Fourier分析。后来就补上一本讲Fourier series的,处理的方式比较现代,到第三章就介绍群代数了,不过看起来不是太困难。

后来到家里看的第一本就是Rudin的《实分析与复分析》,特别是实分析部分看得很有收获,还解决了几个比较困难的习题。然后

看了张恭庆的《泛函分析讲义》,主要是前六章的内容,没想到Hilbert 空间中还有很多的算子理论,便顺水推舟的看了本讲Banach代数和算子理论的书。如果再下去的话,恐怕是该看算子代数了。不过后来总觉得多复分析比较神秘,恰好买了本Lars Hormander的《多复分析导引》,正在为其中的L^2理论苦恼,感觉和偏微分方程是有点像的,可惜我的理解还不是太深刻。同时也觉得该看调和分析了,主要用Stein的书,尽管有的地方还看不大懂,但能看懂的部分就是一种享受。

再来谈代数,以前高等代数只是在一本大学数学里看了一章,非常想念Jordan标准型。后来看北大的简明教程(只找到下册),算是有一个初步的印象。所以,现在这方面仍然比较薄弱,不过好象也没什么太大影响,感觉高等代数似乎没什么后续的东西,矩阵论仿佛是给工科看的,还是抽象代数要有趣得多。以前看过一本带“及其应用”的近世代数,所以这次选的是武大的(有点深度,也带答案,呵呵!),只可惜没讲模。后来有幸找到一本专门的模论,是内部的翻译的讲义,看的很用心。也就是从那本书开始,我发现只要有提示就可以顺利看完一本书了,好在很多书里的难题大多有提示。接着,有幸找到vander Waerden《代数学I》的习题解答(也是内部讲义哦),因为当时手头借书名额有限(只能借7本书),就先藏在书架中间,等放假前再借回去看。后来,看那本薄薄的《交换代数与同调代数》,前言里说是起点低、坡度大,对后者我是深有体会,看了五节就放

相关文档
最新文档