发电厂空冷系统及其控制

合集下载

大型电厂空冷技术及其特点分析

大型电厂空冷技术及其特点分析

大型电厂空冷技术及其特点分析摘要:最近几年,纵观全球经济发展速度非常迅猛。

此时各个行业都取得了显著的成就。

然而我们在为取得的成就欣喜的同时,需要意识到的是,人类赖以生存的资源正在逐渐减少,其中水资源就是一个典型。

水资源的短缺导致电厂发展受到极大的阻碍,最终影响到广大群众日常生活的开展。

在此背景之下,空冷技术开始出现并且得到了大力的发展。

笔者具体阐述了空冷技术的构成情况以及具体的特征。

对于我们国家的大规模电厂来讲,合理的使用该技术能够节省资源,促进社会稳定发展,更好的创造经济价值。

关键词:大型电厂;空冷技术特点;发展;特点一、电厂空冷技术发展情况早在1939年,德国GEA公司就在德国鲁尔矿区1.5MW汽轮发电机组上应用了直接空冷系统。

50年代卢森堡杜德兰格钢厂13MW机组和意大利罗马电厂36MW机组分别投运了直接空冷系统。

1950年匈牙利海勒教授在第四届世界动力会议上首次提出了采用喷射式凝汽器和自然通风空冷塔的间接空冷系统(后称为海勒式空冷系统)。

1962年采用海勒式空冷系统的120MW机组在英国拉格莱电厂投运。

1968年西班牙乌特里拉斯电厂投运了采用尖屋顶式布置的机械通风型直接空冷系统的160MW机组。

至此,形成了直接和间接两种空冷系统并存的局面。

但在此阶段世界各地投运的空冷机组容量都比较小,多数在1MW~50MW,个别达到160MW和200MW,如:采用海勒式空冷系统的200MW级机组于1971年分别在拉兹丹电厂、匈牙利加加林电厂和南非格鲁特夫莱电厂投运。

自20世纪70年代末开始,空冷电厂的容量装机容量和单机容量都取得了长足的发展。

1977年美国怀俄达克矿区电厂330MW机组应用了机械通风型直接空冷系统;1985年联邦德国施梅豪森核电站300MW机组应用了表面式凝汽器配自然通风空冷塔的间接空冷系统。

80年代以来,空冷技术得到进一步发展,特别是在南非,可以说取得了突破性进展。

1987年,采用机械通风型直接空冷系统的665MW空冷机组在南非马丁巴电厂投运;1988年,采用表面式凝汽器和自然通风空冷塔间接空冷系统的686MW空冷机组在南非肯达尔电厂投运。

发电厂间接空冷系统防冻措施分析

发电厂间接空冷系统防冻措施分析

发电厂间接空冷系统防冻措施分析发布时间:2022-10-10T09:09:26.138Z 来源:《中国电业与能源》2022年6月11期作者:李振鹏[导读] 在我国西北地区“富煤缺水”的资源分布情况下,间接空冷系统在西北地区火电厂得到大力推广和发展,然而间接空冷系统在冬季极端低温天气情况下运行或投退过程中面临较严峻的防冻形势,李振鹏山西京能发电有限公司,山西,临县,033200)摘要:在我国西北地区“富煤缺水”的资源分布情况下,间接空冷系统在西北地区火电厂得到大力推广和发展,然而间接空冷系统在冬季极端低温天气情况下运行或投退过程中面临较严峻的防冻形势,以下从间接空冷系统设计、配置、安装、运行、管理等方面考虑,提出空冷系统冬季防冻的措施和建议。

关键词:间接空冷系统;海勒式间接空冷系统;哈蒙式间接空冷系统;防冻 Power plant indirect air cooled system frostproof measure analysis Li Zhen PengShanxi jingneng lvlin power,Linxian, 033200 Abstract: “Rich has not lacked the water” in our country northwest area in the resources distributed situation, the indirect air cooled system obtains the vigorously promotion and the development in northwest local thermoelectric power station, however the indirect air cooled system moves in the winter extreme low temperature weather situation or throws draws back in the process faced with the stern frostproof situation, the following from indirect aspects and so on air cooled system design, disposition, installment, movement, management considered, proposes the air cooled system winter frostproof measure and the suggestion. Key word: Indirect air cooled system; Heyler type indirect air cooled system; Harmon type indirect air cooled system; Frostproof1空冷系统介绍目前我国应用与火力发电厂的空冷系统分为直接空冷系统、带表面凝汽器的间接空冷系统(简称哈蒙式间接空冷系统)和带混合式凝汽器的间接空冷系统(简称海勒式间接空冷系统)。

发电厂直接空冷系统(ACC)控制探讨

发电厂直接空冷系统(ACC)控制探讨
0 概 述
ห้องสมุดไป่ตู้
须为 自动控 制 。在 冬季运行 中如出现异 常,控制 系统及 时发 出指 令 ,调整运行 ,同时发 出警报 ,提醒运行人员注 意。 2直 接 空冷系统 运行控 制 更经济 的运行方式足 自 动运行,整个控制过程如 图1 所示
l厂 直接 冷 系统 足 汽机 的捧 汽直 接 用 气冷 却 ,汽 U 机排 m的饱 和 蒸汽 经捧 汽管 道 捧至 安置 在 室外 的 空冷凝 汽
度 制器 会覆 盖J 控制 器的 信 号,转 为 温度 控 制 。其他 力 排 必 足 凝结 水/ 气泓度 还没 有到达 设定 位之 一 抽 F,仍 然是 J 力 制 。每 个覆 盖 行为 都会 显示 在 人机 界面 一 。 当{汽 K k | F 力足 丰 制 变 _时 ,只 要其 在设 定位 范 围 内,挖 制 系统 } I ; =
新疆 电 力技 术
21年 第1 总第14 00 期 0期
发 电厂直接 空冷系统 (C )控制探 讨 AC
蒋 甲 丁 李 伟
8 O 1) 3 0 1
新疆 电力 科 学研 究 院 ( 鲁 术 齐 乌
摘要 :本文 通 过分 析发 电厂 直接 空 冷 系统 ( C A C)系 统 遇 行 的特 点 ,提 出 了空冷 岛 背压运 行调 节 方童 、运 行 的
的真 卒范闱 内 (0P 以下 ) 2Ka 。 2 23 将空 冷背压 没定 位手动 ’定 一个较 高 的位, .. 嫂 以便于 审
控制 系统 通 过排 汽压 力控 制变 频 风机 , 当捧 汽压 力 改
变 时 ,风 机 转 述 也 改 变 ,以 确 保 提 前 设 定 的运 行 : 况 。 1 _ = AC C 的 力 控制 器和 抽 气蔷 度控 制 器/ 矗 凝结 水温 度 控制 器 联 合 : 。如果 瓜 力足 丰控 变景 ,温 度 控制 器最 小 选择 器被 l 作

浅谈火力发电厂间接空冷系统控制技术

浅谈火力发电厂间接空冷系统控制技术

浅谈火力发电厂间接空冷系统控制技术摘要:在火力电厂中,锅炉将水加热成为高压高温的蒸汽,然后推动汽轮机工作促使发电机发电。

将汽轮机做工之后的废汽排入到冷凝器中,和冷却水进行热交换之后凝结成水,再利用给水泵进入到锅炉中循环使用。

而间接空冷系统的主要作用就是将废热冷却水在间冷塔中和空气进行热交换,以此来将废热传输至空气中。

本文主要分析了火力发电厂间接冷却系统的工作原理,然后对其各种工况进行了详细的说明。

关键词:火力发电厂;间接空冷系统;控制技术0.引言本文主要就是以某一个火力发电厂的间接空冷系统为例来进行分析,该火力发电厂主要就是采用表凝式间接空冷系统。

启动给水泵小汽机和主机气轮机排气都是会进入到主机表面式凝汽器,而在表面式凝汽器中循环冷却水也是能够进行完热交换,之后再经由循环水泵将循环冷却水送到间接空冷系统中,然后借助于间接空冷系统进行统一的冷却,而循环水泵则是应该布置在空冷塔附近。

在空冷塔进风口处的圆周上三角垂直布置空冷散热器,每一个冷却三角进风口处都有布置能够调开度的百叶窗。

1.火力发电厂循环水泵系统分析本工程在1号机组和2号机组这两者之间设置一座间接空冷塔,循环水泵的位置在塔热水入口侧。

两台机组共用一个循环水泵房,其位置就在冷却塔的附近。

每一台机组都配备三台循环水泵,循环水泵主要就是利用定速电机来进行工作[1]。

两台机组间冷系统主要就是通过单元制的模式进行运行,每一台机组在任何的情况下都是必须得投入最少两台循环水泵,这主要就是因为本项目的循环水泵是使用定速电机。

单台泵在实际的运行过程中系统总水阻比较低,泵运行点和设计点也是偏离较大,进而循环水泵电机则是存在着较大的过载风险。

如果在冬季的时候单台循环水泵运行,那当运行泵出现故障的时候将会使得管束出现冰冻的情况,如下图1:当两台机组在夏季并且不同负荷情况下运行的时候,空冷塔内的热空气气流将会产生相互作用,这样也就会使得高负荷机组的空冷散热器冷却能力下降。

330MW火力发电厂直接空冷冬季防冻探讨

330MW火力发电厂直接空冷冬季防冻探讨

330MW火力发电厂直接空冷冬季防冻探讨摘要:在北方地区干旱少雨,水资源匮乏,在影响机组容量的情况下,空冷机组以其节水效果明显成为这些地区的首选。

然而北方地区冬夏季气温相差很大,空冷系统受气温的影响较大,根据已有的运行可以总结本应注意的几点:凝结水的过冷度和其在运行中的控制,汽轮机冬季运行的最低背压,真空抽汽温度和凝结水温度,空冷凝汽器散热管束表面温差。

我们在运行中总结了一些结论,以供同类型空冷机组运行参考。

关键词:空冷系统;空冷凝汽器;防冻措施1直接空冷系统概述:本工程#1,2机直接空冷凝汽器采用机械通风直接空冷凝汽器(ACC)系统,由首航艾启威冷却技术(北京)有限公司国内整岛采购。

每个ACC系统包括下列主要部分:6列凝汽器,管束采用单排管,每列包括5个冷凝单元,5个冷凝单元中有3个顺流单元和2个混流单元,共设5套通风系统(每个凝汽器单元一套),风机采用变频控制。

该系统的抽真空系统,配置了 3 x 100%容量的水环式机械真空泵。

整个ACC系统布置在汽轮机房A柱外侧的35米标高的高强钢平台上,四周设置了挡风墙。

汽轮机的排汽进入排汽装置经一根DN6000mm的排汽管道引入直接空冷凝汽器中凝结成水,凝结水由冷凝水收集系统回收至排汽装置里内置的凝结水箱。

为了保证ACC系统冬季运行的安全在第3,4,5,6列的排汽进汽管道上装设排汽隔离阀,另外每台机还设置了一套高压水清洗设备以保证冷凝单元换热面的清洁。

2运行方式/方法描述由汽轮机排出需要冷凝的蒸汽通过排气管道进入冷凝器系统,然后通过蒸汽分配管道被提供到冷凝器管束,在那里被部分地冷凝;在冷凝器换热管内,冷凝液与蒸汽同向流,部分没有冷凝的蒸汽经由冷凝液集管,进入分凝器并在那里冷凝。

在换热管内,冷凝液的流向与蒸汽的方向相反;不凝气体排进分凝器的上部;它们将在抽气系统抽走并排放到大气中去;产出的冷凝液依靠重力作用,通过冷凝液管道进入排汽装置;排汽装置位于汽轮机排气管道的最低点,收集聚积在管道中的冷凝液;冷凝所需要的冷却空气由轴流风机从周围环境中抽入并供应给翅片管束的冷却表面;冷却空气的流速随变速电机速度的变化而变化;3在启动过程中的防冻措施1)冬季启动初期,按空冷防冻措施中规定:空冷开始进汽后,进汽量必须在30分钟内达到其额定汽量的20%(大约132t/h)。

发电厂直接空冷机组防冻安全策略

发电厂直接空冷机组防冻安全策略

浅谈发电厂直接空冷机组防冻安全策略[摘要]对霍林河坑口发电有限责任公司2×600mw直接空冷机组冬季运行经验,浅析直接空冷机组在低温环境下运行中存在的问题,提出直接空冷机组,在低温环境中安全运行需要采取的安全措施,重点检查部位及时检查调整,防止机组冬季冰冻现象的发生。

[关键词]直接空冷机组防冻措施检查调整中图分类号:tu855 文献标识码:a 文章编号:1009-914x(2013)14-0319-02前言我国富源辽阔,矿产资源北方居多,而水利资源却恰恰相反,又伴随着全球气候变暖,近20年来我国北方降水量减少,从原来周期性缺水变为终年缺水。

直接空冷机组成为我国北方缺水富煤地区电力企业建厂的必然选择,另一方面某些电力企业为了降低生产成本,保证电力企业持续发展,也相应发展直接空冷机组。

根据已投运生产单位统计,与同容量机组比较,直接空冷机组比湿冷机组节水70%左右,与间接空冷相比,具有占地面积小、环保等优点,但是直接空冷机组仍然存在在冬季低温环境下机组启停或者低负荷运行时容易结冻等问题,直接影响到机组的安全稳定运行,成为直接空冷机组发展的瓶颈。

1 直接空冷机组霍林河坑口发电有限责任公司2×600mw为两台国产亚临界参数直接空冷燃煤机组。

汽轮机选用按照引进技术进行设计和制造的亚临界参数、一次中间再热、单轴、三缸四排汽、直接空冷凝汽式汽轮机。

空冷岛共设计56个空冷单元,每7个空冷单元(顺5、逆2)组成一列a型框架,每列框架上有一根蒸汽分配联箱组成,总共组成8列a型框架。

空冷岛标高45m。

2 直接空冷机组冬季运行存在的问题在环境温度极低的冬季,直接空冷机组在启、停过程或低负荷运行时,空冷凝汽器易发生集水联箱、管路、阀门冻结现象,直接影响到机组的安全稳定运行。

2.1 蒸汽流量和热力分配不均2.1.1 机组启动阶段在锅炉、汽机均为冷态启动时,汽压和汽温会不匹配,可能出现汽压低、汽温高,蒸汽流量小的现象,难以同时满足汽机冲转和空冷最低进汽量的要求;同时大量疏水进入本体疏水扩容器,70%左右疏水通过本体疏水泵加压后排入凝结水箱,30%左右扩容蒸汽则排入空冷凝汽器系统;而且并网前期发电机空负荷试验时间较长,进入空冷凝汽器系统的蒸汽量较少。

空冷系统

空冷系统



空冷系统防冻逻辑
1)环境温度持续低于-3℃五分钟时,启动防冻保护。当环境温度持续高于+3℃五分钟时,防冻保护 关闭。 2)当冷凝水温度之一低于25℃,汽机背压设定值增加3kPa。30分钟后如果冷凝水温度仍旧低于 25℃,再随后增加3kPa。 3)逆流风机(每排的3,6单元)依次间隔地停止运行5分钟。 4)空冷启动期间当环境温度低于-10℃时,3、4、5、6排的逆流风机(3,6单元)以20HZ反转,当某列抽 汽温度高于30℃时,该列反转结束。 注:在空冷运行过程中,抽气温度低时,可以在手动模式下,反转逆流风机(反转仅限于逆流风机), 风机反转前必须确证所要反转的风机已停转。
• • • • • • • • • • 1)轴流风机风筒与风机桥架的连接螺栓应无松动。 2)轴流风机轮毂与减速箱输出轴的锁紧螺栓应锁紧。 3)检查轴流风机轮毂轴套与风机轮毂支板的连接螺栓应锁紧。 4)检查风机叶片安装角度应一致。 5)检查现场清洁无杂物。 6)检查电动机和启动设备的接地装置应完整良好,接线良好。 7)检查齿轮箱油位、油温正常(否则启动电加热器)。 8)启动齿轮油泵,油压正常。 9)初次或大修后启动时先点动变频器开关,使风机转动(时间不超过30秒),检查风 机旋转方向是否正确,迎气流看风机叶轮应顺时针方向旋转。 10)试转测定风机的振动值,风机允许振动值小于6.3mm/s,否则应停机检查,查明原 因,排除故障后方可重新启动运转。
单元模块
低压饱和乏汽
排出的不凝气体含20公斤/时 空气和48公/时的蒸汽
蒸汽含量99.999%和20公斤/时空气进入空冷
蒸汽
冷却用风
逆流管束.蒸汽和冷 却水的方向相反
顺流管束.蒸汽和冷 却水的方向一直
冷却水
未被冷却的蒸汽和不凝气体 进入逆流管束

火电厂直接空冷系统变频调速及效果分析

火电厂直接空冷系统变频调速及效果分析
工 业 技 术
Ci w e no—a _= c ha e T h —i d_ us nN c o—sn Pd t l e |o g兰 r
火 电厂 直接 空冷 系统 变频调 速及 效 果分析
高正 斌
( 神华 陕西国华锦界能源有限责任公 司, 陕西 神 木 7 9 0 ) 13 0
高。 统 的 2~ 0 0 3 %。 1 . 2交流 输入 电抗 器 2 . 2空气 冷却 的缺点 当电 网波形 畸 变严 重 ,或配 置直 流 电抗 ( 由 于空 气 比热小 , 冷却 效 果 取 决 于 1 ) 且 器后变 频器 和 电源之 间 高次 谐波 的相 互 影响 空气 的 干球 温度 ,不 能将 流体 冷却 到 环境 气 还 不 能满 足要求 时 , 可增 设交 流 输入 电抗 器 。 温 。 交 流输 入 电抗器 还 可提 高变 频器 输入 侧 的功 f 空气侧 换 热系 数低 , 气 比热 小 , 以 2 ) 空 所 空冷 器需 用较 大 的面积 。 率 因数 。 f 空冷 器性 能受 环境 气 温 、 雪 、 3 ) 雨 大风 的 1 . 3变频 器 变频器 的 功率选 择 要考 虑满 足完 全 风机 影 响 。 驱动 系统 的运行 和 由 电机 、 轮 箱 、 齿 电缆 及滤 f1 冷 器不 能 靠 近大 的建 筑 物 , 4空 以免 形 波器 导致 的功率 损失 。其作 用 如下 : 成热 风再 循环 。 ( ) 节 电源输 出频 率 , 1调 频率 取在 额 定转 ( 空冷 器要 求采用 特殊 制造 的翅片 管。 5 1 速 的 0 10 %~ 1 %。 3空 冷风 机变 频调 速节 能原 理 ( )通 过正 反转 切 换端 子实 现风 机 和 电 2 根据 空冷 机 组不 同 的蒸 汽负 荷及 环境 温 动机 的正 向和 反 向旋 转 。 度 ,通 过变 频器 调节 空 冷轴 流冷 却风 机 的转 控制 在 ( ) 现过 压 、 3实 过流 、 地 、 路等 保 护功 速 , 风机 的启 停 , 节能 方面 的效 益 是显 接 短 能。 而 易见 的 。 风机类 设 备多 数采 用异 步 电动机 , ( ) 现 电动机 的软启 动 。 4实 直接 启 动存 在着 启动 电流大 、 械 冲击 、 机 电气 1 . 流输 出 电抗 器 4交 保护特性差等缺点 , 不仅影响设备使用寿命 , 当变 频 器 到 电 机 的 连线 超 过 8 时 , 而 且 当负载 出现 机械 故 障 时不能 瞬 间动 作保 0m 建议 采用 多绞 线并 安装 可 抑制 高频 振荡 的交 护 设备 ,会 出现风 机损 坏 、电机 被烧 毁 的现 流输 出 电抗器 , 免 电机绝 缘 损坏 、 电流 过 象 。根 据 电动机 的特性 可知 电动机 的调 速原 避 漏 大和 变频 器频 繁保 护 。 理, 异步 电动 机输 出轴 转速 ( 称 电机 转 速 ) 简 1 电动机 . 5 为: 下 汽轮 机需 要 的运 行条 件 , 操作 简便 , 制灵 控

某电厂间接空冷投运防冻分析及措施

某电厂间接空冷投运防冻分析及措施

某电厂间接空冷投运防冻分析及措施【摘要】某电厂间接空冷系统为引进的新设备、新工艺、新技术,目前,间接空冷系统在全国使用不是很广泛。

因此从生产厂家、安装、调试单位、生产单位对间接空冷系统的运行操作、特别是冬季运行防冻运行操作,均无足够经验。

因此对空冷系统操作能力的培训和提高是十分必要的。

通过机组冲转过程中,对空冷投入运行控制的经验教训(机组运行期间,间接空冷管束多出冻裂,隔离8个冷却面,百叶窗卡涩一组)。

通过分析论证,制定了行之有效的防冻措施,保证了间接空冷的安全稳定运行。

【关键词】间接空冷;防冻;扇区;百叶窗本工程间接空冷系统采用某公司生产的表凝式间接空冷系统(ISC系统)。

汽轮机的排汽进入主机表凝式间接空冷系统统一进行冷却。

两台机组共配置2座自然通风间冷塔,采用一机一塔方案。

两台机组共用1座循环水泵房,循环水泵布置在空冷塔附近。

1 间接空冷散热器管束冻结原因分析1.1 循环水流量调整不当,造成流过散热器管束的流体流速下降,发生冻结。

有研究表明,当外界环境温度为负值时,如果水在管内流动呈层流状态,即可出现结冰。

圆管内水流速越低,管径越小,管内流体雷诺数越小,如果低于临界雷诺数(约为2300)则管内水流为层流状态。

我们以西北某发电厂空冷设计参数为例,冷却三角为双流程、双排管束,每个冷却三角有160根管束,一座空冷塔共28320根基管。

每根基管外径为25.4mm,管壁厚为1mm,计算基管总流通面积约12.3m2。

当两台循泵运行、其中一台变频运行,总流量按照最低流量为38000t/h计算,通过每根基管的流速为0.86m/s。

计算雷诺数为112299,远大于临界雷诺数。

以上数据表明在正常运行中一般不会出现基管内水流处于层流的情况。

但并不表示紊流状态的水不会发生冻结。

1.2 环境温度过低,百叶窗调整不当造成散热器出水过冷。

间接空冷系统中循环冷却水采用自然冷却塔的冷却方式,空冷散热器以垂直环形布置在自然冷却塔底部的进风口,暴露在大气环境中。

发电厂直接空冷系统采用变频控制应用问题

发电厂直接空冷系统采用变频控制应用问题

发电厂直接空冷系统采用变频控制应用问题摘要本文介绍了目前火力发电厂直接空玲系统的现状,变频器应用的可行性和必要性及变频器选择的常规要求。

关键词直接空冷;冷却风机;变频器中图分类号tm6 文献标识码a 文章编号 1674-6708(2012)68-0127-020 引言空冷系统是指汽轮机的排汽或凝结排汽的冷却水被进人由翅片管束组成的冷却器管内,由横掠翅片管外侧的空气进行凝结或冷却的整个过程。

冷却器管内流体不与空气直接接触,而湿式冷却的塔内空气直接与冷却水接触并靠蒸发和对流冷却,故空冷系统可节省湿式冷却系统的蒸发、风吹和排污损失的水量,达到节约水资源的目的[1,2]。

空冷系统分为直接空冷系统和间接空冷系统。

直接空冷系统根据通风方式分为机械通风和自然通风。

间接空冷系统根据配用的凝汽器分为表面式凝汽器和混合式凝汽器。

综合比较而言,直接空冷系统具有冷却效率高、占地面积小、投资较省、系统调节灵活、冬季运行防冻性能好等特点,目前国内正在进行的空冷电厂大多采用机械通风直接空冷系统。

1 接空冷系统简要原理及冷却风机配置概述对于直接空冷来说,其主要作用就是通过空气与蒸汽间进行热交换,利用用空气来冷凝汽轮机的排汽。

其中,机械通风方式供应系统所需要的冷却空气,这就是机械通风直接空冷系统基本特点,这种系统往往代替常规水冷却凝汽器,而安装在机组布置在汽轮机下方,主要是按照布置在主厂房外的空气冷却凝汽器为主,其中,空气冷凝汽轮机的排汽,热交换在空气与蒸汽之间进行。

另外,对于许多翅片管组成的凝汽器来说,排气管道送至室外的空气冷却凝汽器对于汽轮机排汽来说尤为重要,这是因为在此过程中,空气流过凝汽器翅片管束的外表面在轴流冷却风机的作用下,可以通过排汽冷凝咸水,然后利用重力自流的作用下,可以把凝结水集于布置在下方的凝水箱内,然后,汽轮机的回热系统内接受凝结水泵送回来。

对于由若干台空冷凝汽器构成的空冷凝汽器系统来说,台轴流风机都应该配置在每台空冷凝汽器上,另外,一般在高度为20m~45m 的空冷平台上安装。

发电厂汽轮机空冷的原理

发电厂汽轮机空冷的原理

发电厂汽轮机空冷的原理
发电厂汽轮机的空冷是通过空气冷却器来实现的。

空气冷却器是一种设备,可以将空气流经汽轮机的热交换表面,从而带走汽轮机工作时产生的热量,实现汽轮机的空冷。

具体原理是,空气冷却器内部有一系列的热交换表面,通过这些表面对空气进行冷却。

当空气流经这些热交换表面时,空气会吸收汽轮机产生的热量,从而冷却下来。

冷却后的空气会继续循环流动,从而形成了汽轮机的空冷循环系统。

空气冷却器通过这种方式可以将汽轮机产生的热量带走,从而保持汽轮机的工作温度在合适的范围内,确保汽轮机的正常运行。

同时,空气冷却器还可以提高汽轮机的工作效率,减少能源的消耗,对环境也有一定的保护作用。

大型发电厂空冷塔的施工质量控制措施

大型发电厂空冷塔的施工质量控制措施
图1 建设 中的 空冷塔
基施工期间为初春 ,草帘子须覆盖2层。在混凝土达到一
定 强度后 ,将筒 壁模板 拆除 进行刷养 护液 养护 。
2 工 程 难 点
工 程 难 点 主 要 有 :环 形 基 础 为 大 体 积 钢 筋 混凝 土 , 水 化热 及 裂缝 控制 难度 大 ;环梁 支 撑排 架高 度2 6 m ,属 于 高 支模 ;X 形 支柱 高度 2 6 m、截面 大且 倾斜 7 0 。 ,需 分次 支 模 、分 次 浇筑 ,支撑 排 架需 特别 设 计 ;环梁 钢 筋 密 、半径
。 。 l l
囊 鬻 i i ≯ 囊 磐
i j
0 . 5 m模板改为1 . 3 mX 1 . 0 m大模板。 改变以往上下模板连
2 0 1 3 . 7 B u i l d i n g C 。 n s t r u c t i 。 n I 6 1 7
大; 筒壁高度1 5 7 m、垂直运输与水平运输难度大 ,混凝土
浇灌难度大 ;筒壁外形呈双曲线,半径控制难度大。
( 4: 6) 局部填平,外面用塑料薄膜包裹严密 ( 图2) 。
3 . 4 风 筒施工
风筒 施 工 时要 求在 模板 外 侧拉 设半 径 ,用 经纬 仪 测量 每节 中 心点标高 ,以保证 中心及 半径准确 无误 。 风筒 施 工也采 用大模 板 的方式 ,把传 统 使用 的1 - 3 m X
1 工 程 概 况
国 电库 车 发 电 厂 空冷 塔 工程 位 于 新 疆 维 吾 尔 自治 区 库 车县 城 西北 约 7 k m。 空冷塔 出 口高度 1 5 7 m、进 风 口高 度2 6 . 6 m, 出 口@ 8 4 m,进 风 口面 积8 6 5 0 m ,喉 部 高度 1 2 3 m, 喉 部 8 2 m。筒 身结 构 为 为双 曲线 钢 筋 混凝 土薄 Biblioteka 3 . 3 X 形柱施工

浅谈空冷岛系统的防冻处理

浅谈空冷岛系统的防冻处理

浅谈空冷岛系统的防冻处理发布时间:2021-06-23T02:30:05.189Z 来源:《中国电业》(发电)》2021年第5期作者:王贵文[导读] 1.1直接空冷系统,又称空冷岛,是指将汽轮机的乏气直接用空气来冷凝,所需冷却空气通常由机械通风方式供应,其散热器是由外表面镀锌的椭圆形钢管外套矩形钢翅片的若干个管束组成的。

晋能控股电力集团阳高热电公司山西阳高 038100摘要:北方地区缺水情况比较严重,针对缺水问题北方火电厂凝汽器排汽冷却系统采用空冷岛系统。

直接空冷系统具有环保、节能、节水等主要特点,空冷技术在北方大型火电厂应用比较广泛。

由于空冷机组在启动初期和低负荷运行期间,蒸汽流量较少,翅片管存在不同程度的冻结现象,给运行调整带来较大安全隐患。

本文主要对350MW空冷机组空冷岛防寒防冻进行分析探讨以提高机组经济性和安全性。

关键词:空冷岛防冻措施汽轮机;翅片管1、空冷岛系统概述1.1直接空冷系统,又称空冷岛,是指将汽轮机的乏气直接用空气来冷凝,所需冷却空气通常由机械通风方式供应,其散热器是由外表面镀锌的椭圆形钢管外套矩形钢翅片的若干个管束组成的。

采用直接空冷系统的优点为大幅减少了需水量,一次性投资低,易于在所有大气温度下实现冷却空气的均匀和稳定分布。

其缺点是风机消耗电力,冷却空气与汽轮机乏气直接进行热交换。

1.2阳高热电公司空冷系统采用直接空冷系统,空冷岛的主要组成部分包括:(1)汽轮机低压缸排汽管道;(2)空冷凝汽器管束;(3)凝结水系统;(4)抽气系统;(5)疏水系统;(6)通风系统;(7)直接空冷支撑结构;(8)自控系统;(9)清洗装置。

主要运行原理为:把由蒸汽轮机的低压缸内做完功后的乏气从汽轮机的尾部引入大口径的蒸汽管道,输送到汽轮机房之外的空冷平台上,再经过配气管送到众多翅片管换热管束内,外界的空气由大径轴流风机驱动穿越翅片管束的翅片间隙,继而把翅片管束内的蒸汽冷凝成凝结水,使其重力回流到凝汽器内。

火力发电厂直接空冷系统运行导则.

火力发电厂直接空冷系统运行导则.

【火力发电厂直接空冷系统运行导则】二次修改稿目录1 范围 (2)2 规范性引用文件 (2)3 术语和定义 (3)4 总则 (4)5 直接空冷系统的启动与停运 ....................................................................... 错误!未定义书签。

6 直接空冷系统的运行与试验 (5)7直接空冷系统故障诊断.................................................................................. 错误!未定义书签。

附录A 600MW空冷机组背压运行限制曲线示例 .. (16)附录B 汽轮机组空冷系统最小热负荷表 (17)附录C 蒸汽压力与饱和温度对照表 (18)(正文)1 范围1.1本导则规定了火力发电厂直接空冷系统运行的一般性原则及要求。

1.2本导则适用于新建、改(扩)建和运行的直接空冷机组。

2 规范性引用文件下列文件对于本导则的引用是必要的。

凡是注日期的引用文件,其仅注日期的版本适用于本导则;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本导则。

GB3095-2012 环境空气质量标准GB13223-2011 火电厂大气污染物排放标准GB12348-2008 工业企业厂界环境噪声排放标准GB 50660-2011 大中型火力发电厂设计规范DL/T552-1995 火力发电厂空冷塔及空冷凝汽器试验方法DL/T244-2012 直接空冷系统性能试验规程DL/T245-2012 发电厂直接空冷凝汽器单排管管束DL/T 932-2005 凝汽器与真空系统运行维护导则VG DL/T 1052-2007 节能技术监督导则VGB-R 131 Me导则:《空冷凝汽器在真空状态下的验收试验测量和运行监控》3 术语和定义直接空冷系统----以环境空气作为冷源,通过空冷凝汽(散热)器将汽轮机的排汽直接冷凝成水的系统。

空冷系统简介

空冷系统简介

1空冷系统简介空冷技术方案介绍在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。

直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。

混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。

表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。

1.1.1 直接空冷系统直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。

空冷凝汽器布置在汽机房A列外的高架空冷平台上。

直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。

其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。

1.1.2 表凝式间接空冷系统表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。

该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。

表凝式间接空冷与直接空冷相比,其特点是:冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。

发电厂直接空冷技术简介

发电厂直接空冷技术简介

发电厂直接空冷技术简介一、火力发电厂机组冷却方式分类1.1、湿式冷却方式。

湿式冷却方式分直流冷却和冷却塔2种。

湿式直流冷却一般是从江、河、湖、海等自然水体中罗致必定量的水作为冷却水,冷却工艺离心机汲取废热使水温升高,再排入江、河、湖、海。

当不具备直流冷却条件时,则需要用冷却塔来冷却。

冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气。

1.2、干式冷却方式。

在缺水地区,增补因在冷却过程中损失的水非常难题,采用空气冷却的方式能很好地办理这一问题。

空气冷却过程中,空气与水(或排汽)的热交换,是通过由金属管组成的散热器表面传热,将管内的水(或排汽)的热量传输给散热器外活动的空气。

当前,用于发电厂的空冷系统主要有3种,即直接空冷系统、带表面式凝汽器的间接空冷系统(哈蒙式空冷系统)和带喷射式(混淆式)凝汽器的间接空冷系统(海勒式空冷系统)。

直接空冷便是利用空气直接冷凝从汽轮机的排气,空气与排气通过散热器进行热互换。

海勒式间接空冷系统主要由喷射式凝汽器和装有福哥型散热器的空冷塔形成,系统中的高纯度中性水进入凝汽器直接与凝汽器排汽混归并将加热后的冷凝水绝大部门送至空冷散热器,颠末换热后的冷却水再送至喷射式凝汽器进行下一个循环。

少少一部分中性水经由精处置惩罚后送回锅炉与汽机的水循环系统。

哈蒙式间接空冷系统又称带表面式凝汽器的间接空冷系统,在该系统中冷却水与汽锅给水是离开,如此就保证了锅炉给水水质。

哈蒙式空冷系统由表面式凝汽器与空冷塔构成,系统与通用的湿冷系统无比相似[1,2]。

据统计目前世界上空冷系统的装机容量中,直接空冷系统约占43%,表面式凝汽器间接空冷系统约占24%,混合式凝汽器间接空冷系统约占33%。

二、直接空冷系统的工作原理汽轮机排汽在空冷凝汽器中被空气冷却而凝结成水,排汽与空气之间的热交流是在表面式空冷凝汽器内完成。

在直接空冷换热历程中,应用散热器翅片管外侧流过的冷空气,将凝汽器中从处于真空状况下的汽轮机排挤的热介质饱和蒸汽冷凝,末了冷凝后的固结水经处理后送回锅炉。

660MW空冷真空系统

660MW空冷真空系统
空冷Βιβλιοθήκη 和真空系统空冷岛的工作原理
• 利用每一单元的风机通过改变风机的频率 来冷却管束中的蒸汽,从而形成一定温度 的凝结水。
空冷岛图片
空冷系统蒸汽流程
• 排汽装置通过向大气释放热量对汽机排汽 进行冷凝。直接空冷系统,即汽轮机排汽 直接进入空冷冷却再回到排汽装置,其冷 凝水由凝结水泵排入汽轮机组的回热系统。
直接空冷(ACC)系统投运前检查与准备
• 检查空冷风机风筒与风机桥架的连接螺栓应无松动; • 检查空冷风机轮毂与变速箱输出轴的锁紧螺栓应锁紧; • 检查空冷风机轮毂轴套与风机轮毂支板的连接螺栓应锁紧; • 检查空冷风机轮毂上夹紧叶片安装角度应一致; • 检查空冷风机叶片安装角度应一致; • 检查空冷风机叶轮应灵活、无阻滞和卡涩现象; • 现场清理干净,空冷风机防护网上无杂物; • 检查空冷风机电机接地装置应完整良好;
• 2)检查所有风机转速已到底限 • 3)依次停运1~8列#7风机 • 4)依次停运1~8列#1风机 • 5)依次停运1~8列#5风机 • 6)依次停运1~8列#2风机 • 7)依次停运1~8列#4风机 • 8)依次停运1~8列3、#6风机 • 9)风机在停止过程中,先停隔离列的风机,再逐步停未隔离列的风
50Hz);
• B.冬季启动顺序: • 4列#3、#6风机(15~30Hz); • 5列#3、#6风机(15~30Hz); • 3列#3、#6风机(15~30Hz); • 6列#3、#6风机(15~30Hz); • 2列#3、#6风机(15~30Hz); • 7列#3、#6风机(15~30Hz); • 1列#3、#6风机(15~30Hz); • 8列#3、#6风机(15~30Hz); • 随负荷及背压升高,逐渐提高风机转速
• 检查真空泵组接线牢固,地脚螺栓牢固,联轴器防护罩完 整,检查真空泵出口分离器水位及补水压力正常,开分离 器补水手动阀,补水至正常水位,投入分离器水位自动。

浅谈发电厂空冷岛直接冷却系统

 浅谈发电厂空冷岛直接冷却系统

空冷对环境的影响甚微。

经验表明,由大型的通风系统口排放出的一些气体,是看不见的,它们都对流到了空气中,不会让人发觉,当然,并不会对环境造成不良影响。

并且,空冷系统是完全没有污染的,所以,也可以使水资源不受到污染,当然,也不会有淋水噪音的影响,有利于环境保护。

所以,空冷技术是一种经济实惠的发展,安全又可靠,使环境承受的压力变小了,也为水资源丰富的地区保持生态平衡创造了条件。

在一些水资源缺乏的地方,需要大规模的开发能源,以确保生活的正常运行,所以,发电厂空冷技术作为一个节能环保的措施,应该得到广泛采用。

我国的水资源、电力、煤炭等资源在东西南北发展及其不平衡,大概是因为我国疆域辽阔的原因,地理差异情况非常大,久而久之,一些地方会出现一些我们不愿意看见的情况,用水紧张,会让生活中产生一些困扰,这些问题值得我们仔细探究,找着适当的方法去解决,否则将会变得越来越严重。

我国西北和华北等地区,煤矿资源丰富,但是水资源缺乏。

从而使煤矿转化为电力也愈加困难。

而在一些水资源相对充足的地区,如果一些设施不合理,环境受到污染不说,周围的生物或者说生态系统也会受到一定的伤害。

人类的关注也愈加集聚到这些地方。

所以,要想经济持续发展,需要有效地利用水资源。

所以,在一些水资源贫乏的地区,发电厂采用空冷技术将会成为必然。

汽轮机排出的空气用于冷却火力发电的这一冷却模式,早在上个世纪30年代,就有国家重视了,并且还在随后的十几年已成功地建立了若干空冷发电厂,使电厂空冷技术的发展日趋成熟和完善。

这是空冷发电技术的使用。

我们的空冷电站技术自20世纪50年代开始技术更加成熟,产能增加,越来越多的应用于各个领域,从南到北,从人民群众的关注程度来看,这都是显而易见的,所以它的前景发展也是越来越好的。

1三种空气冷却系统的发展情况现在,用于发电厂的空冷系统主要有3种,即直接空冷系统、表凝式间接空冷系统和混凝式间接空冷系统。

直接空冷系统特点较多,比如系统比较简单,可以很灵活的调节空气量,而且设备比较少,用起来更为方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电厂空冷系统及其控制1 概述空冷系统主要指汽轮机的排汽通过一定的装置被空气冷却为凝结水的系统,它与常规湿式冷却方式(简称湿冷系统)的主要区别是避免了循环冷却水在湿塔中直接与空气接触所带来的蒸发、风吹损失以及开式循环的排污损失,消除了蒸发热、水雾及排污水等对环境造成的污染。

由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的上述各种损失,从而使电厂的全厂总耗水量降低80%左右。

用于电厂机组末端冷却的空冷系统主要有直接空冷系统和间接空冷系统,间接空冷系统又分为带表面式凝汽器和带混合式凝汽器的两种系统。

三种空冷方式在国际上都得到广泛的应用,技术均成熟可靠,在国际上三种空冷方式单机容量均已达到600MW。

采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。

特别在富煤缺水地区大力发展大型空冷机组对节约水资源和电力工业可持续发展具有重大的战略意义。

内蒙古地区煤资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。

目前建设的电厂空冷控制系统大多直接纳入机组DCS系统,空冷系统采用独立的冗余DPU。

控制系统功能包括数据采集和处理系统(DAS)、顺序控制系统(SCS)、模拟量控制系统(MCS)。

空冷系统在集中控制室实现集中监控,由DCS的操作员站完成对其工艺系统的程序启/停、中断控制及单个设备的操作。

2 间接空冷系统间接空冷系统又分为带混合式凝汽器(海勒式)和带表面式凝汽器(哈蒙式)的两种系统。

2.1混合式间接空冷系统(海勒式)混合式间接空冷系统工艺流程是汽轮机尾部排汽排至安装在汽机房内的混合式凝汽器内与喷射成水膜的循环水直接接触冷却,混合的冷凝水一小部分经精处理后送至再热系统,其余的经循环水泵升压后回至室外的空冷塔,进入安装在塔底部的表面式空冷凝汽器内与空气进行表面式换热冷却,冷却后的循环水通过水轮机或节流阀调压后回至混合式凝汽器循环使用。

混合式凝汽器的间接空冷系统主要由喷射式凝汽器和空冷塔构成。

系统中的冷却水是高纯度的中性水,中性冷却水进入凝汽器直接与汽轮机排汽混合并将其冷凝,受热后的冷却水绝大部分由冷却水循环泵送至空冷塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。

空冷塔散热器外侧装有百叶窗,百叶窗的开度可调,可控制通风量,从而控制冷却性能。

当环境温度较低时,关闭百叶窗,防止散热器冻坏。

系统特点:两次换热、凝结水与循环水混合冷却、运行分正压和微正压两部分,因此,需要设大规模的精处理设备,与其它空冷方式相比增设了水轮机和调节阀大型设备,系统复杂,循环水泵必须紧靠凝汽器布置,为防止水泵汽蚀需设大型泵坑,需设大型冷却塔,因此,基建投资高,优点是年平均背压低。

带混合式凝汽器的间接空冷系统的优点是以微正压的低压水系统运行,较易掌握。

缺点是设备多、系统复杂、需要凝结水精处理装置、自动控制系统复杂、全铝制散热器的防冻性能差。

2.2表面式间接空冷系统(哈蒙式)表面式间接空冷系统与常规湿冷系统基本相同,不同的是空冷塔代替湿冷塔。

工艺流程为汽轮机尾部排汽排至安装在汽机房内的表面式凝汽器内,经与循环水换热后,由凝结水泵升压回至再热系统,换热后的循环水回至安装在室外空冷塔内的表面凝汽器内,与空气换热后经循环水泵升压,送回至汽机房内的表面式凝汽器循环使用。

该系统由表面式凝汽器与空冷塔构成。

与常规的湿冷系统基本相仿,不同之处是用表面式对流换热的空冷塔代替混合式蒸发冷却换热的湿冷塔,通常用不锈钢管凝汽器代替铜管凝汽器,用碱性除盐水代替循环水,用密闭式循环冷却水系统代替开敞式循环冷却水系统。

该系统采用自然通风方式冷却,将散热器装在自然通风冷却塔中。

系统特点:循环水与凝结水分为两个系统,两水质可按各自的要求分别处理,系统简单、设备少,缺点是因两次换热,热效率相对较低,需要大量的冷却面积、设大型冷却塔,因此基建投资高。

带表面式凝汽器的间接空冷系统类似于湿冷系统,其优点是节约厂用电,设备少,冷却水系统与汽水系统分开,两者水质可按各自要求控制。

缺点是空冷塔占地大,基建投资多,系统中需进行两次换热,且都属表面式换热,使全厂热效率有所降低。

2.3 间接空冷控制系统本文以2X200MW空冷机组为例,介绍海勒式间接空冷系统的控制。

1)主要监控测点:补水流量、凝汽器水位、凝汽器真空、贮水箱水位、凝汽器喷咀前后差压、循环水泵出口压力、水轮机入口、出口压力、扇形段顶部压力、扇形段出口水温、扇形段百叶窗开度、塔内温度、排汽温度。

2)主要监控内容:凝汽器水位控制:热力系统中的汽水损失、系统泄漏等,均可引起凝汽器水位的变化。

运行中要维持凝汽器水位在一定范围内。

系统总压力(或竖管压力)控制:海勒式间接空冷系统的特点是系统处于微正压运行状态。

在每一扇形段的顶部安装一根竖管。

正常运行时竖管的水位是通过水轮机(或节流阀)的调节来完成。

在调节水轮机(或节流阀)的同时,相应控制了凝汽器喷咀前后差压,即控制了进入凝汽器的冷却水量。

循环水泵的控制:循环水泵及其出口阀按照程序启停。

正常时两台循环水泵同时运行。

水轮机(或节流阀)的控制:水轮机的作用,一是回收能量,二是调节系统总压力(或竖管压力)及凝汽器喷咀前后差压。

节流阀作为备用,水轮机故障时切换至节流阀。

百叶窗控制:控制百叶窗的目的是改变其开度,从而调节散热器的通风量,达到调节冷却水温的作用。

在冬季,关闭百叶窗可以保护散热器免遭冻坏。

空冷塔扇形段控制:整个空冷塔中的散热器分成六个扇形段,运行中根据大气温度调整扇形段投入的数量,获得在不同负荷时的较好的冷却效果。

贮水箱水位控制:在空冷系统停运或凝汽器水位过高时,将扇形段冷却水排至贮水箱。

补水阀控制:当凝汽器水位低于设定值时,开启补水阀向凝汽器补水。

3 直接空冷系统电厂直接空冷系统是汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。

电厂直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Air cooled condenser)、空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。

蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道向空冷冷凝器分配蒸汽。

目前直接空冷凝汽器大多采用矩形翅片椭园管芯管的双排、三排管和大口径蛇形翅片的单排管。

空冷凝汽器由顺流管束和逆流管束两部分组成。

顺流管束是冷凝蒸汽的主要部分,可冷凝75%~80%的蒸汽,在顺流管束中,蒸汽和凝结水是同方向移动的。

设置逆流管束主要是为了能够比较顺畅地将系统内的空气和不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区、冬季形成冻结的情况,在逆流管束中,气体和凝结水是反方向移动的。

冷凝所需要的冷空气由轴流冷却风机从大气中吸入,并吹向换热器翅片。

风机采用变频控制,系统可通过控制启停风机台数和对风机转速进行调整来控制进风量,能灵活的适应机组变工况运行,并且起到很好的防冻作用。

抽真空系统由3X100%水环真空泵组成。

泵连接逆流管束的的顶部和主排汽管道。

在启动的时候,不凝气体在抽真空系统中被压缩,并排到大气中。

在部分排汽支管道上设置蒸汽隔离阀(启动排不设蒸汽隔离阀),当冬季汽轮机低负荷运行或启动时,切断某几个散热端的阀门,将热量集中在剩余的散热端中,增加热负荷达到防冻目的。

为防止灰尘附着凝汽器翅片影响系统散热效果,设立冲洗系统,冲洗系统由冲洗水泵以及管道阀门组成。

为减少系统容积,大型机组的空冷凝汽器一般布置在紧靠汽机房A列柱外的平台上。

为适应机组变工况运行和维护,空冷凝汽器被分为几组,每组由相同冷却单元组成,每个冷却单元由“人”型的冷却器排架构成,每个冷却单元下面设一台轴流风机。

直接空冷系统为一次冷却,直接空冷系统的主要优点有:不需中间换热介质,换热温差大,冷凝效果好;冬季防冻措施比较灵活可靠;占地少;节省投资。

不足之处是:汽轮机背压变幅大;真空系统庞大;风机群噪声大;厂用电高。

3.1直接空冷控制系统本文以2X300MW空冷机组为例,介绍直接空冷系统的控制。

1)主要监控测点:排汽压力、环境温度、大气压力、风速风向、凝结水温度、抽气温度、抽气压力、排汽管道凝结水收集装置液位、阀门位置显示和控制、空冷风机变频控制、抽真空系统、ACC清洗系统2)主要监控内容:控制系统通过控制启停风机台数和改变风机转速来改变通过冷凝器换热片的空气流量,从而控制ACC性能。

三个压力传感器测量排汽管道压力。

在正常运行时,排汽压力是主控制变量。

控制系统通过排汽压力控制变频风机,当排汽压力改变时,风机转速也改变,以确保提前设定的运行工况。

ACC的压力控制器和抽气温度控制器/凝结水温度控制器联合工作。

如果压力是主控变量,温度控制器最小选择器被启动。

一旦实际测得的温度降到设定值以下,这一排的温度控制器会覆盖压力控制器的信号,转为温度控制。

其他排只要是凝结水/抽气温度还没有到达设定值之下,仍然是压力控制。

每个覆盖行为都会显示在人机界面上。

当排汽压力是主控制变量时,只要其在设定值范围内,控制系统正常运行。

为了避免单个单元凝结水过冷,控制变量排汽压力能自动被凝结水温度/抽气温度取代。

在温度控制模式下,依据抽气温度和凝结水管道的凝结水温度来调节风机转速。

检测环境温度可以保护ACC不被冻结。

在更差的工况,风机全部关闭,然后关闭个别的蒸汽隔离阀以减少换热面积。

为了加强系统监控,在冬季寒冷期,系统运行必须为自动控制。

在冬季运行中如出现异常,控制系统及时发出指令,调整运行,同时发出警报,提请运行人员注意。

3)风机变频控制每台300MW机组共30台变频控制柜,负责控制空冷机组30台风机的启停和转速调节。

其中控制逆流管束单元风机变频柜6台,控制顺流管束单元风机变频柜24台。

该控制装置具有调节风机转速的功能,并具有自动、手动两种控制方式。

当在手动工作状态时,可以通过空冷平台的就地按钮对风机手动启停。

也可以通过控制柜上变频器操作面板对风机的运行进行控制以及变频器参数的设定。

当在自动工作状态时,变频器投入运行,在集中控制室可以自动控制风机的最佳运行状态。

由集中控制室输出频率控制信号对风机的转速进行控制,变频控制柜反馈电流和频率信号送入集中控制室。

3.2直接空冷系统运行在每种运行模式(手动/自动,夏季,冬季,压力控制,温度控制)下,ACC都有运行级别:启动准备、启动运行、正常运行、低负荷运行、关闭运行、非正常运行、紧急运行。

在“手动”模式下,整个系统完全手动运行,这种模式仅在调试和测试时使用,更经济的运行方式是自动运行。

1)启动准备ACC启动前提:管道伴热运行(仅在冬季)、汽轮机密封系统已运行、补水系统在运行、汽轮机旁路系统准备运行、汽轮机真空破坏阀关闭、抽气泵启动、主凝汽器系统启动2) ACC的启动(1)夏季启动夏季启动模式是环境温度高于+2℃。

相关文档
最新文档