高考数学二次函数最值

合集下载

专题08分类讨论思想在二次函数最值中的应用-备战2020高考技巧大全之高中数学黄金解题模板(原卷版)

专题08分类讨论思想在二次函数最值中的应用-备战2020高考技巧大全之高中数学黄金解题模板(原卷版)

【高考地位】分类讨论思想是一种重要的数学思想方法,它在人类的思维发展中起着重要的作用. 分类讨论思想实际上是一种化整为零、化繁为简、分别对待、各个击破的思维策略在数学解题中的运用. 二次函数在闭区间上最值问题在高考各省市的考题中经常出现,由于二次函数分类讨论参变量取不同的值时,可引起函数性质的变化,因此研究二次函数在区间上的最值问题常见处理方法是有必要的.【方法点评】类型求二次函数最值问题使用情景:二次函数在区间上的最值问题解题模板:第一步通过观察函数的特征,分析二次函数的表达式中是否具有参数,且参数的位置在什么位置;第二步通过讨论二次函数的对称轴和已知区间之间的关系进行分类讨论;第三步根据二次函数的图像与性质可判断函数在区间上的单调性,并根据函数的单调性求出其最值;第四步得出结论. 例1已知函数()yf x 是二次函数,且满足(0)3f ,(1)(3)0f f (1)求()yf x 的解析式;[来源:学*科*网](2)若[,2]x t t ,试将()y f x 的最大值表示成关于t 的函数()g t .例2 已知函数2(=(0,,)f x ax bx c a b R c R ),若函数()f x 的最小值是(1)0,(0)1f f 且对称轴是1x ,()(0)()()(0)f x xg x f x x .(1)求(2)(2)g g 的值;(2)在(1)条件下求()f x 在区间,2t t ()t R 的最小值.【变式演练1】已知函数2()21f x x ax ,[来源:Z&xx&](1)求()f x 在区间1,2的最小值()g a ;(2)求()f x 在区间1,2的值域【变式演练2】设函数2(),,f x x ax b a b R .(1)当2a 时,记函数|()|f x 在[0,4]上的最大值为()g b ,求()g b 的最小值;(2)存在实数a ,使得当[0,]xb 时,2()6f x 恒成立,求b 的最大值及此时a 的值.[来源:学,科,网]【变式演练3】记函数2()f x ax bx c (a ,b ,c 均为常数,且0a ).(1)若1a ,c f bf (c b ),求2f 的值;(2)若1b ,a c 时,函数x f y 在区间[1,2]上的最大值为()g a ,求()g a .【变式演练4】已知二次函数2()y f x x bx c 的图象过点)13,1(,且函数y 1()2f x 是偶函数.(1)求()f x 的解析式;(2)已知2t ,x x x f x g ]13[2,求函数x g 在]2,[t 上的最大值和最小值;(3)函数()y f x 的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.[来源:学_科_网]【高考再现】1. 【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b<0”是“f (f (x ))的最小值与f (x )的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2. 【2015高考湖北,文17】a 为实数,函数错误!未找到引用源。

高考数学中的二次函数问题解析

高考数学中的二次函数问题解析

高考数学中的二次函数问题解析高考数学是很多学生最为担心的科目之一,其中涉及到的二次函数问题更是令学生头疼不已。

二次函数在高中数学中的重要性不言而喻,其解题方法多种多样,需要学生有一定的数学基础和逻辑思维能力。

在本文中,将着重解析高考数学中的二次函数问题,让学生能够更好地应对考试。

一、二次函数的基本形式二次函数是高中数学的一个重要概念,也是高考的重点内容之一。

二次函数的一般式为:y = ax² + bx + c其中,a、b、c 分别为实数,二次函数的图像为开口朝上或开口朝下的抛物线。

a 的取值决定了二次函数的开口方向和大小,当a > 0 时,抛物线开口朝上,当 a < 0 时,抛物线开口朝下;而 b 和c 的取值则分别影响抛物线的位置和与坐标轴的交点。

二、二次函数的求根公式在解决二次函数的问题时,一个常见的问题是求解方程ax² + bx + c = 0其中,a、b、c 分别为实数。

由于一般的二次方程不易直接求解,因此需要使用二次函数的求根公式:x1,2 = (-b ± √(b² - 4ac)) / 2a其中,+/- 代表正负号取两种情况,√ 表示开方,a、b、c 分别代表一般式中的系数。

需要注意的是,在运用此公式求解时,首先应该对给定方程进行分类讨论,判断它的解的数量与情况。

三、二次函数的最值问题另一个常见的二次函数问题是求取最值。

通过对一般式 y = ax²+ bx + c 的求导,我们可以得到其导函数为:y' = 2ax + b当 y' = 0 时,可以求得此时的 x 值,即为二次函数的极值点。

根据抛物线的开口方向,可以推断出该点是函数的最大值或最小值。

此外,需要注意的是,当 a > 0 时,抛物线开口朝上,其最小值为 y = c - b² / 4a;而当 a < 0 时,抛物线开口朝下,其最大值为y = c - b² / 4a。

二次函数-高考数学复习

二次函数-高考数学复习
3 − 2, < 1.
PART3Fra bibliotek微专题 3
一元二次方程根的分布
目录
解决由一元二次方程根的分布情况,确定方程中系数的取值范围
问题,主要从以下三个方面建立关于系数的不等式(组)进行求解:
(1)判别式Δ的符号;

(2)对称轴 x =- 与所给区间的位置关系;
2
(3)区间端点处函数值的符号.
一元二次方程根的分布问题,类型较多,情况较复杂,但
+2) x + c ,
因为 g ( x )为偶函数,所以 g (- x )= g ( x ),
即 x 2-( b +2) x + c = x 2+( b +2) x + c ,可得 b =-2,
所以 f ( x )= x 2-2 x + c ,图象开口向上,对称轴为直线 x =1.
若选条件①,因为函数 f ( x )在区间[-2,2]上的最大值为5,所以 f
A. [-6,2]
B. [—6,1]
C. [0,2]
D. [0,1]

解析: 函数 f ( x )=-2 x 2+4 x 的对称轴为直线 x =1,则 f
( x )在[-1,1]上单调递增,在[1,2]上单调递减,∴ f ( x )max
= f (1)=2, f ( x )min= f (-1)=-2-4=-6,即 f ( x )的
∴ f ( x )=-4 −
1 2
+8=-1,解得 a =-4,
2
1 2
+8=-4 x 2+4 x +7.
2
法三(利用二次函数的零点式)
由已知 f ( x )+1=0的两根为 x 1=
2, x 2=-1,
故可设 f ( x )+1= a ( x -2)( x +1)( a ≠0),

高考数学中的二次函数基本概念及相关性质

高考数学中的二次函数基本概念及相关性质

高考数学中的二次函数基本概念及相关性质高考数学中,二次函数是一个非常基础、重要的概念。

本文将从基本概念和相关性质两个方面,详细介绍二次函数的相关知识点。

一、基本概念二次函数,也叫做二次多项式函数,是指一个以x为自变量,x的二次多项式为函数值的函数,通常可以表示为y=ax²+bx+c。

其中,a、b、c分别是常数,a≠0。

1. 函数图像:二次函数的图像通常是一条开口朝上或开口朝下的抛物线。

如果a>0,则抛物线开口朝上;如果a<0,则抛物线开口朝下。

图像中的对称轴为x=-b/2a,抛物线的顶点坐标为(-b/2a, c-b²/4a)。

2. 零点:二次函数的零点是指函数图像与x轴的交点。

求二次函数的零点有两种方法:一种是利用求根公式,即x=[-b±√(b²-4ac)]/2a;另一种是将二次函数化为标准的完全平方公式,即y=a(x-h)²+k,其中(h, k)为抛物线的顶点坐标,直接利用完全平方公式求零点。

3. 对称性:二次函数具有轴对称性,即对于任意一点(x, y),点(-x, y)也在函数图像上。

二、相关性质除了基本概念外,二次函数还有一些重要的性质,这些性质通常在高考中频繁出现,需要认真掌握:1. 二次函数的最值:由于二次函数的函数图像是一条抛物线,因此其最值一定发生在抛物线的顶点处。

当a>0时,二次函数的最小值等于c-b²/4a,发生在点(-b/2a, c-b²/4a);当a<0时,二次函数的最大值等于c-b²/4a,发生在点(-b/2a, c-b²/4a)。

2. 二次函数的单调性:当a>0时,二次函数在其零点左右是单调递减和单调递增的;当a<0时,二次函数在其零点左右是单调递增和单调递减的。

3. 二次函数的导数:二次函数的导数f'(x)=2ax+b,是一个一次函数。

2023年高考数学一轮复习精讲精练(新高考专用)专题:二次方程根的分布与二次函数在闭区间上的最值归纳

2023年高考数学一轮复习精讲精练(新高考专用)专题:二次方程根的分布与二次函数在闭区间上的最值归纳

专题06:二次方程根的分布与二次函数在闭区间上的最值归纳精讲温故知新1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a例1:1.(多选)若关于x 的方程2(1)+2=0x m x m ---的两根为正数(包含等根),则m 的取值可以是( )A .122--B.-C .1.9 D .1.99【答案】BCD 【解析】 【分析】由一元二次函数零点的分布可得答案. 【详解】由题意,构建函数2()(1)2f x x m x m =--+-,因为关于x 的方程2(1)20x m x m --+-=的两根为正数(包含等根), 所以()()()2Δ142010200m m m f ⎧=---⎪-⎪>⎨⎪>⎪⎩, 解得122m -+<, 故选:BCD. 2.已知函数()2()23f x x ax a a R =-+-∈.(1)若1a =时,求()f x 在区间1[,3]2上的最大值和最小值; (2)若()f x 的一个零点小于0,另一个零点大于0,求a 的范围. 【答案】(1) max 5y =;min 1y = ;(2)3a > 【分析】(1)求出函数的对称轴,再判断对称轴与区间的位置关系,从而得到函数的最值; (2)由题意得(0)0f <,即可得到答案; 【详解】(1)当1a =时,函数的对称轴为11[,3]2x =∈,∴min ()(1)1f x f ==,15(),(3)524f f ==, ∴max ()5f x =。

浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第2节二次函数习题(含解析)

浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第2节二次函数习题(含解析)

第2节 二次函数考试要求 1.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题;2.能解决一元二次方程根的分布问题;3.能解决二次函数的最值问题.知 识 梳 理1.二次函数表达式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x +h )2+k (其中a ≠0,顶点坐标为(-h ,k )).(3)零点式:y =a (x -x 1)(x -x 2)(其中a ≠0,x 1,x 2是二次函数的图象与x 轴的两个交点的横坐标).2.二次函数y =ax 2+bx +c 的图象和性质3.二次函数的最值问题二次函数的最值问题主要有三种类型:“轴定区间定”“轴动区间定”“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:4.一元二次方程根的分布设方程ax2+bx+c=0(a≠0)的不等两根为x1,x2且x1<x2,相应的二次函数为f(x)=ax2+bx+c(a≠0),方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是等价条件)表一:(两根与k的大小比较)表二:(根在区间上的分布)若两根有且仅有一根在(m ,n )内,则需分三种情况讨论:①当Δ=0时,由Δ=0可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去;②当f (m )=0或f (n )=0,方程有一根为m 或n ,可以求出另外一根,从而检验另一根是否在区间(m ,n )内;③当f (m )·f (n )<0时,则两根有且仅有一根在(m ,n )内. [常用结论与易错提醒]不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0. (2)不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果二次函数f (x )的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为f (x )=(x -1)2-1.( )(2)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是⎝ ⎛⎭⎪⎫120,+∞.( )(3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )答案 (1)√ (2)√ (3)× (4)×2.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A.5 B.-5 C.6D.-6解析 由f (1)=f (2)=0知方程x 2+px +q =0的两根分别为1,2,则p =-3,q =2,∴f (x )=x 2-3x +2,∴f (-1)=6.答案 C3.若方程x 2+(m +2)x +m +5=0只有负根,则m 的取值范围是( ) A.[4,+∞) B.(-5,-4] C.[-5,-4]D.(-5,-2)解析 由题意得⎩⎪⎨⎪⎧Δ=(m +2)2-4×(m +5)≥0,x 1+x 2=-(m +2)<0,x 1x 2=m +5>0,解得m ≥4.答案 A4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为( ) A.[0,1] B.[1,2] C.(1,2]D.(1,2)解析 画出函数y =x 2-2x +3的图象(如图),由题意知1≤m ≤2.答案 B5.已知方程x 2+(m -2)x +2m -1=0的较小的实根在0和1之间,则实数m 的取值范围是 .解析 令f (x )=x 2+(m -2)x +2m -1.由题意得 ⎩⎪⎨⎪⎧f (0)>0,f (1)<0,即⎩⎪⎨⎪⎧2m -1>0,1+(m -2)+2m -1<0, 解得12<m <23.答案 ⎝ ⎛⎭⎪⎫12,23 6.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是 ,且函数f (x )恒过点 .解析 二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2.由函数的解析式易得,函数f (x )恒过定点(0,2). 答案 (-∞,-2] (0,2)考点一 二次函数的解析式 【例1】 求下列函数的解析式:(1)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8;(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ). 解 (1)法一(利用一般式解题): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二(利用顶点式解题): 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴二次函数图象的对称轴为x =2+(-1)2=12,∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式解题):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7. (2)∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象在x 轴上截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又∵f (x )的图象过点(4,3),∴3a =3,∴a =1. ∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.规律方法 用待定系数法求二次函数的解析式,关键是灵活选取二次函数解析式的形式,选法如下:【训练1】 若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )= .解析 由f (x )是偶函数知f (x )的图象关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],∴2a 2=4,故f (x )=-2x 2+4.答案 -2x 2+4考点二 二次函数的图象与性质【例2】 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =-1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4, 故a 的取值范围是(-∞,-6]∪[4,+∞).(3)由-4≤|x |≤6,得-6≤x ≤6,当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0, 其图象如图所示,∴f (|x |)在[-6,6]上的单调区间有[-6,-1),[-1,0),[0,1),[1,6]. 规律方法 解决二次函数图象与性质问题时要注意:(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论; (2)要注意数形结合思想的应用.【训练2】 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )(2)若函数f (x )=ax 2+2x +3在区间[-4,6]上是单调递增函数,则实数a 的取值范围是W.解析 (1)由A ,C ,D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A ,C 错误,D 满足要求;由B 知f (0)=c >0, 所以ab >0,所以对称轴x =-b2a<0,B 错误.(2)由题意可知f ′(x )=2ax +2≥0在[-4,6]上恒成立, 所以⎩⎪⎨⎪⎧f ′(-4)=-8a +2≥0,f ′(6)=12a +2≥0,所以-16≤a ≤14.答案 (1)D (2)⎣⎢⎡⎦⎥⎤-16,14考点三 二次函数的最值【例3-1】 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.【例3-2】 将例3-1改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a , (1)当-a <12,即a >-12时,f (x )max =f (2)=4a +5;(2)当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.规律方法 研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.【训练3】 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.考点四 一元二次方程根的分布 多维探究角度1 两根在同一区间【例4-1】 若二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求实数m 的取值范围. 解 线段AB 的方程为x 3+y3=1(x ∈[0,3]), 即y =3-x (x ∈[0,3]),由题意得方程组:⎩⎪⎨⎪⎧y =3-x ,y =-x 2+mx -1, 消去y 得x 2-(m +1)x +4=0,①由题意可得,方程①在x ∈[0,3]内有两个不同的实根,令f (x )=x 2-(m +1)x +4,则⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0≤m +12≤3,f (0)=4≥0,f (3)=10-3m ≥0,解得⎩⎪⎨⎪⎧m <-5或m >3,-1≤m ≤5,m ≤103,所以3<m ≤103.故实数m 的取值范围是⎝⎛⎦⎥⎤3,103.角度2 两根在不同区间【例4-2】 求实数m 的取值范围,使关于x 的方程x 2+2(m -1)x +2m +6=0. (1)一根大于1,另一根小于1; (2)两根α,β满足0<a <1<β<4; (3)至少有一个正根.解 令f (x )=x 2+2(m -1)x +2m +6, (1)由题意得f (1)=4m +5<0,解得m <-54.即实数m 的取值范围是⎝⎛⎭⎪⎫-∞,-54. (2)⎩⎪⎨⎪⎧f (0)=2m +6>0,f (1)=4m +5<0,f (4)=10m +14>0,解得⎩⎪⎨⎪⎧m >-3,m <-54,m >-75,所以-75<m <-54.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-75,-54.(3)当方程有两个正根时,⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)>0,f (0)=2m +6>0,-2(m -1)>0, 解得-3<m <-1.当方程有一个正根一个负根时,f (0)=2m +6<0,解得m <-3. 当方程有一个根为零时,f (0)=2m +6=0,解得m =-3, 此时f (x )=x 2-8x ,另一根为8,满足题意. 综上可得,实数m 的取值范围是(-∞,-1). 角度3 在区间(m ,n )内有且只有一个实根【例4-3】 已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 依题意,得(1)⎩⎪⎨⎪⎧m >0,Δ=(-2)2-4m >0,无解.f (0)<0, (2)⎩⎪⎨⎪⎧m <0,Δ=(-2)2-4m >0,解得m <0.f (0)>0,(3)⎩⎪⎨⎪⎧m ≠0,Δ=(-2)2-4m =0. 解得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点. 综上所述,m 的取值范围是(-∞,0]∪{1}.规律方法 利用二次函数图象解决方程根的分布的一般步骤: (1)设出对应的二次函数;(2)利用二次函数的图象和性质列出等价不等式(组); (3)解不等式(组)求得参数的范围.【训练4】 (1)已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.(2)若关于x 的方程x 2+2(m -1)x +2m +6=0有且只有一根在区间(0,3)内,求实数m 的取值范围.解 (1)令f (x )=(m +2)x 2-(2m +4)x +(3m +3).由题意可知(m +2)·f (1)<0, 即(m +2)(2m +1)<0,所以-2<m <-12.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. (2)令f (x )=x 2+2(m -1)x +2m +6,①⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)=0,0<-(m -1)<3, 解得⎩⎪⎨⎪⎧m =-1或m =5,-2<m <1,所以m =-1.②f (0)·f (3)=(2m +6)(8m +9)<0, 解得-3<m <-98.③f (0)=2m +6=0,即m =-3时,f (x )=x 2-8x ,另一根为8∉(0,3),所以舍去; ④f (3)=8m +9=0,即m =-98时,f (x )=x 2-174x +154,另一根为54∈(0,3),满足条件.综上可得,-3<m ≤-98或m =-1.所以实数m 的取值范围是⎝⎛⎦⎥⎤-3,-98∪{-1}.基础巩固题组一、选择题1.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A.a >0,4a +b =0 B.a <0,4a +b =0 C.a >0,2a +b =0D.a <0,2a +b =0解析 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0.答案 A2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]解析 f (x )的对称轴为x =1,由f (x )在[0,1]上递减知a >0,且f (x )在[1,2]上递增,f (0)=f (2),∵f (m )≤f (0),结合对称性,∴0≤m ≤2. 答案 D3.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2D.-2解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 答案 B4.已知函数f (x )=x 2-2ax +b (a ,b ∈R ),记f (x )在[a -b ,a +b ]上的最大值为M ,最小值为m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 无关,且与b 无关 C.与a 有关,但与b 无关D.与a 无关,但与b 有关解析 函数f (x )=x 2-2ax +b =(x -a )2-a 2+b ,所以f (x )的对称轴为x =a 且开口向上,因为区间[a -b ,a +b ]也关于x =a 对称,所以m =f (a )=b -a 2,M =f (a -b )=f (a +b )=b 2-a 2+b ,所以M -m =b 2,故选D. 答案 D5.(2019·嘉兴检测)若f (x )=x 2+bx +c 在(m -1,m +1)内有两个不同的零点,则f (m -1)和f (m +1)( ) A.都大于1 B.都小于1 C.至少有一个大于1D.至少有一个小于1解析 设函数f (x )=x 2+bx +c 的两个零点为x 1,x 2,则f (x )=(x -x 1)(x -x 2),因为函数f (x )=x 2+bx +c 的两个零点在(m -1,m +1)内,所以f (m -1)>0,f (m +1)>0,又因为f (m-1)f (m +1)=(m -1-x 1)(m -1-x 2)·(m +1-x 1)(m +1-x 2)=[-(m -1-x 1)(m +1-x 1)]·[-(m -1-x 2)(m +1-x 2)]<[-(m -1-x 1)+(m +1-x 1)]24·[-(m -1-x 2)+(m +1-x 2)]24=1,所以f (m-1)和f (m +1)至少有一个小于1,故选D. 答案 D6.若函数f (x )=x 2+kx +m 在[a ,b ]上的值域为[n ,n +1],则b -a ( ) A.既有最大值,也有最小值 B.有最大值但无最小值 C.无最大值但有最小值D.既无最大值,也无最小值解析 取k =m =n =0,f (x )=x 2,由图象可知,显然b -a 不存在最小值.∵f (a )=a 2+ka +m ,f (b )=b 2+kb +m ,f ⎝ ⎛⎭⎪⎫a +b 2=⎝ ⎛⎭⎪⎫a +b 22+k ⎝ ⎛⎭⎪⎫a +b 2+m ,∴(b -a )22=f (a )+f (b )-2f ⎝ ⎛⎭⎪⎫a +b 2≤n +1+n +1-2n =2,∴b -a ≤2,当b =2-k 2,a =-2+k2时,b -a 取得最大值为2,故选B. 答案 B7.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b24,当x =-b 2时,f (x )min =-b 24.又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件. 答案 A8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集不可能是( ) A.{1,2} B.{1,4} C.{1,2,3,4}D.{1,4,16,64}解析 ∵f (x )=ax 2+bx +c (a ≠0)的对称轴为x =-b2a .设方程m [f (x )]2+nf (x )+p =0的解为f 1(x ),f 2(x ),则必有f 1(x )=y 1=ax 2+bx +c ,f 2(x )=y 2=ax 2+bx +c ,那么从图象上看y =y 1,y =y 2是平行x 轴的两条直线,它们与f (x )有交点, 由对称性,方程y 1=ax 2+bx +c =0的两个解x 1,x 2应关于对称轴x =-b2a 对称,即x 1+x 2=-ba ,同理方程y 2=ax 2+bx +c =0的两个解x 3,x 4也关于对称轴x =-b2a对称, 即x 3+x 4=-b a,在C 中,可以找到对称轴直线x =2.5,也就是1,4为一个方程的根,2,3为一个方程的根,而在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎样分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能. 答案 D9.(2019·衢州二中二模)已知函数f (x )=x 2+ax +b (a ,b ∈R ),若存在非零实数t ,使得f (t )+f ⎝ ⎛⎭⎪⎫1t =-2成立,则a 2+4b 2的最小值为( )A.165B.145C.16D.4 解析 由f (t )+f ⎝ ⎛⎭⎪⎫1t =-2知,存在实数t ≠0,使⎝ ⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0成立,又a 2+4b 2的几何意义为坐标原点与点(a ,2b )的距离的平方,记2b =m ,u =t +1t,则u 2≥4.故⎝ ⎛⎭⎪⎫t +1t 2+a ⎝⎛⎭⎪⎫t +1t +2b =0,即ua +m +u 2=0,其表示动点(a ,m )的轨迹,设为直线l ,则原点与点(a ,m )的距离的最小值为原点到直线l 的距离,故a 2+4b 2≥⎝ ⎛⎭⎪⎫u 2u 2+12=⎝⎛⎭⎪⎫u 2+1-1u 2+12≥165,故选A. 答案 A 二、填空题10.已知b ,c ∈R ,函数y =x 2+2bx +c 在区间(1,5)上有两个不同的零点,则f (1)+f (5)的取值范围是 .解析 设f (x )的两个零点为x 1,x 2,不妨设1<x 1<x 2<5,则f (1)>f (x 1)=0,f (5)>f (x 2)=0,所以f (1)+f (5)>0.另一方面f (x )=(x -x 1)·(x -x 2),所以f (1)+f (5)=(1-x 1)·(1-x 2)+(5-x 1)(5-x 2)=2x 1x 2-6(x 1+x 2)+26<2x 1x 2-12x 1x 2+26=2(x 1x 2-3)2+8<2(25-3)2+8=16,所以f (1)+f (5)的取值范围是(0,16).答案 (0,16)11.已知f (x )=⎩⎪⎨⎪⎧x 2(x ≥t ),x (x <t ),若存在实数t ,使函数y =f (x )-a 有两个零点,则t 的取值范围是 .解析 由题意知函数f (x )在定义域上不单调,如图,当t =0或t ≥1时,f (x )在R 上均单调递增,当t <0时,在(-∞,t )上f (x )单调递增,且f (x )<0,在(t ,0)上f (x )单调递减,且f (x )>0,在(0,+∞)上f (x )单调递增,且f (x )>0.故要使得函数y =f (x )-a 有两个零点,则t 的取值范围为(-∞,0)∪(0,1).答案 (-∞,0)∪(0,1)12.(2019·诸暨统考)已知a ,b 都是正数,a 2b +ab 2+ab +a +b =3,则2ab +a +b 的最小值等于 .解析 设2ab +a +b =t ,则t >0,且3=ab (a +b )+ab +a +b =ab (t -2ab )+t -ab ,故关于ab 的二次方程2(ab )2+(1-t )ab +3-t =0的解为正数,所以⎩⎪⎨⎪⎧Δ=(1-t )2-8(3-t )≥0,t -12>0,3-t 2>0,解得42-3≤t <3,即2ab +a +b 的最小值等于42-3.答案 42-313.已知f (x +1)=x 2-5x +4. (1)f (x )的解析式为 ;(2)当x ∈[0,5]时,f (x )的最大值和最小值分别是 . 解析 (1)f (x +1)=x 2-5x +4,令x +1=t ,则x =t -1, ∴f (t )=(t -1)2-5(t -1)+4=t 2-7t +10,∴f (x )=x 2-7x +10.(2)∵f (x )=x 2-7x +10,其图象开口向上,对称轴为x =72,72∈[0,5],∴f (x )min =f ⎝ ⎛⎭⎪⎫72=-94, 又f (0)=10,f (5)=0.∴f (x )的最大值为10,最小值为-94.答案 (1)x 2-7x +10 (2)10,-9414.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .解析 若λ=2,则当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,得1<x <2.综上可知1<x <4,所以不等式f (x )<0的解集为(1,4).令x -4=0,解得x =4;令x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.答案 (1,4) (1,3]∪(4,+∞)能力提升题组15.(2019·杭州质检)设函数f (x )=x 2+ax +b (a ,b ∈R ),记M 为函数y =|f (x )|在[-1,1]上的最大值,N 为|a |+|b |的最大值( ) A.若M =13,则N =3B.若M =12,则N =3C.若M =2,则N =3D.若M =3,则N =3解析 由题意得|f (1)|=|1+a +b |≤M ⇒|a +b |≤M +1,|f (-1)|=|1-a +b |≤M ⇒|a -b |≤M +1.|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,则易知N ≤M +1,则选项A ,B 不符合题意;当a =2,b =-1时,M =2,N =3,则选项C 符合题意;当a =2,b =-2时,M =3,N =4,则选项D不符合题意,故选C. 答案 C16.(2019·丽水测试)已知函数f (x )=x 2+ax +b ,集合A ={x |f (x )≤0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪f (f (x ))≤54,若A =B ≠∅,则实数a 的取值范围是( )A.[5,5]B.[-1,5]C.[5,3]D.[-1,3]解析 设集合B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n },其中m ,n 为方程f (x )=54的两个根,因为A =B ≠∅,所以n =0且m ≤f (x )min ,Δ=a 2-4b ≥0,于是f (n )=f (0)=b =54,则由a 2-4b =a 2-5≥0得a ≤-5或a ≥5,令t =f (x )≤0,则由f (f (x ))≤54得f (t )≤54,即t 2+at +54≤54,解得-a ≤t ≤0,所以B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n }={x |-a ≤f (x )≤0},解得m =-a ,所以-a ≤f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=⎝ ⎛⎭⎪⎫-a 22+a ·⎝ ⎛⎭⎪⎫-a 2+54,解得-1≤a ≤5.综上所述,实数a 的取值范围为[5,5],故选A. 答案 A17.已知二次函数f (x )=ax 2+bx (|b |≤2|a |),定义f 1(x )=max{f (t )|-1≤t ≤x ≤1},f 2(x )=min{f (t )|-1≤t ≤x ≤1},其中max{a ,b }表示a ,b 中的较大者,min{a ,b }表示a ,b 中的较小者,下列命题正确的是( ) A.若f 1(-1)=f 1(1),则f (-1)>f (1) B.若f 2(-1)=f 2(1),则f (-1)>f (1) C.若f 2(1)=f 1(-1),则f 1(-1)<f 1(1) D.若f 2(1)=f 1(-1),则f 2(-1)>f 2(1)解析 对于A ,若f 1(-1)=f 1(1),则f (-1)为f (x )在[-1,1]上的最大值,∴f (-1)>f (1)或f (-1)=f (1),故A 错误;对于B ,若f 2(-1)=f 2(1),则f (-1)为f (x )在[-1,1]上的最小值,∴f (-1)<f (1)或f (-1)=f (1),故B 错误;对于C ,若f 2(1)=f 1(-1),则f (-1)为f (x )在[-1,1]上的最小值,而f 1(-1)=f (-1),f 1(1)表示f (x )在[-1,1]上的最大值,∴f 1(-1)<f 1(1),故C 正确;对于D ,若f 2(1)=f 1(-1),由新定义可得f 1(-1)=f 2(-1),则f 2(1)=f 2(-1),故D 错误,综上所述,故选C. 答案 C18.(2019·绍兴适应性考试)已知a >0,函数f (x )=|x 2+|x -a |-3|在[-1,1]上的最大值是2,则a = .解析 由题意知f (0)≤2,即有||a |-3|≤2,又∵a >0,∴||a |-3|≤2⇒|a -3|≤2⇒1≤a≤5.又∵x ∈[-1,1],∴f (x )=|x 2-x -3+a |≤2,设t =x 2-x -3,则t ∈⎣⎢⎡⎦⎥⎤-134,-1,则原问题等价于t ∈⎣⎢⎡⎦⎥⎤-134,-1时,|t +a |=|t -(-a )|的最大值为2,∴a =3或a =54. 答案 3或5419.已知方程x 2+bx +c =0在(0,2)上有两个不同的解,则c 2+2(b +2)c 的取值范围是 .解析 设方程x 2+bx +c =0在(0,2)上的两个根为α,β,α≠β,则f (x )=x 2+bx +c =(x -α)(x -β),0<α<2且0<β<2,所以c 2+2(b +2)c =f (0)·f (2)=αβ(2-α)(2-β)≤⎣⎢⎡⎦⎥⎤α+(2-α)22⎣⎢⎡⎦⎥⎤β+(2-β)22=1,又0<α<2且0<β<2,所以αβ(2-α)(2-β)>0,所以c 2+2(b +2)c 的取值范围是(0,1]. 答案 (0,1]20.已知函数f (x )=ax +3+|2x 2+(4-a )x -1|的最小值为2,则a = .解析 令g (x )=2x 2+(4-a )x -1=0,Δ=(4-a )2+8>0,则g (x )=0有两个不相等的实数根,不妨设为x 1,x 2(x 1<x 2),则x 1=a -4-(4-a )2+84,x 2=a -4+(4-a )2+84,当x ∈[x 1,x 2]时,f (x )=ax +3-[2x 2+(4-a )x -1]=-2x 2+(2a -4)x +4,当x ∈(-∞,x 1)∪(x 2,+∞)时,f (x )=ax +3+[2x 2+(4-a )x -1]=2(x +1)2≥0,因为f (x )的最小值为2,则f (x )min =min{f (x 1),f (x 2)},即ax 1+3=2或ax 2+3=2,解得a =12.答案 12。

二次函数的最值与最值点

二次函数的最值与最值点

二次函数的最值与最值点二次函数是指具有形式为f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0.在数学中,我们常常关注二次函数的最值与最值点,它们对于函数图像的形状与性质具有重要意义。

一、二次函数的最值最值是指函数在定义域内所能取得的最大值或最小值。

对于二次函数而言,其最值与函数的开口方向有关。

1. 当二次函数的抛物线开口向上时,函数的最值为最小值。

在这种情况下,最小值点是抛物线的顶点,也是二次函数的最值点。

2. 当二次函数的抛物线开口向下时,函数的最值为最大值。

同样地,最大值点也是抛物线的顶点,它也是二次函数的最值点。

二、如何求二次函数的最值要求二次函数的最值与最值点,需要进行一些计算与分析。

1. 首先,可以通过计算二次函数的导数,找出导数为零的点。

导数为零的点对应的x坐标就是二次函数的最值点的横坐标,也就是x值。

2. 其次,通过将x值代入二次函数中,可以求得相应的y值,即最值点的纵坐标。

这个y值就是二次函数的最值,它可以是最大值或最小值。

三、举例说明假设有二次函数f(x) = -3x² + 6x + 2,我们来求解它的最值与最值点。

1. 首先,计算导数f'(x) = -6x + 6,并令其为零,解得x = 1。

这说明x = 1是二次函数的最值点的横坐标。

2. 将x = 1代入原函数f(x)中,得到f(1) = -3(1)² + 6(1) + 2 = 5。

因此,最值点的纵坐标为y = 5,即最值为最小值。

综上所述,对于给定的二次函数,我们可以通过计算导数来求解最值点的横坐标,并通过代入求得相应的纵坐标,从而得到最值与最值点的具体数值。

最值与最值点对于理解二次函数的图像特征和函数性质具有重要作用,它们帮助我们分析和预测函数在不同区间内的变化趋势,为实际问题的求解提供了依据。

2021届高三数学之函数与导数(文理通用)专题07 二次函数综合问题

2021届高三数学之函数与导数(文理通用)专题07 二次函数综合问题

专题07 二次函数综合问题一.考情分析二次函数2(0)y ax bx c a =++≠是初中函数的主角,所蕴含的函数性质丰富,千变万化,但又是基础的基础,万变不离宗。

所以二次函数也是高中学习的重要基础.与其他知识交汇的最值问题以及恒成立问题是目前高考中最基础的两个考试方向。

复合函数也越来越重要。

所以二次函数的学习,都显示的特别重要。

二.经验分享1.二次函数解析式的三种形式:①一般式方程:y =ax 2+bx +c (a ≠0).②顶点式方程:y =a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). ③零点式方程:y =a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点.2.二次函数的图象和性质 解析式y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象对称性函数的图象关于x =-b2a对称最值当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;函数取最小值y =244ac b a-.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a;函数取最大值y =244ac b a-.3.恒成立问题①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或00a <⎧⎨∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。

三、题型分析(一)二次函数之恒成立与存在性问题例1 已知函数().222m mx x x f -+-=(1)若不等式()mx x f -≥在R 上恒成立,求实数m 的取值范围;(2)记(){},10,≤≤==x x f y y A 且[),,∞+⊆0A 求实数m 的最大值。

2020高考数学专项训练《31闭区间上二次函数的最值问题》(有答案)

2020高考数学专项训练《31闭区间上二次函数的最值问题》(有答案)

专题31 闭区间上二次函数的最值问题例题:已知函数f(x)=x 2-ax +1,求函数f(x)在区间[-1,1]上的最值.变式1已知函数f(x)=x 2-2ax +2,当x ∈[-1,1]时,f(x)≥a 恒成立,求实数a 的取值范围.变式2求二次函数f(x)=ax 2+(2a -1)x -3(a ≠0)在区间⎣⎡⎦⎤-32,2上的最大值.串讲1已知函数f(x)=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________________.串讲2若f(x)=1-2a -2a cos x -2sin 2x 的最小值为g(a). (1)求g(a)的解析式;(2)求能使g(a)=12的a 值,并求出当a 取此值时,f(x)的最大值.若函数f(x)=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,证明M -m的值与b 无关.已知a 为实数,函数f(x)=x 2+|x -a|+1,x ∈R . (1)求f (x )的最小值;(2)若a >0,g (x )=f (x )+a |x |,求g (x )的最小值.答案:(1)f (x )min=⎩⎪⎨⎪⎧34+a ,a ≥12,a 2+1,-12<a <12,34-a ,a ≤-12.(2)g (x )min=⎩⎨⎧a +1,a ≥1,-a 2+6a +34,13≤a <1,2a 2+1,0<a <13.解析:(1)f (x )=⎩⎨⎧x 2+x -a +1,x ≥a ,x 2-x +a +1,x <a ,①当a ≤-12时,f (x )在⎝⎛⎭⎫-∞,-12上单调递减,⎝⎛⎭⎫-12,+∞上单调递减, f (x )min =f ⎝⎛⎭⎫-12=34-a ;2分 ②当-12<a <12时,f (x )在(-∞,a )上单调递减,(a ,+∞)上单调递减,f (x )min =f (a )=a 2+1;4分③当a ≥12时,f (x )在⎝⎛⎭⎫-∞,12上单调递减,⎝⎛⎭⎫12,+∞上单调递减, f (x )min =f ⎝⎛⎭⎫12=34+a ;6分综上:f (x )min=⎩⎪⎨⎪⎧34+a ,a ≥12,a 2+1,-12<a <12,34-a ,a ≤-12.7分(2)g (x )=x 2+|x -a |+1+a |x |=⎩⎨⎧x 2+(a +1)x -a +1,x ≥a ,x 2+(a -1)x +a +1,0<x <a ,x 2-(a +1)x +a +1,x ≤0.①当a +12≤a 时,即a ≥1时,-a +12<0且1-a 2≤0,g (x )在(-∞,0)上单调递减,(0,+∞)上单调递减,g (x )min =g (0)=a +1;9分 ②当a +12>a 时,即0<a <1时,-a +12<0且1-a 2>0,(ⅰ)当1-a 2≤a ,即13≤a <1时,g (x )在⎝⎛⎭⎫-∞,1-a 2上单调递减,⎝⎛⎭⎫1-a 2,+∞上单调 递减,所以g (x )min =f ⎝⎛⎭⎫1-a 2=-a 2+6a +34;11分(ⅱ)当1-a 2>a ,即0<a <13时,g (x )在(-∞,a )上单调递减,(a ,+∞)上单调递减,所以g (x )min =f (a )=2a 2+1;13分综上:g (x )min=⎩⎨⎧a +1,a ≥1,-a 2+6a +34,13≤a <1,2a 2+1,0<a <13.14分专题31例题答案:f(x)min = ⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.解法1函数f(x)=x 2-ax +1=⎝⎛⎭⎫x -a 22-a 24+1,对称轴为x =a 2, ①当a2<-1时,即a <-2时,f(x)在[-1,1]上单调递增,f(x)min =f(-1)=2+a ,f(x)max=f(1)=2-a ;②当-1≤a 2<0时,即-2≤a <0时,f(x)在⎝⎛⎭⎫-1,a 2上单调递减,在⎝⎛⎭⎫a 2,1上单调递增,f(x)min =f ⎝⎛⎭⎫a 2=1-a24,f(x)max =f(1)=2-a ; ③当0≤a 2<1时,即0≤a <2时,f(x)在⎝⎛⎭⎫-1,a 2上单调递减,在⎝⎛⎭⎫a 2,1上单调递增,f(x)min=f ⎝⎛⎭⎫a 2=1-a24,f(x)max =f(-1)=2+a ; ④当a2≥1时,即a ≥2时,f(x)在[-1,1]上单调递减,f(x)min =f(1)=2-a ,f(x)max =f(-1)=2+a.综上,f(x)min =⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.解法2函数f(x)=x 2-ax +1=⎝⎛⎭⎫x -a 22-a 24+1,对称轴为x =a2,先求最小值. ①当a2<-1时,即a <-2时,f(x)在[-1,1]上单调递增,f(x)min =f(-1)=2+a ;②当-1≤a 2≤1时,即-2≤a ≤2时,f(x)min =f ⎝⎛⎭⎫a 2=1-a 24;③当a2≥1时,即a ≥2时,f(x)在[-1,1]上单调递减,f(x)min =f(1)=2-a.再求最大值,因为抛物线开口向上,则最高点必为曲线一端点,所以f(x)max =max {f(-1),f(1)}=⎩⎨⎧2-a ,a <0,2+a ,a ≥0.综上,f(x)min = ⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.变式联想变式1答案:[-3,1].解法1研究函数f(x)=x 2-2ax +2在x ∈[-1,1]时的最小值,f(x)=x 2-2ax +2=(x -a)2+2-a 2,对称轴为x =a.①当a ≤-1时,f(x)在[-1,1]上单调递增,所以f(x)min =f(-1)=2a +3,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即2a +3≥a ,所以-3≤a ≤-1.②当-1<a <1时,f(x)在[-1,1]上的最小值为f(x)min =f(a)=2-a 2,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即2-a 2≥a ,所以-1<a <1.③当a ≥1时,f(x)在[-1,1]上单调递减,所以f(x)min =f(1)=3-2a ,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即3-2a ≥a ,所以a =1.综上,实数a 的取值范围是[-3,1].解法2不等式f(x)≥a 可化为a(1+2x)≤x 2+2①当-1≤x <-12时,不等式化为a ≥x 2+22x +1,令g(x)=x 2+22x +1,则g′(x)=⎝ ⎛⎭⎪⎫x 2+22x +1′=2(x 2+x -2)(2x +1)2<0,g(x)在⎣⎡⎭⎫-1,-12上单调递减,所以g(x)max =g(-1)=-3,则a ≥-3.②当x =-12时,0≤14+2恒成立,则a ∈R .③当-12<x ≤1时,不等式化为a ≤x 2+22x +1,令g (x )=x 2+22x +1,则g ′(x )=⎝ ⎛⎭⎪⎫x 2+22x +1′=2(x 2+x -2)(2x +1)2<0,g (x )在⎝⎛⎦⎤-12,1上单调递减,所以g (x )min =g (1)=1,则a ≤1. 综上,实数a 的取值范围是[-3,1]. 变式2答案:f(x)max =⎩⎪⎨⎪⎧-(2a -1)24a-3,a <-1,-34a -32,-1≤a <25且a ≠0,8a -5,a ≥25. 解析:f(x)=a ⎝⎛⎭⎫x +2a -12a 2-(2a -1)24a -3,对称轴为x = -2a -12a, (1)当a >0时,①当-2a -12a ≤14,即a ≥25时,f(x)max =f(2)=8a -5;②当-2a -12a >14,即0<a <25时,f(x)max =f ⎝⎛⎭⎫-32=-34a -32. (2)当a <0时,-2a -12a<0,①当-2a -12a ≤-32时,即-1≤a <0时,f(x)max =f ⎝⎛⎭⎫-32=-34a -32; ②当-32<-2a -12a <0时,即a <-1时,f(x)max =f ⎝⎛⎭⎫-2a -12a =-(2a -1)24a -3.综上,f(x)max =⎩⎪⎨⎪⎧-(2a -1)24a-3,a <-1,-34a -32,-1≤a <25且a ≠0,8a -5,a ≥25.说明:二次函数在闭区间的最值问题一般分为含参和不含参两种类型,对于不含参的定轴、定区间问题,根据轴与区间的位置关系,结合图象,确定函数的单调性即可求得最值;对于定轴、动区间,动轴、定区间,动轴、动区间的含参最值问题,常常抓住对称轴与区间的位置关系进行分类讨论,分类讨论时要做到不重、不漏;不过有时直接研究函数在区间端点处的取值以回避繁琐的分类讨论显得更快捷.总之,数形结合,灵活处理是解决此类问题的关键所在.串讲激活串讲1 答案:⎝⎛⎭⎫-22,0. 解法1讨论对称轴与区间的位置关系,求出f(x)的最大值f(x)max ,解不等式f(x)max <0;解法2因为抛物线开口向上,所以最大值在区间端点处取得.则要使得任意x ∈[m ,m+1],都有f(x)<0成立,只需满足⎩⎨⎧f (m )<0,f (m +1)<0,解得-22<m <0.串讲2答案:(1)g(a)= ⎩⎪⎨⎪⎧1-4a (a >2),-a22-2a -1(-2≤a ≤2),1(a <-2);(2)5.解析:(1)f(x)=2⎝⎛⎭⎫cos x -a 22-a 22-2a -1,令t =cos x ∈[-1,1].当a2<-1,即a <-2时,f(x)在cos x =-1时取得最小值,即g(a)=1;当-1≤a2≤1,即-2≤a ≤2时,f(x)在cos x=a 2时取得最小值,即g(a)=-a 22-2a -1;当a2>1,即a >2时,f(x)在cos x =1时取得最小值,即g(a)=1-4a.综上,g(a)=⎩⎪⎨⎪⎧1-4a (a >2),-a22-2a -1(-2≤a ≤2),1(a <-2).(2)由g(a)=12,得1-4a =12或-a 22-2a -1=12,当1-4a =12,a =18,与a >2矛盾,舍去;当-a 22-2a -1=12,得a =-3(舍去)或a =-1∈[-2,2]所以f(x)=2⎝⎛⎭⎫cos x +122+12,当cos x =1时,f(x)max =5.新题在线答案:M -m =⎩⎨⎧|1+a|,a <-2,或a >0,a 24,-2≤a ≤-1,1+a +a24,-1<a ≤0.M -m 的值与b 无关.解析:函数f(x)=x 2+ax +b 的图象是开口朝上且以直线x =-a2为对称轴的抛物线.①当-a 2>1或-a2<0,即a <-2,或a >0时,函数f(x)在区间[0,1]上单调,此时M-m =|f(1)-f(0)|=|1+a|,故M -m 的值与b 无关;②当12≤-a2≤1,即-2≤a ≤-1时,函数f(x)在区间⎣⎡⎦⎤0,-a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,且f(0)>f(1),此时M -m =f(0)-f ⎝⎛⎭⎫-a 2=a24,故M -m 的值与b 无关; ③当0≤-a 2<12,即-1<a ≤0时,函数f(x)在区间⎣⎡⎦⎤0,-a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,且f(0)<f(1),此时M -m =f(1)-f ⎝⎛⎭⎫-a 2=1+a +a 24,故M -m 的值与b 无关.综上,M -m 的值与b 无关.。

SX2020A123高考数学必修_限制区间上二次函数的最值

SX2020A123高考数学必修_限制区间上二次函数的最值

限制区间上二次函数的最值二次函数是最简单的非线性函数,比较基础又比较综合,一直是高考中的热点。

求二次函数的最值,要抛弃一个错误意识:直接求出区间两端点所对应的函数值,然后比较大小写出较大者;坚持一个正确的做法:把二次函数配方画出函数图象,然后保留定义域所对应的有效图象,利用数形结合求解。

1. 定二次函数在定区间上定二次函数在定区间上的最值是指二次函数是给定的,给出的定义域区间上也是固定的,这种情况画出图象,即可解决。

例1:已知二次函数f(x)=x 2+2x -1,求当x ∈[-2,1]上的值域。

解:函数f(x)=x 2+2x -1=(x+1)2-2的图象的顶点为(-1,-2),开口向上,对称轴为x =-1,∵-1∈[-2,1], ∴如图:顶点在给定区间[-2,1]内,且x=1离对称轴较远,∴f(x)min =f(-1)=-2,f(x)max =f(1)=2所以f(x)在[-2,1]上的值域为[-2,2].点评:已知二次函数f(x)=ax 2+bx+c (不妨设a>0)在区间[m,n]上的值域,关键看二次函数的对称轴x=a b 2-是否在定区间[m,n]上:当ab 2-∈[m,n],顶点所在的y 值一定是最小值,离对称轴较远的值是最大值;当a b 2-∉[m,n],f(x)在[m,n]上单调,可以直接根据单调性求出最值。

例题深化:(1)求函数f(x)=sin 2x+sinx -1的值域,(2)求函数f(x)=e 2x +2e x -1的值域(3)已知x 2+4y 2=4x,,求x 2-y 2的值域。

这些问题,都可以转化为定二次函数在定区间上的最值或值域问题问题解决。

答案:(1)[-45,1],(2)(-1,+∞),(3)[51-,16] 2. 定二次函数在动区间上二次函数是确定的,但它的定义域区间是随着参数变化而变化的,这种情况下还是要根据图象讨论区间与对称轴的关系。

例2:设函数f(x)=x 2-4x -4的定义域为[t,t+1],对任意的t ∈R ,求函数f(x)的最小值h(t),并写出h(t)的表达式。

2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

函数与导数04 函数 二次函数及其性质一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间. 二、知识概述:二次函数1.一元二次方程的相关知识:20(0)ax bx c a ++=≠根的判别式: ;判别式与根的关系:________________________; 求根公式:_____________________;韦达定理:____________________.ac b 42-=∆;⎪⎩⎪⎨⎧∈<∆==∆≠>∆φx x x x x ,0,0,02121;aac b b x242-±-=;⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 2.二次函数的相关知识: 2(0)y ax bx c a =++≠定义域:________________________; 值域:________________________; 对称轴方程:____________________; 顶点坐标:____________________; 与y 轴的交点坐标:______________. 二次函数的顶点式:______________.二次函数的零点式:__________________;与x 轴的交点坐标:_______________________;定义域:R ; 值域:),44[,02+∞->abac a ;]44,(,02ab ac a --∞< 【考点讲解】对称轴方程:ab x 2-=; 顶点坐标:)44,2(2a b ac a b --; 与y 轴的交点坐标:),0(c .二次函数的顶点式:h k x a y +-=2)(.二次函数的零点式:))((21x x x x a y --=;与x 轴的交点坐标:)0,24(2aacb b -±-; 3.二次函数2(0)y ax bx c a =++≠的单调性:当0a >时,单调增区间是___________;单调减区间是__________. 当0a <时,单调增区间是___________;单调减区间是__________.0>a 时),2(+∞-a b ;)2,(a b --∞.0<a 时)2,(a b --∞;),2(+∞-ab4.二次函数2(0)y ax bx c a =++≠在某一闭区间上的最值: 首先确定二次函数的顶点:_______________ ①若顶点的横坐标在给定的区间上,则:0a >时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值. 0a <时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值.②若顶点的横坐标不在给定的区间上,则:0a >时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得. 0a <时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得.)44,2(2a b ac a b --;①小,a b ac 442-,大;大,ab ac 442-,小 ②小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用.高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 7.根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式; (3)已知抛物线与x 轴的两交点坐标,可选用两点式. 【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点错误!未找到引用源。

高考数学一轮复习---二次函数知识点与题型

高考数学一轮复习---二次函数知识点与题型

高考数学一轮复习---二次函数知识点与题型一、基础知识1.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.二次函数的图象与性质二次函数系数的特征:(1)二次函数y=ax2+bx+c(a≠0)中,系数a的正负决定图象的开口方向及开口大小;(2)-b2a的值决定图象对称轴的位置;(3)c的取值决定图象与y轴的交点;(4)b2-4ac的正负决定图象与x轴的交点个数.(-∞,+∞)(-∞,+∞)二、常用结论1.一元二次不等式恒成立的条件(1)“ax2+bx+c>0(a≠0)恒成立”的充要条件是“a>0,且Δ<0”.(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0,且Δ<0”.2.二次函数在闭区间上的最值设二次函数f(x)=ax2+bx+c(a>0),闭区间为[m,n].(1)当-b2a≤m时,最小值为f(m),最大值为f(n);(2)当m <-b 2a ≤m +n2时,最小值为)2(ab f -,最大值为f (n ); (3)当m +n 2<-b2a ≤n 时,最小值为)2(a b f -,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).三、考点解析考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同. 例、已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. 跟踪训练1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________. 考点二 二次函数的图象与性质 考法(一) 二次函数图象的识别例、若一次函数y =ax +b 的图象经过第二、三、四象限,则二次函数y =ax 2+bx 的图象只可能是( )考法(二) 二次函数的单调性与最值问题例、(1)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时,有最大值2,则a 的值为________.(2)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________. [解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题. 2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题例、(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解题技法]由不等式恒成立求参数取值范围的思路及关键:(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .跟踪训练1.已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( ) A.54 B .1或54 C .-1或54 D .-5或54课后作业1.已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( ) A .2,4 B .-2,4 C .2,-4 D .-2,-4 2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1 D .-2 3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞) D .(-∞,-6)6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________. 7.已知二次函数y =f (x )的顶点坐标为⎪⎭⎫⎝⎛-49,23,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.8.y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________. 9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.提高训练1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34 D .1 3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.。

闭区间上二次函数的最值

闭区间上二次函数的最值

闭区间上二次函数的最值朱义华二次函数是最简单的非线性函数之一,自身性质活跃,同时经常作为其他函数的载体。

二次函数在某一区间上的最值问题,是初中二次函数内容的继续和发展,随着区间的确定或变化,以及在系数中增添参变数,使其又成为高考数学中的热点。

一. 定二次函数在定区间上的最值二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

函数的最大值为f ()22=,最小值为f ()02=-。

图1例2. 已知232x x ≤,求函数f x x x ()=++21的最值。

解:由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝ ⎫⎭⎪+12342,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

图2解后反思:已知二次函数f x ax bx c ()=++2(不妨设a >0),它的图象是顶点为--⎛⎝ ⎫⎭⎪b aac b a 2442,、对称轴为x b a =-2、开口向上的抛物线。

由数形结合可得在[m ,n]上f x ()的最大值或最小值:(1)当[]-∈b a m n 2,时,f x ()的最小值是f b a ac b af x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

高考数学中的重难点——二次函数

高考数学中的重难点——二次函数

高考数学中的重难点——二次函数知识梳理: 1.二次函数的解析式的三种形式: (1)一般式:f(x)=ax 2+bx+c(a ≠0)。

(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。

(3)两点式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。

2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴a b x 2-=,顶点坐标)44,2(2ab ac a b --(1)a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-ab上单调递增,a b x 2-=时,ab ac x f 44)(2min-=;(2)a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-ab上单调递减,a b x 2-=时,ab ac x f 44)(2max-=。

3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)(。

4. 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0) ,(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f5 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响6 二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞疑点一:求二次函数的解析式例1.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数。

高考数学中的二次函数图像性质总结

高考数学中的二次函数图像性质总结

高考数学中的二次函数图像性质总结在高考数学中,二次函数是一个重要的知识点,也是一个难点。

二次函数的图像性质是解题的关键,而了解和掌握这些图像性质,对于高考数学考试来说至关重要。

在此,本文将对高考数学中的二次函数图像性质进行总结,希望对广大读者有所帮助。

1. 二次函数的定义与基本形式二次函数是指函数y=ax^2+bx+c,其中a,b,c为常数,且a≠0。

二次函数的基本形式是y=x^2,它的图像为一个开口向上的抛物线,对称轴为x轴,顶点坐标为(0,0)。

2. 二次函数的图像性质(1) 开口方向:当a>0时,二次函数图像开口向上;当a<0时,二次函数图像开口向下。

(2) 对称轴:二次函数图像的对称轴为一条直线,其方程为x=-b/2a。

(3) 顶点:二次函数图像的顶点坐标为(-b/2a,c-b^2/4a)。

(4) 零点:二次函数图像的零点为两个交点,其坐标为((-b±√(b^2-4ac))/2a,0)。

(5) 最值:当a>0时,二次函数图像的最小值为c-b^2/4a,当x=-b/2a时取得;当a<0时,二次函数图像的最大值为c-b^2/4a,当x=-b/2a时取得。

(6) 平移:当二次函数y=ax^2的图像向上移动k个单位后,其图像变为y=ax^2+k;向右移动h个单位后,其图像变为y=a(x-h)^2;综合起来,向右平移h个单位,向上平移k个单位的二次函数表达式为y=a(x-h)^2+k。

3. 二次函数图像性质应用举例(1) 求过点(-1, 2)和(3, 4)的二次函数解:设所求二次函数为y=ax^2+bx+c,将两个点分别带入该方程,得到两个方程组成的方程组:2=a(-1)^2+b(-1)+c4=a(3)^2+b(3)+c解得a=1/2,b=1/2,c=3/2,因此所求二次函数为y=1/2(x^2+x+3/2)。

(2) 求函数y=kx^2的图像与y=2x^2的图像的位置关系解:将两个二次函数相减得到差函数y=(k-2)x^2,可以发现当k>2时,差函数开口向上,当k<2时,差函数开口向下,而k=2时,差函数为一条直线,开口向上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题
研究
二次函数在区间上的最值问题
制作:浦一中徐转贵
5
2o
x
y
(1)x ∈R ;(2)0≤x≤3(3)-1≤x≤1
解:配方得y=3(x-2)2 –7,如图:
(1)x ∈R 时,当x=2时,y min = -7
5
2o
x
y 3
(1)x ∈R ;(2)0≤x≤3(3)-1≤x≤1
解:配方得y=3(x-2)2 –7,如图:
(1)x ∈R 时,当x=2时,y min = -7(2)0≤x≤3时,函数在[0,2] 上
单调递减,在[2,3]上单调递增∴当x=0时,y max =5
当x=2时,y min = -7
52o x y 1-1-420(1)x ∈R ;(2)0≤x≤3(3)-1≤x≤1
解:配方得y=3(x-2)2 –7,如图:
(1)x ∈R 时,当x=2时,y min = -7(2)0≤x≤3时,函数在[0,2] 上单调递减,在[2,3]上单调递增∴当x=0时,y max =5
当x=2时,y min = -7(3) -1≤x≤1时,函数在[-1,1] 上单调递减∴当x= -1时,y max =20
解:函数图象的对称轴为直线x=1,抛物线开口向上
2
y x
o 13
a ∴当x=0时,y max =3当x=a 时,y min =a 2-2a+3
1.当a≤1时,函数在[0,a]上单调递减,
∴当x=0时,y max =3当x=a 时,y min =a 2-2a+3
,函数在[0,1]上单
调递减,在[1,a]上单调递增,∴当x=1时,y min =2当x=0时,y max =3y x
o 1322a 解:函数图象的对称轴为直线x=1,抛物线开口向上
2.当1<a<2时1.当a≤1时,函数在[0,a]上单调递减,
,函数在[0,1]上单调递减,在[1,a]上单调递增,
y x o 132a 23.当a≥2时,函数在[0,1]上单
调递减,在[1,a]上单调递增,∴当x=1时,y min =2当x=0时,y max =3解:函数图象的对称轴为直线x=1,抛物线开口向上
1.当a≤1时,函数在[0,a]上单调递减,∴当x=0时,y max =3当x=a 时,y min =a 2-2a+3
2.当1<a<2时
解:函数图象的对称轴方程为x= ,又x ∈[-1,a]2a 故a>-1, > -,∴对称轴在x= -的右边.2a 2121∴(1)当-1< ≤a 时,即a≥0时,由二次函数图象2a 可知: y max =f ( )= 2a 4a 24a 22a x
y o -1a (2)当a< 时,即-1<a<0时,2
a
综上所述:当-1<a<0时, y max =0
解:函数图象的对称轴方程为x= ,又x ∈[-1,a]2a 故a>-1, > -,∴对称轴在x= -的右边.2a 2121∴(1)当-1< ≤a 时,即a≥0时,由二次函数图象2a 可知: y max =f ( )= 2a 4a 2(2)当a< 时,即-1<a<0时,2a a
24a 22a a x y o -1由二次函数的图象可知:y max =f (a)=0
问题4关于x 的方程x 2-(k-
2)x +k 2+3k+5=0有两个实根α,β. 求α2+β2的最值。

解:由题意,可得⊿=(k-2)2-4(k 2+3k+5) ≥0
即: 3k 2+16k+16 ≤ 0,∴-4≤k≤ -
3
4由方程根与系数的关系知
α+β=k-2,α·β= k 2+3k+5,
∴α2+β2=(α+β)2-2αβ
= -k 2-10k-6=-(k+5)2+19。

∵-4≤k≤ -3
4∴当k=-4时,α2+β2有最大值18当k= -时α2+β2有最小值。

34
9
50。

相关文档
最新文档