粒子群优化算法(详细易懂,很多例子)课件

合集下载

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

第4章计算智能-粒子群优化

第4章计算智能-粒子群优化
2019/11/3
算法步骤:
(1) 对于粒子群 P(t) 初始化,使得 t=0 时每一个粒 子 Pi 的位置 xi(t) 是随机的。
(2) 利用每一个粒子的当前位置计算其性能函数值 (即目标函数值)。
2019/11/3
(3) 比较每一个粒子的当前性能值与至今得到 的最佳性能,如果
f(xi(t))pbesti
2019/11/3
2 全局最佳算法 在全局最佳算法中,粒子群的全局最优方案具有 星形的邻域拓扑结构:
2019/11/3
在该结构中,每一个粒子都 能与其他粒子进行通信,形 成一个全连接的网络。
每一个粒子的移动速度由粒子群中的最佳粒子 位置、本粒子的最佳位置来决定。
2019/11/3
算法步骤:
(1) 对于粒子群 P(t) 初始化,使得 t=0 时每一个粒 子 Pi 的位置 xi(t) 是随机的。
位置随机数(改变参数) 每一个粒子的新位置
xi(t)xi(t1)vi(t) t t1
(5) 转到(2),重复(2)-(4),直到收敛为止。
2019/11/3
说明: 粒子离原先发现的最佳位置越远,使粒子回
到它最佳位置所需要的速度就越大。
随机数的上限是用户选定的算法参数,其
值越大,粒子轨迹振荡就越大;反之,轨迹 就越平滑。
2019/11/3
(4)(续) 改变每一个粒子的速度
vi(t)vi(t1)
1(xpbesti xi(t))2(xlbesti xi(t))
位置随机数
第二项:认知分量 第三项:社会分量
2019/11/3
(4)(续) 每一个粒子的新位置
xi(t)xi(t1)vi(t) t t1
2019/11/3

粒子群优化算法PPT

粒子群优化算法PPT

Swarm Intelligence(续)
Swarm可被描述为一些相互作用相邻个体的集合体, 蜂群、蚁群、鸟群都是Swarm的典型例子。鱼聚集成 群可以有效地逃避捕食者,因为任何一只鱼发现异常 都可带动整个鱼群逃避。蚂蚁成群则有利于寻找食物, 因为任一只蚂蚁发现食物都可带领蚁群来共同搬运和 进食。一只蜜蜂或蚂蚁的行为能力非常有限,它几乎 不可能独立存在于自然世界中,而多个蜜蜂或蚂蚁形 成的Swarm则具有非常强的生存能力,且这种能力不 是通过多个个体之间能力简单叠加所获得的。社会性 动物群体所拥有的这种特性能帮助个体很好地适应环 境,个体所能获得的信息远比它通过自身感觉器官所 取得的多,其根本原因在于个体之间存在着信息交互ce(续)
由于SI的理论依据是源于对生物群落社会性的模拟, 因此其相关数学分析还比较薄弱,这就导致了现有研 究还存在一些问题。首先,群智能算法的数学理论基 础相对薄弱,缺乏具备普遍意义的理论性分析,算法 中涉及的各种参数设置一直没有确切的理论依据,通 常都是按照经验型方法确定,对具体问题和应用环境 的依赖性比较大。其次,同其它的自适应问题处理方 法一样,群智能也不具备绝对的可信性,当处理突发 事件时,系统的反应可能是不可测的,这在一定程度上 增加了其应用风险。另外,群智能与其它各种先进技 术(如:神经网络、模糊逻辑、禁忌搜索和支持向量机 等) 的融合还不足。
Swarm Intelligence(续)
信息的交互过程不仅仅在群体内传播了信息,而 且群内个体还能处理信息,并根据所获得的信息 (包括环境信息和附近其它个体的信息)改变自身 的一些行为模式和规范,这样就使得群体涌现出一 些单个个体所不具备的能力和特性,尤其是对环境 的适应能力。这种对环境变化所具有适应的能力可 以被认为是一种智能(关于适应性与智能之间的关 系存在着一些争议,Fogel认为智能就是具备适应 的能力),也就是说动物个体通过聚集成群而涌现 出了智能。因此,Bonabeau 将SI的定义进一步推 广为:无智能或简单智能的主体通过任何形式的聚 集协同而表现出智能行为的特性。这里我们关心的 不是个体之间的竞争,而是它们之间的协同。

粒子群优化算法ppt

粒子群优化算法ppt

01 算法介绍
PSO是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新 的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化 算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭 代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算 法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变 异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全 局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学 术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法 是一种并行算法。
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。 在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更 新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和 位置。 (1)式
(2)式
在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数
02 算法原理
01 算法介绍
社会组织的全局群行为是由群内个体行为以非线性方式出现的。 个体间的交互作用在构建群行为中起到重要的作用。从不同的群研 究得到不同的应用。最引人注目的是对蚁群和鸟群的研究。
其中粒群优化方法就是模拟鸟群的社会行为发展而来。对鸟群 行为的模拟:Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改变方向,散开或者 聚集等。那么一定有某种潜在的能力或规则保证了这些同步的行为。 这些科学家都认为上述行为是基于不可预知的鸟类社会行为中的群 体动态学。在这些早期的模型中仅仅依赖个体间距的操作,也就是 说,这种同步是鸟群中个体之间努力保持最优的距离的结果。

基本粒子群优化算法课件

基本粒子群优化算法课件
更新粒子位置
根据粒子的新速度,结合粒子的位置 更新公式,计算粒子的新位置。
终止条件和迭代次数
01
终止条件:当达到预设的迭代次数或满足其他终止条件时,算 法停止迭代。
Байду номын сангаас
02
迭代次数:根据问题规模和复杂度,设定合适的最大迭代次数

以上内容仅供参考,具体内容可以根据您的需求进行调整优化
03 。
04 粒子群优化算法的改进
基本粒子群优化算法课 件
目录
Contents
• 基本粒子群优化算法概述 • 粒子群优化算法的数学基础 • 粒子群优化算法的实现 • 粒子群优化算法的改进 • 粒子群优化算法的应用实例 • 总结与展望
01 基本粒子群优化算法概述
起源和背景
起源
粒子群优化算法起源于对鸟群、 鱼群等动物群体行为的研究。
理论分析
深入分析基本粒子群优化算法的数学性质和收敛 性,有助于更好地理解算法的工作原理,为算法 改进提供理论支持。
拓展应用领域
随着技术的发展,基本粒子群优化算法有望在更 多领域得到应用。例如,在人工智能领域,可探 索与其他优化算法的结合,以解决更复杂的机器 学习、深度学习等问题。
与其他智能算法的交叉研究
机器学习问题
机器学习问题
粒子群优化算法还可以应用于机器学习领域,如分类、聚类、特征选择等。
举例
例如,在分类问题中,可以使用粒子群优化算法来训练一个分类器,通过迭代和更新粒子的位置和速度,找到最 优的分类器参数。
06 总结与展望
当前研究进展和挑战
研究进展
基本粒子群优化算法在多个领域得到广泛应 用,如函数优化、神经网络训练、数据挖掘 等。近年来,随着研究的深入,算法的性能 和收敛速度得到了显著提升。

粒子群优化算法课件

粒子群优化算法课件

实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。

《粒子群优化算法》课件

《粒子群优化算法》课件
《粒子群优化算法》PPT课件
CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数

粒子群优化算法(详细易懂)

粒子群优化算法(详细易懂)

粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子群优化算法流程图
开始 初始化粒子群 计算每个粒子的适应度 根据适应度更新pbest、gbest,更新粒子位置速度
k id k-1 id
k 1 id
k 1 id
粒子i的第d维位置更新公式:
x x
k id
k 1 id
v
k 1 id
c1,c2—加速度常数,调节学习最大步长 r1,r2—两个随机函数,取值范围[0,1],以增加搜索随机 性 w —惯性权重,非负数,调节对解空间的搜索范围
k vid —第k次迭代粒子i飞行速度矢量的第d维分量 k xid —第k次迭代粒子i位置矢量的第d维分量
那么:找到食物的最优策略是什么呢?
搜寻目前离食物最近的鸟的周围区域 . 根据自己飞行的经验判断食物的所在。
PSO正是从这种模型中得到了启发.
PSO的基础: 信息的社会共享
生物学家对鸟(鱼)群捕食的行为研究 社会行为 (Social-Only Model) 个体认知 (Cognition-Only Model)
粒子群特性
算法介绍
每个寻优的问题解都被想像成一只鸟,称为“粒 子”。所有粒子都在一个D维空间进行搜索。 所有的粒子都由一个fitness function 确定适应值 以判断目前的位置好坏。 每一个粒子必须赋予记忆功能,能记住所搜寻到 的最佳位置。 每一个粒子还有一个速度以决定飞行的距离和方 向。这个速度根据它本身的飞行经验以及同伴的 飞行经验进行动态调整。
4. Find the Gbest:
对每个粒子,将其当前适应值与全局最佳位置(gbest)对应的适 应值做比较,如果当前的适应值更高,则将用当前粒子的位置更新 全局最佳位置gbest。
5. Update the Velocity:
根据公式更新每个粒子的速度与位置。
6. 如未满足结束条件,则返回步骤2 通常算法达到最大迭代次数 G max 或者最佳适应度值的增量小于 某个给定的阈值时算法停止。
粒子群优化算法(PS0)
Particle Swarm Optimization
智能算法
向大自然学习
遗传算法(GA)
物竞天择,设计染色体编码,根据适应 值函数进行染色体选择、交叉和变异操 作,优化求解
人工神经网络算法(ANN)
模仿生物神经元,透过神经元的信息传 递、训练学习、联想,优化求解
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
粒子群算法:
已成为现代优化方法领域研究的热点.
粒子群算法的基本思想
粒子群算法的思想源于对鸟群捕食行为的研究. 模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群 体达到最优目的,是一种基于Swarm Intelligence的优化 方法。 马良教授在他的著作《蚁群优化算法》一书的前言中写到:
v =wv c1r1 ( pbestid x ) c2r2 ( gbestd x )
k id k-1 id
k 1 id
k 1 id
粒子速度更新公式包含三部分: 第一部分为粒子先前的速度 第二部分为“认知”部分,表示粒子本身的思考,可理解为 粒子i当前位置与自己最好位置之间的距离。 第三部分为“社会”部分,表示粒子间的信息共享与合作, 可理解为粒子i当前位置与群体最好位置之间的距离。
模拟退火算法(SA)
模模仿金属物质退火过程
解决最优化问题的方法
传统搜索方法 保证能找到最优解 Heuristic Search 不能保证找到最优解
粒子群算法发展历史简介
由Kennedy和Eberhart于1995年提出. 群体迭代,粒子在解空间追随最优的粒子进行搜索. 简单易行 收敛速度快 设置参数少
粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
通常,在第d(1≤d≤D)维的位置变化范围限定在 [Xmin,d , X 内, max,d ]
速度变化范围限定在 [-Vmax,d , 内(即在迭代中若 V max,d ]
位置)
超出了边界值,则该维的速度或位置被限制为该维最大速度或边界
vid、xid
粒子i的第d维速度更新公式:
v =wv c1r1 ( pbestid x ) c2r2 ( gbestd x )
vid (t 1) w vid (t ) c1 rand () ( pid xid (t )) c2 rand () ( pgd xid (t ))
xi (t 1) xi (t ) vi (t )
Vi = Vi1,Vi 2 ,...,Vid
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量

Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN
相关文档
最新文档