基于MIDAS Civil的斜拉桥施工监控仿真分析
独塔混合梁斜拉桥桥塔施工监控分析
1引言斜拉桥因外形美观,受力性能好等优势,成为现代桥梁中发展最快的桥型之一[1-2]。
在斜拉桥施工过程中,监控计算是核心,应该对主要的施工环节、某些重点构造进行分析,并对成桥后的结构进行验算,从而确保桥梁的施工质量和运营阶段的安全[3-4]。
2工程概况中华路大桥主桥采用非对称独塔斜拉桥结构形式,全长244.4m (含牛腿),跨径布置为151.1m+91.1m ,主桥采用半漂浮体系,主梁采用混合梁方案,即主跨采用钢梁-UHPC 薄层轻型组合梁,边跨采用混凝土箱梁进行配重,桥塔为钢结构,道路为双向8车道城市主干路,设计速度为60km/h ,主桥立面布置图如图1所示。
1511051503960K0+577.5图1主桥立面布置图(单位:cm )3监控目的及内容3.1监控目的1)通过监控量测各施工阶段的动态变化,掌握施工过程中结构自身的安全状态。
2)用现场实测结果弥补理论分析过程中存在的不足,并【作者简介】尹鸿福(1985~),男,山东菏泽人,高级工程师,从事公路基础设施施工管理研究。
独塔混合梁斜拉桥桥塔施工监控分析Monitoring Analysis of Tower Construction of Single-Tower Hybrid Beam Cable-Stayed Bridge尹鸿福(中铁城建集团有限公司,长沙410208)YIN Hong-fu(China Railway Urban Construction Group Co.Ltd.,Changsha 410208,China)【摘要】以聊城某斜拉桥工程为依托,建立Midas/Civil 空间有限元模型进行分析,就桥塔施工过程中的应力、塔顶偏位、基础沉降、温度进行研究。
监控结果表明,大桥主桥结构状态良好,主塔偏位实测数据与理论数据吻合较好,应力测点均无拉应力出现且偏差值均在规范容许范围内。
【Abstract 】Based a cable-stayed bridge project in Liaocheng,Midas/Civil spatial finite element model is established for analysis,and the stress,tower top deviation,foundation settlement and temperature during bridge tower construction are studied.The monitoring results show that the main bridge structure of this large bridge is in good condition,the measured data of main tower deviation are in good agreement with the theoretical data,there is no tensile stress at the stress measuring points,and the deviation values are within the allowable range ofthe specification.【关键词】施工监控;斜拉桥;应力监测;有限元分析【Keywords 】construction monitoring;cable-stayed bridge;stress monitoring;finite element analysis 【中图分类号】U445.4【文献标志码】A【文章编号】1007-9467(2023)12-0158-04【DOI 】10.13616/ki.gcjsysj.2023.12.047158通过监测结果反馈设计,指导施工。
斜拉桥施工监控综述及典型案例介绍每日一练
斜拉桥施工监控综述及典型案例介绍每日一练斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。
但是,斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。
在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。
为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态。
本篇文档将先介绍建立斜拉桥分析模型的方法,然后再计算拉索初拉力的方法,并查看分析结果的方法。
分析软件选用MIDAS Civil 2019(V2.1)。
软件MIDAS Civil是通用的空间有限元分析软件,可适用于桥梁结构、地下结构、工业建筑、飞机场、大坝、港口等结构的分析与设计。
特别是针对桥梁结构,MIDAS Civil结合国内的规范与习惯,在建模、分析、后处理、设计等方面提供了很多的便利的功能:具有直观的操作界面,并且采用了尖端的计算机显示技术;提供菜单、表格、文本、导入CAD和部分其他程序文件等灵活多样的建模功能,并尽可能使鼠标在画面上的移动量达到最少,从而使用户的工作效率达到最高;提供刚构桥、板型桥、箱型暗渠、顶推法桥梁、悬臂法桥梁、移动支架/满堂支架法桥梁、悬索桥、斜拉桥的建模助手;提供中国、美国、英国、德国、欧洲、日本、韩国等国家的材料和截面数据库,以及混凝土收缩和徐变规范和移动荷载规范;集成了静力分析、动力分析、几何非线性分析、屈曲分析、移动荷载分析、PSC桥分析、悬索桥分析、水化热分析等分析设计功能。
目前已为各大公路、铁路部门的设计院所采用。
构件自重由程序自动计算。
分析中重点考虑桥面铺装、护墙等二期恒载,同时使用软件MIDAS Civil自带的优化法则计算相应拉索的初拉力。
midasCivil培训例题集斜拉桥专题
midas Civil 培训例题集斜拉桥专题目录一.斜拉桥概述.............................................................................................................................................................................................. - 1 -1.1 斜拉桥跨径布置 .................................................................................................................................................................................. - 1 -1.2 斜拉桥拉索布置 .................................................................................................................................................................................. - 1 -1.3 斜拉桥索塔布置 .................................................................................................................................................................................. - 2 -1.4 斜拉桥主梁布置 .................................................................................................................................................................................. - 2 -二.斜拉桥调索理论 ...................................................................................................................................................................................... - 3 -三.midas Civil中的斜拉桥功能..................................................................................................................................................................... - 3 -3.1 拉索单元模拟...................................................................................................................................................................................... - 4 -3.2 未知荷载系数法功能........................................................................................................................................................................... - 5 -3.3 索力调整功能...................................................................................................................................................................................... - 6 -3.4 未闭合配合力功能............................................................................................................................................................................... - 7 -四.斜拉桥分析例题 ...................................................................................................................................................................................... - 8 -4.1 斜拉桥概况.......................................................................................................................................................................................... - 8 -4.2 斜拉桥成桥分析 ................................................................................................................................................................................ - 10 -4.3 斜拉桥倒拆分析 ................................................................................................................................................................................ - 14 -4.4 斜拉桥正装分析 ................................................................................................................................................................................ - 15 -一. 斜拉桥概述斜拉桥是一种用斜拉索悬吊桥面的桥梁。
Midas斜拉桥建模和正装施工阶段分析
目录概要 1桥梁基本数据 2荷载 2设定建模环境 3定义材料和截面特性值 4成桥阶段分析 6建立模型 7建立加劲梁模型 8建立主塔 9建立拉索 11建立主塔支座 12输入边界条件 13索初拉力计算 14定义荷载工况 18输入荷载 19运行结构分析 24建立荷载组合 24计算未知荷载系数 25查看成桥阶段分析结果 29查看变形形状 29正装施工阶段分析 30正装施工阶段分析 34正装施工阶段分析 34正装分析模型 36定义施工阶段 38定义结构组 41定义边界组 48定义荷载组 53定义施工阶段 59施工阶段分析控制数据 64运行结构分析 65查看施工阶段分析结果 66查看变形形状 66查看弯矩 67查看轴力 68查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。
在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。
本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1. 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计内容有所差异。
本例题桥梁的基本数据如下。
桥梁形式 三跨连续斜拉桥桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁高度 主塔下部 : 20m ,主塔上部 : 40m图 2. 立面图荷载分 类荷载类型 荷载值 自重自重 程序内部自动计算 索初拉力 初拉力荷载 满足成桥阶段初始平衡状态的索初拉力挂篮荷载 节点荷载 80 tonf 支座强制位移 强制位移10 cm使用MIDAS/Civil 软件内含的优化法则计算出索初拉力。
荔波官塘斜拉桥施工监控技术研究
荔波官塘斜拉桥施工监控技术研究摘要:介绍了荔波官塘大桥施工监控工作的主要内容,运用有限元软件“midas civil”建立了大桥模型并进行了计算分析,同时对实测数据与理论数据进行比较。
关键词:施工监控;斜拉桥;线形;应力监测;数据比较;索力1、工程概况荔波县官塘大桥位处荔波县城区东面,樟江大桥下游800m官塘大道上,是连接荔波县城时来坝片区与老城区的重要桥梁。
桥长180m,桥梁起点桩号k0+030.5,终点桩号k0+210.5。
跨径布置为85+85m双拱式独塔双索面pc双主梁式斜拉桥(无引桥)。
桥梁设计等级为公路-ⅰ级,桥面总宽32m,双向四车道。
2、施工控制方法2.1 计算方法及原理计算采用桥梁工程专用的结构分析与优化设计软件madis civil 建立施工控制仿真分析模型。
模型的主要部分斜拉索采用桁架单元,塔、墩、梁采用梁单元。
全桥离散为860个节点,517个单元。
其中主梁共362个单元,塔97个单元,斜拉索共54个单元。
通过该软件对本桥进行监控,确保斜拉桥索力、线形和内力分布合理,满足设计和规范要求。
2.2 应力监控该桥应力测试采用是钢弦式和表贴式应变计测试。
在索塔根部安装表贴式应变计,以便监测索塔根部应力,同时在塔座混凝土中埋设混凝土应变计进行应力监测。
根据理论计算,官塘大桥的应力测点布置如下图1:主梁纵向应力监测断面布置在悬臂端和2号节段的末端,每个截面在肋梁的顶、底板及中间各布置1-2个应力监测点。
应力监控从应变计安装后开始,逐段监测,在每节段混凝土浇注前、后;钢索塔安装前、后;预应力筋张拉前、后;斜拉索张拉前、后;一直到成桥阶段。
2.3 索力控制施工阶段斜拉索的索力状况是影响成桥的内力和线型的重要因素之一。
目前可供现场索力量测的方法主要有三种:压力表量测法、压力传感器量测法和振动频率量测法。
本桥斜拉索为一次张拉,索力控制难度较大,采用等值张拉法张拉并严格控制油压,张拉完成后采用索力动测仪对每根斜拉索的索力进行复测来保证满足设计要求。
斜拉桥的施工控制仿真
斜拉桥的施工控制仿真摘要:桥梁结构的仿真计算近年来得到了快速的发展,近几十年来,斜拉桥以其合理的结构型式、优美的外形和相对经济的造价在世界范围内得到了迅速发展,成为大跨度桥梁的首选桥型。
其施工技术含量较高,为内外高次超静定结构。
在架设过程中,其施工管理的复杂性不言而喻。
关键词:仿真;斜拉桥;施工管理随着斜拉桥跨度的不断增大,斜拉桥施工控制问题也日益突出,已成为制约斜拉桥向更大跨度发展的重要因素。
因此,研究斜拉桥施工全过程控制与优化的实用软件是十分必要的。
一、斜拉桥仿真的相应软件1、软件要求对斜拉桥施工系统进行了仿真研究,并开发出相应的软件。
此软件主要满足以下要求:(1)实现信息采集、信息分析处理和信息反馈的桥梁施工过程。
(2)寻求最优的资源配置、合理的施工顺序和施工方法。
(3)施工全过程三维动态可视化仿真与优化分析。
(4)具有实用的、友好的人机交互界面,尽量减少工作量,避免人为差错。
(5)不要求用户掌握太多的仿真理论知识和编程语言,就能实现仿真与建模的统一。
2、相关软件介绍(1)Matlab:Matlab语言是近年国外非常流行和广为应用的科学计算程序设计语言,不但具有强大的数值计算功能,而且还有很强的图形处理功能,结果可以以图形的形式输出,具有很强的直观性。
(2)Midas/Civil:Midas/Civil是一个通用的空间有限元分析软件,针对桥梁结构,结合国内的规范与习惯,在建模、分析、后处理、设计等方面提供了很多便利的功能。
(3)MSC.Patran:MSC.Patran是一个集成的并行框架式有限元前后处理及分析仿真系统,其开放式、多功能的体系结构可将工程设计、工程分析、结果评估、用户化设计和交互图形界面集于一身,构成一个完整的CAE集成环境。
(4)桥梁博士:Dr.Bridge系统是一个集可视化数据处理、数据库管理、结构分析、打印与帮助为一体的综合性桥梁结构设计与施工计算系统。
对结构的计算充分考虑了各种结构的复杂组成与施工情况,计算精确;同时在数据输入的容错性方面作了大量的工作,提高了用户的工作效率。
MIDAS做悬索桥斜拉桥分析
悬索桥分析:索单元初始刚度
平衡单元节点内力
荷载>初始荷载>大位移>平衡单元节点内力
该功能仅适用于施工阶段分析时,选择非线性分析的独立模型,并 且勾选了“包含平衡单元节点内力”选项时的情形。 可手动输入所有构件的平衡单元节点内力,也可通过“悬索桥分析 控制”自动计算生成,在成桥状态下,平衡单元节点内力与成桥恒载 相平衡,使结构处于0位移状态。 可考虑包括梁单元等的所有构件的平衡内力,对于自锚式悬索桥更 加适用,因自锚式悬索桥是索梁协同作用的结构,加劲梁的内力对刚 度影响也不可忽视。
悬索桥分析:索单元简介
pretension
只能传递单元的轴向拉力 随着内力的变化几何刚度发生变化 有了初始刚度索单元才能承受各种荷载
悬索桥分析:索单元初始刚度
MIDAS程序中的初始刚度:
定义索单元时 几何刚度初始荷载 平衡单元节点内力 初始单元内力
悬索桥分析:悬索桥建模助手
原理:程序内部自动分两个步骤进行迭代分析
第一步骤:根据建模助手中输入几何控制点参数、材料与截面、桥 面系荷载进行第一次几何非线性迭代分析。此时仅考虑悬索桥建模助 手对话框 “桥面系”栏中输入的荷载作为恒载进行分析,求出第一平 衡状态。(未包含索构件自重)
初始单元内力:仅适用于成桥荷载的小位移分析,如移动荷载、特征 值分析等。仅提供刚度。与上述三项无优先级。
悬索桥分析:初始平衡状态
初始平衡状态
悬索桥在成桥状态下处于平衡状态,又称为悬索桥的初始 平衡状态。
平衡状态下的相平衡荷载:
索单元的拉力以及各单元的内力 索、吊杆、加劲梁的自重 二期荷载等
斜拉桥分析:基本操作步骤
斜拉桥成桥阶段和施工阶段分析(MIDAS算例)
目录概要1桥梁基本数据/ 2荷载/ 2设定建模环境/ 3定义材料和截面的特性值/ 4成桥阶段分析6结构建模/ 7生成二维模型/ 8建立索塔模型/ 10建立三维模型/ 13建立主梁横向系梁/ 15建立索塔横梁/ 17生成索塔上的主梁支座/ 19生成桥墩上的主梁支座/ 23输入边界条件/ 25计算拉索初拉力/ 28输入荷载条件/ 29输入荷载/ 30运行结构分析/ 33建立荷载组合/ 34计算未知荷载系数/ 35查看成桥阶段分析结果39查看变形形状/ 39施工阶段分析40施工阶段分类/ 41逆施工阶段分类/ 42逆施工阶段分析/ 42输入拉索初拉力/ 45定义施工阶段/ 49定义结构群/ 50指定边界群/ 53指定荷载群/ 56建立施工阶段/ 59输入施工阶段分析数据/ 61运行结构分析/ 61查看施工阶段分析结果62查看变形形状/ 62查看弯矩/ 63查看轴力/ 64施工阶段分析变化图形/ 65概要斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。
斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。
在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。
为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态,然后按顺序做施工阶段分析。
在本例题中将介绍建立斜拉桥分析模型的方法、计算拉索初拉力的方法、施工阶段分析的步骤以及查看分析结果的方法。
本例题中的桥梁模型如图1所示为三跨连续斜拉桥,中间跨径为220m、边跨跨径为100m。
图1 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。
midas_斜拉桥正装分析操作例题
midas_斜拉桥正装分析操作例题目录概要错误!未定义书签。
桥梁基本数据错误!未定义书签。
荷载错误!未定义书签。
设定建模环境错误!未定义书签。
定义材料和截面特性值错误!未定义书签。
成桥阶段分析错误!未定义书签。
建立模型错误!未定义书签。
建立加劲梁模型错误!未定义书签。
建立主塔错误!未定义书签。
建立拉索错误!未定义书签。
建立主塔支座错误!未定义书签。
输入边界条件错误!未定义书签。
索初拉力计算错误!未定义书签。
定义荷载工况错误!未定义书签。
输入荷载错误!未定义书签。
运行结构分析错误!未定义书签。
建立荷载组合错误!未定义书签。
计算未知荷载系数错误!未定义书签。
查看成桥阶段分析结果错误!未定义书签。
查看变形形状错误!未定义书签。
正装施工阶段分析错误!未定义书签。
正装施工阶段分析错误!未定义书签。
正装施工阶段分析错误!未定义书签。
正装分析模型错误!未定义书签。
定义施工阶段错误!未定义书签。
定义结构组错误!未定义书签。
定义边界组错误!未定义书签。
定义荷载组错误!未定义书签。
定义施工阶段错误!未定义书签。
施工阶段分析控制数据错误!未定义书签。
运行结构分析错误!未定义书签。
查看施工阶段分析结果错误!未定义书签。
查看变形形状错误!未定义书签。
查看弯矩错误!未定义书签。
查看轴力错误!未定义书签。
查看计算未闭合配合力时使用的节点位移和内力值错误!未定义书签。
成桥阶段分析和正装分析结果比较错误!未定义书签。
概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。
在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。
Midas civil软件培训——斜拉桥专题
midas Civil 2010斜拉桥专题Fra bibliotek斜拉桥分析专题
斜拉桥
但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果 是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得 到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,
结果>未知荷载系数 利用未知荷载系数功能,可以计算出最小误差范围内的能够满足特定约束条 件的最佳荷载系数,利用这些荷载系数计算拉索初拉力。 指定位移、反力、内力的“0”值以及最大最小值作为约束条件,拉索初拉力作 为变量(未知数)来计算。 计算未知荷载系数适用于线性结构体系,为了计算出最佳的索力,必须要输 入适当的约束条件。
斜拉桥
1)刚性支承连续梁法 刚性支承连续梁法是指成桥状态下,斜拉桥主梁的弯曲内力和刚性支承连续梁的内力状态 一致。因此可以非常容易地根据连续梁的支承反力确定斜拉索的初张力。 2)零位移法 零位移法的出发点是通过索力调整,使成桥状态下主梁和斜拉索的交点的位移为零。对于 采用满堂支架一次落架的斜拉桥体系,其结果与刚性支承连续梁法的结果基本一致。 上述2种方法用于确定主跨和边跨对称的单塔斜拉桥的索力是最为有效的,对于主跨和边 跨几乎对称的3跨斜拉桥次之,对于主跨和边跨的不对称性较大的斜拉桥,几乎失去了作用 (因为这两种方法必然导致比较大的塔根弯矩,失去了索力优化的意义)。 3)倒拆和正装法 倒拆法是斜拉桥安装计算广泛采用的一种方法,通过倒拆、正装交替计算,确定各施工阶 段的安装参数,使结构逐步达到预定的线形和内力状态。
可以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支
承的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。
Midas/Civil 在大跨斜拉桥几何非线性分析中的应用
Midas/Civil 在大跨斜拉桥几何非线性分析中的应用赵晓婷【摘要】结合某大跨径混合梁斜拉桥工程,运用Midas/Civil软件建立了其完整有限元模型,阐述了斜拉桥各部件具体简化方法以及斜拉桥合理成桥状态计算方法,对各种典型工况实现方法进行了说明,通过比较线性计算结果与非线性计算结果,论述了该软件在大跨度桥梁几何非线性分析时的应用方法。
%Combining with a large span hybrid girder cable stayed bridge engineering,this paper established its complete finite element model using Midas/Civil,elaborated the specific simplified method of cable stayed bridge each component and reasonable bridge situation calculation method of cable stayedbridge,illustrated the implementation method of various typical working conditions,through comparing the linear calcula-tion results and nonlinear calculation results,discussed the application method of this software in large span bridge geometric nonlinear analysis.【期刊名称】《山西建筑》【年(卷),期】2015(000)023【总页数】2页(P153-154)【关键词】Midas/Civil;大跨径斜拉桥;几何非线性分析【作者】赵晓婷【作者单位】东北林业大学,黑龙江哈尔滨 150040【正文语种】中文【中图分类】U448.27计算机仿真分析技术能及时、科学地指导施工,现已逐步应用于大跨度斜拉桥的施工中。
斜拉桥成桥阶段和施工阶段分析(MIDAS算例)
号
项 目
Area
(m2)
Ixx
(m4)
Iyy
(m4)
Izz
(m4)
1
拉索
0.0052
0.0
0.0
0.0
2
主梁
0.3902
0.007
0.1577
4.7620
3
索塔
9.2000
19.51
25.5670
8.1230
4
主梁横向系梁
0.0499
0.0031
0.0447
0.1331
5
索塔横梁
7.2000
模型 / 节点 / 移动和复制节点
比重(7.85)
按上述法参照表1输入主梁、索塔、主梁横向系梁、索塔横梁等的材料特性值。
表1 材料特性值
号
项 目
弹性模量(tonf/m2)
泊松比
比重(tonf/m3)
1
拉索
2.0×107
0.3
7.85
2
主梁
2.1×107
0.3
7.85
3
索塔
2.0×106
0.17
2.5
4
主梁横向系梁
2.0×107
0.3
15.79
14.4720
7.9920
图6 定义截面特性对话框
成桥阶段分析
本例题在建立了成桥阶段模型后将计算因自重和二期恒载引起的拉索初拉力。然后利用拉索的初拉力做成桥阶段初始平衡状态分析。
首先使用MIDAS/CIVIL提供的斜拉桥建模助手功能生成二维斜拉桥模型,然后利用二维模型通过复制等手段建立三维斜拉桥模型。
图8 斜拉桥建模助手对话框
斜拉桥成桥阶段和施工阶段分析MIDAS算例
目录概要1桥梁基本数据 / 2荷载 / 2设定建模环境 / 3定义材料和截面的特性值 / 4成桥阶段分析5结构建模 / 7生成二维模型 / 8建立索塔模型 / 10建立三维模型 / 13建立主梁横向系梁 / 15建立索塔横梁 / 17生成索塔上的主梁支座 / 19生成桥墩上的主梁支座 / 23输入边界条件 / 25计算拉索初拉力 / 28输入荷载条件 / 29输入荷载 / 30运行结构分析 / 33建立荷载组合 / 34计算未知荷载系数 / 35查看成桥阶段分析结果39查看变形形状 / 39施工阶段分析40施工阶段分类 / 41逆施工阶段分类 / 42逆施工阶段分析 / 42输入拉索初拉力 / 45定义施工阶段 / 49定义结构群 / 50指定边界群 / 53指定荷载群 / 56建立施工阶段 / 59输入施工阶段分析数据 / 61运行结构分析 / 61查看施工阶段分析结果62查看变形形状 / 62查看弯矩 / 63查看轴力 / 64施工阶段分析变化图形 / 65概要斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。
斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。
在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。
为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态,然后按顺序做施工阶段分析。
在本例题中将介绍建立斜拉桥分析模型的方法、计算拉索初拉力的方法、施工阶段分析的步骤以及查看分析结果的方法。
本例题中的桥梁模型如图1所示为三跨连续斜拉桥,中间跨径为220m、边跨跨径为100m。
图1 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。
1使用MIDASCivil做斜拉桥分析时的一些注意事项
1使⽤MIDASCivil做斜拉桥分析时的⼀些注意事项使⽤MIDAS/Civil做斜拉桥分析时的⼀些注意事项斜拉桥的设计过程与⼀般梁式桥的设计过程有所不同。
对于梁式桥梁结构,如果结构尺⼨、材料、⼆期恒载都确定之后,结构的恒载内⼒也随之基本确定,⽆法进⾏较⼤的调整。
对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的⽐例是⼗分重要的。
因此斜拉桥的设计⾸先是确定其合理的成桥状态,即合理的线形和内⼒状态,其中起主要调整作⽤的就是斜拉索的张拉⼒。
确定斜拉索张拉⼒的⽅法主要有刚性⽀承连续梁法、零位移法、倒拆和正装法、⽆应⼒状态控制法、内⼒平衡法和影响矩阵法等,各种⽅法的原理和适⽤对象请参考刘⼠林等编著的公路桥梁设计丛书-《斜拉桥》。
MIDAS/Civil程序针对斜拉桥的张拉⼒确定、施⼯阶段分析、⾮线性分析等提供了多种解决⽅案,下⾯就⼀些功能的⽬的、适⽤对象和注意事项做⼀些说明。
1.未闭合⼒功能通常,在进⾏斜拉桥分析时,第⼀步是进⾏成桥状态分析,即建⽴成桥模型,考虑结构⾃重、⼆期恒载、斜拉索的初拉⼒(单位⼒),进⾏静⼒线性分析后,利⽤“未知荷载系数”的功能,根据影响矩阵求出满⾜所设定的约束条件(线形和内⼒状态)的初拉⼒系数。
此时斜拉索需采⽤桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的⾮线性效应可以看作不是很⼤,⽽且影响矩阵法的适⽤前提是荷载效应的线性叠加(荷载组合)成⽴。
第⼆步是利⽤算得的成桥状态的初拉⼒(不再是单位⼒),建⽴成桥模型并定义倒拆施⼯阶段,以求出在各施⼯阶段需要张拉的索⼒。
此时斜拉索采⽤只受拉索单元来模拟,在施⼯阶段分析控制对话框中选择“体内⼒”。
第三步是根据倒拆分析得到的各施⼯阶段拉索的内⼒,将其按初拉⼒输⼊建⽴正装施⼯阶段的模型并进⾏分析。
此时斜拉索仍需采⽤只受拉索单元来模拟,但在施⼯阶段分析控制对话框中选择“体外⼒”。
但是设计⼈员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。
midasCivil斜拉桥分析共33页
和活载共同作用下,上翼缘的最大应力和材料允许应力之比等于下翼缘的最大应力和材料允许 应力之比。
6)影响矩阵法
以上简单介绍了斜拉桥索力调整的几种方法,实际施工中的索力调整是比较复杂的, 而且实践性很强。结构分析工程师的经验非常重要,只有多次反复试算才可以得到比较满 意的索力。例如:对于锚固在支座上方或附近部位的斜拉索的索力对主梁的弯矩和位移的 影响非常小,如果取主梁上的位移或弯矩作为控制值,会导致病态方程。对于辅助墩附近 的斜拉索建议人为假定索力进行试算,以得到理想的结构内力和线形。
3
midas Civil 2010 斜拉桥专题—斜拉桥分析专题
斜拉桥
二、斜拉桥索力调整理论
斜拉桥不仅具有优美的外形,而且具有良好的力学性能,其主要优点在于:恒载作用下, 拉索的索力是可以调整的。斜拉桥可以认为是大跨径的体外预应力结构。
在力学性能方面,当在恒载作用时,斜拉索的作用并不仅仅是弹性支承,更重要的是它能 通过千斤顶主动地施加平衡外荷载的初张力,正是因为斜拉索的索力是可以调整的,斜拉索才 可以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支 承的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。
张拉斜拉索时,实际上已经将该斜拉索脱离出来单独工作,因为斜拉索的张力和结构的其 它部分无关,而只与千斤顶有关,因此在张拉斜拉索时,其初张力效应必须采用隔离体分析 (midas Civil中采用体外力来进行模拟)。
确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状 态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公 路桥梁设计丛书 -《斜拉桥》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MIDAS Civil的斜拉桥施工监控仿真分析
【摘要】斜拉桥结构复杂,超静定次数高,施工复杂。
本文以一座预应力混凝土独塔斜拉桥为研究背景,介绍了斜拉桥施工监控的意义及施工仿真计算的分析方法,确定了桥梁施工各阶段的立模标高及索力值。
【关键字】斜拉桥;施工监控;有限元;预拱度
斜拉桥结构较复杂,超静定次数高,在施工过程中有效地进行内力控制和线形控制是保证斜拉桥安全性和耐久性的关键。
我国已建成相当数量的斜拉桥,施工控制问题已经越来越受到重视。
尽管在设计时已经考虑了施工中可能出现的情况,但是施工中斜拉索的实际张拉力、梁段的重量、材料的弹性模量、各构件混凝土徐变收缩和温度对结构的非线性影响等因素,在设计时很难准确把握。
所以必须在施工过程中对桥梁结构进行实时监测,并根据监测结果对设计的施工过程中进行相应的调整,使桥梁建成时最大可能地接近设计状态。
1工程概况
江油市涪江五桥主桥为跨径组合为155+155m的两跨预应力混凝土单塔双索面斜拉桥。
主梁采用预应力混凝土双纵肋式连续梁,桥面全宽32.5m,标准梁段边肋高度2.7m,桥面板厚度为28cm;肋间横梁间距与拉索间距相同,厚度30cm。
除索塔区0号梁段、边跨合拢段为非标准梁段外,每个悬臂侧各有23个标准
梁段,其标准梁段长度为6.0m。
悬臂浇筑梁段均采用前支点挂篮悬浇施工,最大节段控制重量375吨,挂篮设计重量170吨。
2有限元模型
斜拉桥为多点支承的高次超静定结构,运用传统结构力学中的力法和位移法来解,显然不便。
计算技术的不断发展使有限单元法成为桥梁结构分析必不可少的得力工具。
桥梁施工的每一个阶段的内力和线形都可以有限元模拟计算出来并和实际内力和线形数据作对比,从而做到实时跟踪监测和调整。
本桥采用Midas civil进行建模分析,斜拉索采用只受拉索单元,主梁和桥塔均采用梁单元。
主梁模型采用单根主梁带刚性短刚臂的鱼骨式模型,如图1所示。
结构所受荷载包括恒载和活载,同时考虑混凝土收缩徐变的影响。
一期恒载主要为结构自重,标准梁段重量按375T计算,二期恒载包括桥面铺装、防撞护栏等按159KN/m计算。
挂篮重量为170T,用节点荷载进行模拟。
活载按城-A级取值,人群荷载按CJJ11-2011规范第10.0.5条取值。
图 1 有限元仿真模型
3分析结果
3.1 .应力
本桥为预应力混凝土受弯构件,在预应力和构件自重,斜拉索拉力等荷载作用下全桥施工阶段主梁上、下缘无拉应力。
主梁截面上缘施工阶段最大压应力在0#块悬臂根部,大小为
-7.4MPa。
主梁截面下缘施工阶段应力出现在3/4截面附近,大小为-18.8MPa。
均满足规范要求。
主梁单元应力如图2所示。
图 2 主梁单元施工阶段应力图
3.2 线形
为保证桥梁能顺利合拢,成桥后全桥的线形平顺,在运营一定时间后桥面能够达到设计所要求的标高,必须确定上部结构每一梁段的预拱度。
预拱度控制是通过控制立模标高实现的,立模标高一般由设计标高、预拱度、挂篮弹性变形等组成。
其中挂篮变形是通过挂篮加载试验得到的挠度数据。
预拱度是确定立模标高的基础,其组合计算公式见下式:
f预拱度=-(∑f1i+∑f2i+f3i+f4i+f5i+ f6i+ 0.5f活)
式中:∑f1i为梁段自重产生的挠度累计值;∑f2i为预应力作用产生的总挠度;f 3i为施工荷载产生的总挠度;f4i为二期恒载作用下产生的挠度;f5i为混凝土收缩徐变值;f6i 为受温度影响产生的挠度,f活为活载作用下产生的挠度。
由上式可得涪江五桥的预拱度值,如图3分别画出了施工预拱度、成桥预拱度以及预拱度值,该值即为对应混凝土节段梁中线前端点的抛高值。
同时可以根据需要得出不同荷载组合作用下,各个施工阶段各梁段的挠度。
这里仅画出了主梁因收缩徐变产生的位移及1/2活载作用下的位移。
图3 主梁变形曲线
3.3 索力
斜拉索索力直接影响主梁的内力和线形,索力大小是反映全桥内力状态的重要指标。
根据模型计算结果,整个施工过程中,斜拉索最大拉应力为629MPa,小于规范规定的平行钢丝斜拉
索容许应力[σ]=1670MPa/2.5=668MPa,最小拉应力为134MPa,说明斜拉索没有出现松弛的情况,施工过程中不会出现斜拉索松弛引发结构安全的危险。
在成桥阶段恒载作用下,索力均匀性较好,斜拉索的安全系数均大于2.7。
确定斜拉桥合理成桥状态后,用Midas Civil进行反复的倒装、正装计算后,得出拉索初张力。
再代入初张力进行施工节段分析,可以得出不同施工阶段斜拉索的索力。
如图4所示,列出了初张力,竣工阶段和成桥十年后的索力值。
图 4 斜拉索索力计算值
4结论
在斜拉桥的施工监控中,线形控制、索力控制和应力控制是三个重要内容。
本文以涪江五桥为工程背景对这三方面进行仿真计算分析,得出以下结论:
(1)桥梁应力状态符合规范要求,索力及线形误差在合理范围以内,符合规范及设计要求。
(2)由于影响结构响应的参数变化较大,如混凝上的容重、弹性模量等,在每个施工节段除进行上述各项监控外还必须量测各种材料参数,以便及时校正修改计算模型,准确地模拟施工过程。
(3)本桥除0#、1#块、合拢段及边跨现浇段外均采用前支点挂篮施工,混凝土分两次浇筑,斜拉索分三次张拉以确保结构安全,增加了建模难度。
为了准确模拟施工过程,需要在模型中模拟出挂篮,同时模拟出分层浇筑分次张拉的过程,这样得到
的应力和索力才更加接近真实值。
【参考文献】
[1]顾安邦,张永水.桥梁施工监测与控制[M].北京:机械工业出版社.2005.
[2]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001.
[3]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
[4]吴运宏,黄晓航.重庆李渡长江大桥斜拉桥施工监控计算桥梁建设[J].2006年增刊2:180-182
保洁员协议书
甲方:村村民委员会
乙方:,身份证号:
为了确保本村的清洁卫生得到正常有序地运行,使全村的环境卫生保持清洁.干净。
切实做好全村生活垃圾的收集处置工作。
经甲.乙双方协商同意,特订如下协议:
一.垃圾收集范围:
屯主要道路的路边.溪边经常保持整洁,及时清理白色污染.无明显垃圾堆积物:清除屯主要道路两边杂草:对屯内公共树木养护:沟渠如有堵塞做到及时清理:对乱张贴.乱涂写.乱刻画.乱散发.乱悬挂等非法广告做到及时制止和清理。
二.保洁员报酬工资合计元,要求做到每周清洁2次以上,确保路面干净.整洁。
工资逐月发放。
三.保洁所需一切工具均由乙方自己承担,乙方还要自备垃圾清运车辆。
在工作期间注意自身安全,如发生意外,其责任自负,甲方不承担任何责任。
四.工作要求:
1.屯内道路路段保洁要求:对屯内道路及路两旁的沟.涵管必须清理疏通,道路两旁的绿化带进行抚育.管理,保持路边无杂草,路面无杂物。
2.保洁员必须服从村分管清洁卫生负责人管理,甲方经常组织人员不定期进行检查,达不到工作要求的,每次酌情口工资若干元。
3凡对本职工作责任性不强,垃圾收集不到位,群众反映意见大,经批评.教育不改正,情节严重的在合同期内可作辞退处理。
五.甲方如有提供给乙方的保洁工具,乙方须合理使用.妥善保管和管理,如因乙方未按程序操作,造成保洁工
具损坏或丢失的,乙方应做出相应的赔偿。
六.合同有效期为一年。
时间为年月日至年月日。
若乙方在合同期未到,中途欲暂停或终止保洁工作,需提前一个月与甲方商议并经甲方同意后方可暂停或终止保洁工作,否则甲方有权视具体情况扣除乙方一个月工作。
七.本合同一式两份,甲.乙双方各执一份,希望双方遵守合同条款。
合同经甲.乙双方签字后生效,望各自遵守执行。
甲方:(盖章)乙方:
村委主任签字:签字:
年月日。