常用电力电子器件

合集下载

电力电子器件大全及使用方法详解

电力电子器件大全及使用方法详解

电力电子器件大全及使用方法详解一、二极管二极管是一种常见的电力电子器件,它可以实现电流的整流功能。

二极管具有单向导电性,即只有当正向电压施加在二极管上时,电流才能够流过二极管。

二极管常用于交流电转直流电的整流电路中。

使用方法:将二极管的正极连接到正电压,负极连接到负电压即可。

需要注意的是,二极管具有正向电压降(Vf),在正向导通状态下会有一定的电压降,需要根据实际需求选择合适的二极管。

二、晶闸管晶闸管是一种可控硅器件,具有正向导通和反向封锁两种状态。

晶闸管通过控制门极电流来实现正向导通状态,控制门极电流为零时处于反向封锁状态。

晶闸管常用于高功率电流的开关和整流电路中。

使用方法:将晶闸管的端子正确连接,再通过控制晶闸管的门极电流来控制其导通和封锁状态。

在选择晶闸管时,需要考虑其额定电压和额定电流是否满足实际需求。

三、功率场效应管(MOSFET)功率场效应管是一种电压控制的开关器件,具有低导通电阻、快速开关速度和高电压容忍等优点。

功率MOSFET广泛应用于直流-直流转换器、交流-直流变换器和电源开关等电力电子领域。

使用方法:将功率MOSFET的源极与负极连接,漏极与负载连接,控制其栅极电压来控制其导通和截止状态。

在选择功率MOSFET时,需要考虑其额定电压、额定电流和导通电阻等参数是否满足实际需求。

四、IGBTIGBT(Insulated Gate Bipolar Transistor)是一种中压、大功率的开关器件,它具有MOSFET和晶闸管的优点。

IGBT可以实现高压和高电流的控制,广泛应用于电力电子变换器、交流调速器和逆变器等领域。

使用方法:将IGBT的集电极与源极连接,发射极与负载连接,通过控制栅极电压来控制IGBT的导通和截止状态。

在选择IGBT时,需要考虑其额定电压、额定电流和导通电阻等参数是否满足实际需求。

总结:电力电子器件包括二极管、晶闸管、功率MOSFET和IGBT等,它们在电力电子领域中具有重要的应用。

电力电子技术知识点总结

电力电子技术知识点总结

电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。

其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。

2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。

可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。

3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。

4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。

5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。

以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。

二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。

常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。

2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。

常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。

3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。

电子行业电力电子器件相关资料

电子行业电力电子器件相关资料

电子行业电力电子器件相关资料1. 介绍电力电子器件是电子行业中的重要组成部分,主要用于控制和转换电力。

它们在电力传输、变换和分配中发挥着关键的作用。

本文档将介绍电力电子器件的主要类型、工作原理、应用领域以及相关的技术资料。

2. 电力电子器件的类型电力电子器件广泛应用于各个领域,包括能源转换、电力传输、电机控制等。

以下是一些常见的电力电子器件类型:2.1 变流器变流器是将交流电转换为直流电或将直流电转换为交流电的装置。

主要包括整流器和逆变器两种类型。

整流器将交流电转换为直流电,逆变器将直流电转换为交流电。

2.2 逆变器逆变器是将直流电转换为交流电的装置。

它通常用于交流电到直流电的转换,例如太阳能电池板和风力发电机输出的直流电转换为交流电以供家庭和工业使用。

2.3 储能器储能器是一种能够存储电能并在需要时释放的装置。

它通常用于平衡电力的供应和需求之间的不匹配,以及在电力系统中储存和释放能量。

2.4 整流器整流器是将交流电转换为直流电的装置。

它常用于将交流电转换为直流电以供稳定的电力需求。

2.5 逆变器逆变器是将直流电转换为交流电的装置。

它常用于将直流电转换为交流电以供各种电力设备使用。

3. 电力电子器件的工作原理电力电子器件的工作原理基于不同的电力转换和控制原理。

以下是一些常见的电力电子器件及其工作原理:3.1 变流器的工作原理变流器将交流电转换为直流电或将直流电转换为交流电,其工作原理基于开关器件的使用。

开关器件在不同的状态下打开和关闭,从而控制电流的流动。

逆变器将直流电转换为交流电,其工作原理也基于开关器件的使用。

开关器件通过调整开关频率和占空比来实现对输出波形的控制。

3.3 储能器的工作原理储能器通过将电能存储在电容或电感器中,并在需要时释放,实现对电力系统的能量平衡。

其工作原理基于能量的存储和释放。

整流器将交流电转换为直流电,其工作原理基于半导体器件的整流特性。

半导体器件只允许电流在一个方向上流动,从而实现对交流电的整流。

电力系统中的电力电子器件及其应用

电力系统中的电力电子器件及其应用

电力系统中的电力电子器件及其应用在当今高度依赖电力的社会中,电力系统的稳定运行和高效发展至关重要。

电力电子器件作为电力系统中的关键组成部分,正发挥着日益重要的作用。

它们的出现和应用,为电力系统的优化、控制和能源转换带来了革命性的变化。

电力电子器件是一种能够对电能进行高效控制和转换的半导体器件。

常见的电力电子器件包括二极管、晶闸管、晶体管(如 MOSFET 和IGBT)等。

这些器件具有不同的特性和性能,适用于各种不同的电力系统应用场景。

二极管是最简单的电力电子器件之一,它只允许电流单向通过。

在电力系统中,二极管常用于整流电路,将交流电转换为直流电。

例如,在电源适配器中,二极管将交流市电整流为直流电,为电子设备提供稳定的电源。

晶闸管则是一种具有可控导通特性的器件。

通过施加合适的触发信号,可以控制晶闸管的导通和关断。

晶闸管在电力系统中的应用非常广泛,如用于高压直流输电系统中的换流器、无功补偿装置等。

通过控制晶闸管的导通角,可以实现对交流电压和电流的调节,从而达到控制无功功率和提高电能质量的目的。

MOSFET(金属氧化物半导体场效应晶体管)和 IGBT(绝缘栅双极型晶体管)是现代电力电子系统中常用的晶体管器件。

它们具有开关速度快、导通电阻小、驱动功率低等优点。

MOSFET 适用于高频、小功率的应用场景,如开关电源、电动汽车充电器等。

IGBT 则在中大功率的电力变换领域表现出色,如变频器、新能源发电系统中的逆变器等。

在电力系统中,电力电子器件的应用范围十分广泛。

首先,在发电环节,可再生能源的开发和利用离不开电力电子技术。

例如,太阳能光伏发电系统中,通过电力电子逆变器将太阳能电池板产生的直流电转换为交流电并并入电网。

风力发电系统中,电力电子变流器用于控制风机转速,实现最大功率跟踪,同时将风机发出的交流电转换为符合电网要求的电能。

在输电环节,高压直流输电技术凭借其输电距离远、输电容量大、损耗低等优势,成为了远距离大容量输电的重要手段。

常用电力电子器件

常用电力电子器件
其关断,故又称为自关断器件。如绝缘栅双极晶体管 IGBT和门极可关断晶闸管GTO等。
2.按驱动电路加在器件控制端和公共端之间信 号的性质分类
1)电流驱动型 通过从控制端注入或者抽出电流来实现导通或
者关断的控制。常见的有普通晶闸管、门极可关断 晶闸管GTO等。
2)电压驱动型 通过在控制端和公共端之间施加一定的电压信号
(2)关断过程包括反向阻断恢复时间和正向阻断恢复 时间。
关断时间tq是反向阻断恢复时间与正向阻断恢复时间 之和,即 tq=trr+tgr。普通晶闸管的关断时间约几百微秒, 快速晶闸管的关断时间为几微秒到几十微秒。
6.晶闸管的主要参数 晶闸管的主要参数包括电压定额、电流定额、动 态参数和门极参数等。 1)电压定额 电压定额包括断态重复峰值电压、反向重复峰值
电压、通态(峰值)电压、额定电压和通态平均电压 等。
(1)正向重复峰值电压。断态重复峰值电压 UDRM是指在门极断开而结温为额定值时,允许重 复加在器件上的正向峰值电压。
(2)反向重复峰值电压。反向重复峰值电压 URRM是指在门极断开而结温为额定值时,允许重 复加在器件上的反向峰值电压。
(3)通态(峰值)电压。通态(峰值)电压 UTM是指晶闸管通以π倍的或某一规定倍数的额定 通态平均电流时的瞬态峰值电压。从减小器件损 耗和发热的角度应选用UTM较小的晶闸管。
其他几种可能导通的情况:
(1)阳极电压升高至相当高的数值造成雪崩效应, 即硬开通。 (2)阳极电压上升率du/dt过高。 (3)结温较高。 (4)光直接照射晶体管硅片上,即光触发。
5.晶闸管的基本特性 晶闸管的基本特性包括静态特性和动态特性。
1)晶闸管的静态特性 (1)晶闸管的阳极伏安特性。晶闸管的阳极伏安特 性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图 2-5所示。其中,第I象限的是正向特性;第III象限的是反 向特性。

电力电子器件与应用

电力电子器件与应用

电力电子器件与应用电力电子技术是现代电气工程领域中的重要分支,它主要研究与应用电子器件在电力系统中的转换、调节和控制技术。

电力电子器件的发展和应用,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本文将从电力电子器件的基本原理、常见的电力电子器件和其应用领域等方面进行探讨。

一、电力电子器件的基本原理电力电子器件是指能够将电力信号进行转换、调节和控制的电子器件。

其基本原理是利用半导体器件的导通和截止特性,通过不同的电路拓扑结构,实现对电力信号的处理。

常见的电力电子器件包括二极管、晶闸管、可控硅、IGBT和MOSFET等。

二、常见的电力电子器件1. 二极管:二极管是一种最简单的电力电子器件,其具有单向导电性。

它常用于整流电路中,将交流电信号转换为直流电信号。

2. 晶闸管:晶闸管是一种具有双向导电性的电力电子器件。

它具有可控性,可以通过控制电压或电流来实现导通和截止。

晶闸管广泛应用于交流电调节、交流电转换和交流电控制等领域。

3. 可控硅:可控硅是一种具有单向导电性和可控性的电力电子器件。

它可以通过控制触发信号来实现导通和截止。

可控硅常用于交流电调节和交流电控制等应用中。

4. IGBT:IGBT是一种综合了MOSFET和可控硅特性的电力电子器件。

它具有高压、高电流和高频率的特点,广泛应用于交流电调节、交流电转换和电力传输等领域。

5. MOSFET:MOSFET是一种具有双向导电性和可控性的电力电子器件。

它具有高速开关和低功耗的特点,常用于直流电调节、直流电转换和电力传输等应用中。

三、电力电子器件的应用领域电力电子器件在电力系统中的应用非常广泛,主要包括以下几个方面:1. 电力调节:电力电子器件可以通过调节电压、电流和频率等参数,实现对电力系统的调节。

例如,通过调节晶闸管和可控硅的触发角度,可以实现对交流电的调节,提高电力系统的稳定性和可靠性。

2. 电力转换:电力电子器件可以将不同形式的电力信号进行转换,实现能量的传输和转换。

电子行业电力电子器件及应用

电子行业电力电子器件及应用

电子行业电力电子器件及应用引言电子行业是一个快速发展的行业,在电子设备中,电力电子器件是不可或缺的关键组成部分。

电力电子器件是指用于调整和转换电能的器件,广泛应用于交流和直流电网、电动机驱动、电源供应等领域。

本文将介绍电子行业中常见的电力电子器件及其应用。

一、开关器件1.整流二极管 (Rectifier Diode)整流二极管是一种常见的开关器件,用于将交流电转换为直流电。

它具有正向导通和反向截止的特性,常用于交流电桥式整流器、逆变器等电路中。

2.IGBT (Insulated Gate Bipolar Transistor) IGBT 是一种高压高频开关器件,兼具了普通晶体管和普通MOSFET的特点。

它可以控制高电压和高电流的通断,并且具有低开关损耗和快速切换速度的特点。

IGBT广泛用于工业设备、交通工具和电力传输中。

3.MOSFET (Metal-Oxide-SemiconductorField-Effect Transistor)MOSFET 是一种常见的开关器件,可以通过调节栅极电压来控制导通和截止。

它具有低导通电阻、低开关损耗和高开关速度的特点。

MOSFET 常用于直流转换器、电机驱动和太阳能发电逆变器等应用中。

二、功率模块1.IGBT模块IGBT模块是由多个IGBT芯片、隔离驱动电路和散热器组成的集成模块。

它可以方便地实现高压高频电路的设计和构建,广泛应用于电力传输、电机驱动和可再生能源领域。

2.整流桥模块整流桥模块是由多个整流二极管组成的集成模块。

它常用于交流电源的整流和直流电源供应的设计中。

3.功率放大模块功率放大模块是用于放大低功率信号为高功率信号的模块。

它常用于音频放大器、无线电频率放大器等应用中。

三、电力电子器件的应用1.交流调速电力电子器件在交流调速中起着重要作用。

例如,交流调压器使用电力电子器件的开关特性来调节交流电压的大小,实现电压调节和稳定。

2.无线充电利用电力电子器件的功率转换特性,可以实现无线充电技术。

电路中的电力电子器件与应用

电路中的电力电子器件与应用

电路中的电力电子器件与应用电力电子器件是构成电力电子系统的核心组成部分,在电力转换和控制中发挥着至关重要的作用。

本文将介绍一些常见的电力电子器件,并探讨它们在电路中的应用。

一、二极管(Diode)二极管是最简单的电力电子器件之一,它具有单向导电特性。

在电路中,二极管常用于整流电路,将交流电转换为直流电。

此外,二极管还可以用作过电压保护装置,以保护其他电子元件不受过电压的损害。

二、晶闸管(Thyristor)晶闸管是一种控制型二极管,具有可控的导通和截止特性。

在电力电子系统中,晶闸管广泛应用于交流电控制领域。

通过控制晶闸管的触发方式和触发角,可以实现对交流电的精确控制,用于变频调速、电流调节等方面。

三、可控硅(SCR)可控硅是一种具有双向导电特性的晶闸管。

与晶闸管相比,可控硅增加了反向导通能力,可以实现交流电的双向控制。

可控硅在电动机控制、电源开关等领域有广泛应用。

四、功率场效应晶体管(Power MOSFET)功率MOSFET是一种常用的电力电子开关器件。

它具有低导通电阻和高开关速度的特点,可实现高效率的功率传递。

功率MOSFET在电力电子转换系统中常用于开关电源、直流电机驱动等应用。

五、电力管(Power Transistor)电力管是具有较大功率承载能力的晶体管。

在高功率放大和开关电路中,电力管具有重要作用。

它可以放大或开关大电流,广泛应用于音频放大器、电力调制器等电路中。

六、电容(Capacitor)电容是一种储存电能的器件,具有储电和隔直流的特性。

在电力转换和滤波电路中,电容被广泛应用。

它可以储存电能,平滑电压波动,并降低电路中的噪声。

七、电感(Inductor)电感是一种储存磁能的器件,具有感应电压和滤波的作用。

在电力电子系统中,电感常被用于电源滤波、变压器和电感驱动等应用,用以改变电流和电压的大小。

综上所述,电力电子器件在电路中扮演着不可或缺的角色。

通过合理选择和应用这些器件,我们可以实现电能的高效转换、精确控制和稳定输出。

电力电子器件及应用技术

电力电子器件及应用技术

电力电子器件及应用技术电力电子器件是指能转换和调节电能的器件,是电力电子技术的核心。

随着电力电子技术的不断发展,电力电子器件的种类也日益增多。

在本文中,我们将介绍几种常见的电力电子器件及其应用技术。

一、开关管开关管是一种常见的电力电子器件,适用于高压、高电流的工作环境。

开关管具有通断能力强、开关速度快等特点,被广泛应用于各个领域。

最常见的应用是在电源开关、直流电机驱动器、电池充电器等设备中。

二、整流器整流器是将交流电转换为直流电的电力电子器件,常用于交流电转换为直流电的环境中。

整流器的类型有很多种,其中最常见的是单相整流器和三相整流器。

整流器广泛应用于交流到直流的转换领域,比如电源适配器、电气焊接设备等。

三、逆变器逆变器是将直流电转换为交流电的电力电子器件,适用于需要将直流电转换为交流电的场合。

逆变器在可逆变和无线电源等领域有广泛应用。

它可以将直流电动力设备连接到交流电网,比如太阳能和风能的利用。

逆变器还可用于驱动交流电机。

四、电力调节器电力调节器是一种能够调节电能的电力电子器件,可以根据需要对电压和电流进行调节。

电力调节器被广泛应用于稳压变送器、磁控管、智能继电器等设备中。

它能够在工业自动化、变频调速等领域起到重要作用。

五、功率电子器件功率电子器件是指能够直接转换大功率电力的电力电子器件。

功率电子器件的种类多样,其中最常见的是晶闸管、电力二极管和功率MOSFET。

这些器件被广泛应用于电力变换、电力控制等领域。

功率电子器件的发展为电力电子技术的进步提供了有力支持。

六、电力电子应用技术电力电子应用技术是指将电力电子器件应用于各个领域的技术方法和方法。

电力电子应用技术在电力系统、工业制造、交通运输、新能源等领域发挥着重要作用。

其中,电力变换技术、电力控制技术、电力传输技术等是电力电子应用技术的重要组成部分。

七、电力电子器件的未来发展随着科技的进步和社会的发展,电力电子器件及其应用技术也在不断发展。

未来,电力电子器件将更加智能化、高效化、小型化。

试列举电力电子器件,并从不同的角度对这些电力电子器件进行分类。目前常用的全控型电力电子器件有哪些?

试列举电力电子器件,并从不同的角度对这些电力电子器件进行分类。目前常用的全控型电力电子器件有哪些?

试列举电力电子器件,并从不同的角度对这些电力电子器件进行分类。

目前常用的全控型电力电子器件有哪些?以下是一些常见的电力电子器件的分类:1.控制器件:这类器件用于控制电力系统中的电流、电压和功率流动。

例如,控制器件包括逆变器、整流器和交流调压器等。

2.开关器件:这类器件用于控制电力系统中的电流通断。

常见的开关器件包括晶闸管(SCR)、双向晶闸管(TRIAC)、功率MOSFET、IGBT(绝缘栅双极型晶体管)和GTO(门控双极型晶体管)等。

3.整流器件:这些器件用于将交流电转换为直流电。

典型的整流器件包括整流二极管、普通晶闸管、快恢复二极管和大功率二极管等。

4.逆变器件:这类器件用于将直流电转换为交流电。

常见的逆变器件包括逆变二极管、MOSFET逆变器、IGBT逆变器和GTO逆变器等。

5.检测和保护器件:这些器件用于检测电流、电压、温度等电力系统参数,并提供保护控制。

典型的检测和保护器件包括电流传感器、电压传感器、温度传感器和保护电路等。

常用的全控型电力电子器件包括:1.晶闸管(SCR):可控硅,适用于高功率、高电压应用中的整流和开关控制。

2.双向晶闸管(TRIAC):适用于交流电控制,用于调节电压和控制功率。

3.大功率MOSFET:金属氧化物半导体场效应晶体管,用于高频开关和高效率应用。

4.功率IGBT:绝缘栅双极型晶体管,结合了MOSFET和晶闸管的特性,适用于高频率开关、高功率应用。

5.门控双极型晶体管(GTO):适用于高功率、大电流应用中的整流和开关控制。

不同的器件在性能、应用场景和特点等方面各有优势,选择适合特定应用的器件取决于实际需求。

电力电子技术中常见的功率器件有哪些

电力电子技术中常见的功率器件有哪些

电力电子技术中常见的功率器件有哪些电力电子技术是指利用电子器件与电力电路相结合,实现电能变换控制的技术领域。

在电力电子系统中,功率器件扮演着至关重要的角色,用于实现电能的调节、变换和传输。

本文将介绍电力电子技术中常见的功率器件。

1. 硅控整流器(SCR)硅控整流器(Silicon Controlled Rectifier,SCR)是一种能控制电流的功率器件。

它广泛应用于电力电子系统中的交流至直流变换、电能变流控制等方面。

SCR具有自保持性能和高电流承受能力,适用于高功率和高电流的应用。

2. 二极管二极管(Diode)是一种最简单的功率器件,用于无源器件或有源器件的整流与反向阻断。

它具有单向导电特性,常用于电源电路、整流电路和开关电源中。

3. MOSFET金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)是一种控制型功率器件。

它具有低电压控制、低输入电阻和高频特性等优势。

在交流变直流电源、逆变器以及开关电源等领域中得到广泛应用。

4. IGBT绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)是一种开关型功率器件。

它综合了MOSFET和晶闸管(GTR)的特点,既具有MOSFET的低电压控制特性,又具有GTR的高电流承受能力。

IGBT广泛应用于电力传动、逆变器和调压器等领域。

5. GTO门极可控晶闸管(Gate Turn-Off Thyristor,GTO)是一种可控硅器件。

它具有GTR的高电流承受能力和SCR的高电压承受能力,能够承受大功率的电流和电压。

GTO在高电流和高压应用领域具有重要地位,如电力传动、变频调速等。

6. 可控硅可控硅(Thyristor)是一种具有双向触发、单向导通的功率器件。

它适用于交流电的控制和变换,广泛应用于电力电子变频调速、电机起动控制等领域。

电力电子器件

电力电子器件

电力电子器件电力电子器件是电力系统中的重要组成部分,它们在电能转换、调节和控制等方面发挥着关键作用。

本文将介绍电力电子器件的分类、工作原理以及在电力系统中的应用。

一、分类根据其功能和特性,电力电子器件可以分为不同类型。

常见的电力电子器件主要包括晶闸管、可控硅、晶闸二极管、IGBT、MOSFET等。

这些器件具有不同的工作原理和特性,适用于不同的电力应用。

二、工作原理1. 晶闸管:晶闸管是一种具有双向导通能力的半导体器件。

它由四个不同极性的层连接而成,通过控制极的激励信号,可以控制晶闸管的导通和截止状态,实现电流的控制和转换。

2. 可控硅:可控硅是一种双向可控的半导体开关。

它可以通过加在控制极上的电流脉冲或电压来控制其导通和截止状态,用于实现交流电的调节和控制。

3. 晶闸二极管:晶闸二极管是一种具有可控导通特性的二极管。

它与普通二极管相比,在导通状态下具有较低的压降和较高的导通电流能力,可以用于实现电流的控制和反向电压的保护。

4. IGBT:IGBT是绝缘栅双极型晶体管的简称。

它结合了晶闸管和MOSFET的优点,既能承受高电压,又具有低导通压降和高开关速度的特性,广泛应用于电力电子和工业控制领域。

5. MOSFET:MOSFET是一种常用的场效应管。

它具有高输入阻抗、低开关损耗和快速响应速度等优点,适用于低功率应用和高频切换。

三、应用电力电子器件在电力系统中的应用广泛。

以下是几个常见的应用领域:1. 逆变器:电力电子器件可以将直流电转换为交流电,实现电能的逆变。

这在再生能源发电系统中尤为重要,可以将太阳能电池板或风力发电机输出的直流电转换为交流电,供电给家庭或工业用电。

2. 变频器:电力电子器件的调节特性使其非常适合用于变频器。

变频器可以根据需要调整电机的转速和运行模式,实现对电机的精确控制,广泛应用于工业和交通领域。

3. 电能质量改善器:电力电子器件可以修复和改善电力系统中的电能质量问题,如电压波动、谐波污染等。

电力电子知识点总结

电力电子知识点总结

电力电子知识点总结一、电力电子的基本原理电力电子是运用半导体器件实现电能的变换、控制和调节的技术领域。

在电力电子领域中最常用的器件是晶闸管、可控硅、晶闸管二极管、IGBT等。

它们通过对电压和电流的控制,实现将电能从一种形式转换为另一种形式。

电力电子的基本原理可以分为电力电子器件、电力电子电路和电力电子系统三个方面。

1. 电力电子器件电力电子器件是实现电力电子技术的基础。

常见的电力电子器件有晶闸管、可控硅、三端闭管、IGBT等,在电力电子中起着至关重要的作用。

晶闸管是一种四层结构的半导体器件,能够控制电流的导通和截止,实现电能的控制和调节。

可控硅是一种三端器件,具有双向导通特性,广泛应用于交流电路中。

IGBT集结了MOS管和双极型晶体管的优点,具有高开关速度、低导通压降等特点,是目前应用范围最广泛的功率器件之一。

2. 电力电子电路电力电子电路是利用电力电子器件构成的电路,实现对电能的控制和调节。

常见的电力电子电路包括整流电路、逆变电路、斩波电路等。

整流电路能够将交流电转换为直流电,逆变电路能够将直流电转换为交流电,斩波电路能够实现对电压和频率的调节。

这些电路在各种电力电子设备中得到了广泛应用,如变频调速器、逆变焊接电源等。

3. 电力电子系统电力电子系统是由多个电力电子电路组成的系统,实现对电能的复杂控制和转换。

常见的电力电子系统包括交流电调压系统、柔性直流输电系统、电能质量调节系统等。

这些系统在能源转换、传输和利用方面发挥着关键作用,是现代电力系统中不可或缺的一部分。

二、电力电子的常见器件和应用电力电子领域中常见的器件有晶闸管、可控硅、IGBT等。

而在现代工业中,电力电子技术得到了广泛的应用,如变频调速器、逆变焊接电源、电动汽车充电设备等。

1. 变频调速器变频调速器是一种能够实现电机转速调节的设备,它利用电力电子技术对电机供电进行控制,实现对电机转速的调节。

通过变频调速器,可以实现电机的恒流恒功率调节,使得电动汽车、电梯、风力发电机等设备具有更加灵活和高效的性能。

电子行业电力电子器件介绍

电子行业电力电子器件介绍

电子行业电力电子器件介绍1. 概述电力电子器件是电子行业中一类重要的器件,在能源转换、控制和调节等方面发挥着关键作用。

随着能源需求的增长和环境保护的要求,对电力电子器件的要求也越来越高。

2. 电力电子器件的分类电力电子器件根据其功能和特点可以分为多个类别,以下是一些常见的电力电子器件分类:2.1 可控硅(SCR)可控硅是一种常见的电力电子器件,在交流电控制方面具有重要作用。

可控硅具有整流和可控开关的功能,因此广泛应用于电能转换、变频调速、功率因数校正等领域。

2.2 可控晶闸管(GTO)可控晶闸管是一种高压高功率的半导体开关器件,广泛应用于高压直流输电和直流变频调速等场合。

可控晶闸管具有较好的控制能力和可靠性,被认为是电力电子领域的关键器件之一。

2.3 电力二极管电力二极管是一种用于整流和逆变的无控制半导体器件。

具有较大的导通电流和较高的工作温度,广泛用于交流电转换、电源等方面。

常见的电力二极管有快恢复二极管、整流二极管等。

2.4 电力MOSFET电力MOSFET是电力电子器件中的一种关键元件,广泛应用于交流-直流转换、逆变和变频调速等领域。

它具有快速开关速度、低开关损耗和高温工作能力等优点。

电力IGBT是一种高压、高功率的开关器件,结合了MOSFET的高速性和可控晶闸管的大电流承受能力。

电力IGBT被广泛应用于交流电变频调速、直流电逆变等电力电子系统中。

3. 电力电子器件的应用电力电子器件在电力变换、电能控制和调节等方面具有广泛的应用。

电力电子器件可以将一种电能形式转换为另一种电能形式,例如将交流电转换为直流电、将直流电转换为交流电。

这种电力转换广泛应用于工业生产、交通运输等领域。

3.2 电能控制和调节电力电子器件可以控制和调节电能的大小、频率和波形,实现对电力系统的稳定运行和优化控制。

例如,调整电源的输出电压、调整电机的转速等。

3.3 新能源应用随着新能源的快速发展,电力电子器件在太阳能、风能等新能源设备中的应用越来越广泛。

电工电子第十二章

电工电子第十二章

击穿防止方法: 在功放管c-e之间加稳压管,就可防止其一次击穿,并限 制其集电极电流,就可避免二次击穿。
2)转移特性 转移特性是在以漏源极电压UDS为参变量,输入栅源 电压UGS与输出漏极电流ID之间的关系如图12-6,功率 MOSFET的漏极电流ID和栅极电压UGS的关系曲线,如图 所示。该特性反映了功率MOSFET的栅源电压UGS对漏极 电流ID的控制能力。 3)开关特性 功率MOSFET是单极型电压控制器件,依靠多数载流子 导电,没有少数载流子的存储效应,与关断时间相联系的存 储时间大大减小,因而具有开关速度快的特点。
1.IGBT的结构
a)
b) 图12-7 IGBT的结构与符号 a)图形符号 b)内部结构 c)简化电路
c)
IGBT是以晶体管为主导元件、MOSFET为驱动元件 的达林顿结构器件。
2.工作原理 IGBT是全控型器件它的开通和关断是由栅极电压来 控制的。 3.IGBT主要特性 IGBT的特性可分为静态特性和动态特性,静态特性主 要指IGBT的伏安特性、转移特性,动态特性主要指IGBT的 开关特性。 1)伏安特性
5)通态平均电压UT(AV) 6) 正向重复峰值电压UDRM 5.晶闸管判别 1)晶闸管电极的判别 2)晶闸管好坏的判别 7) 反向重复峰值电压URDM
二、双向晶闸管
1.双向晶闸管结构 塑封式、螺栓式和平板式。
内部是五层半 导体(NPN PN), 引出三个电极,分 别为第一阳极(T1) 第二阳极(T2)和 门极(G)
4.功率MOSFET的主要参数 1)通态电阻Ron 在确定栅源电压UGS下,功率MOSFET由可调电阻区Ⅰ 进入线性放大区Ⅱ时的漏、源极间直流电阻为通态电阻。
在同样的温度条件下,耐压等级愈高的器件通态电阻越 大,且器件的通态压降越大.

第二章电力电子器件

第二章电力电子器件
或者关断的控制,这类电力电子器件被称为电压控制型电力电子器件或者电 压驱动型电力电子器件。
第4页/共82页
2.1 电力电子器件概述
电力电子器件的使用特点 从使用角度出发,主要可从以下五个方面考察电力电子器件的性能特点。 (1)导通压降。电力电子器件工作在饱和导通状态时仍产生一定的管耗,管耗 与器件导通压降成正比。 (2)运行频率。受到开关损耗和系统控制分辨率的限制,器件的开关时间越短, 器件可运行的频率越高。 (3)器件容量。器件容量包括输出功率、电压及电流等级、功率损耗等参数。 (4)耐冲击能力。这主要是指器件短时间内承受过电流的能力。半控型器件的 耐冲击能力远高于全控型器件。 (5)可靠性。这主要是指器件防止误导通的能力。
普通二极管(Conventional Diode)又称整流二极管(Rectifier Diode), 多用于开关频率不高(1kHz以下)的整流电路中 2. 快速恢复二极管
恢复过程很短,特别是反向恢复过程很短(一般在5ms以下)的二极管被称 为快速恢复二极管(Fast Recovery Diode,FRD),简称快速二极管。 3. 肖特基势垒二极管
2.3 半控型器件—晶闸管及其派生器件
2. 晶闸管的工作原理 按图2.12所示电路 (1) 当晶闸管承受反向阳极电压时,不论门极承受何种电压,晶闸管都处
于关断状态。 (2) 当晶闸管承受正向阳极电压时,若门极不施加电压,晶闸管也处于关
断状态。即晶闸管具有正向阻断能力。 (3) 要使晶闸管由阻断变为导通,必须在晶闸管承受正向阳极电压时,同
第11页/共82页
2.2 电力二极管
电力二极管的工作原理和基本特性
电力二极管的基本结构都是以半导体PN结为基础。电力二极管实际上是 由一个面积较大的PN结和两端引线以及封装组成的。图2.7所示为电力二极 管的外形、结构和电气图形符号。从外形上看,电力二极管主要有螺栓型和 平板型两种封装。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 常用电力电子器件在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。

为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。

电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。

半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。

电力电子器件不可控器件 二极管半控型器件 SCR全控型器件IGBT电力MOSFET GTRGTO晶闸管电力电子器件电压驱动型电流驱动型电力MOSFETIGBTSCRGTO 晶闸管GTR图5-1电力电子器件的分类随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。

了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。

在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。

SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。

因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。

5. 1二极管二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。

1、二极管的基本结构及工作原理开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。

P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。

N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。

在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。

而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。

在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。

在N 型半导体中则相反,空穴为少子,自由电子为多子。

图5-2 PN结的形成当N型半导体和P型半导体结合后构成PN结。

由于交界处电子和空穴的浓度差别,造成了各区的多子向另一区的扩散运动,于是在界面两侧分别留下了带正、负电荷但不能任意移动的杂质离子。

这些不能移动的正、负电荷称为空间电荷。

空间电荷建立的内电场,其方向是阻止扩散运动的,另一方面又吸引对方区内的少子(对本区而言则为多子)向本区运动,即漂移运动。

扩散运动和漂移运动达到平衡时,正、负空间电荷量达到稳定值,形成了一个稳定的由空间电荷构成的范围,被称为空间电荷区,通常也称为耗尽层、阻挡层或势垒区。

当PN结外加正向电压,即外加电压的正端接P区、负端接N区时,外加电场方向与内电场方向相反,内电场被削弱,使得多子的扩散运动大于少子的漂移运动,而在外电路上形成自P区至N区的电流,该电流被称为正向电流,由于电导调制效应,正向PN结在流过较大正向电流时的压降很低,表现为正向导通状态。

当PN结外加反向电压时,外加电场与内电场方向相同,使空间电荷区加宽,少子的漂移运动大于多子的扩散运动,产生自N区至P区的电流,该电流被称为反向电流。

由于少子的浓度很小,因此此时的PN结表现为高阻态,被称为反向截止状态。

在PN结承受反向电压时,随着反向电压的升高,空间电荷区的宽度及电场强度的峰值均随之增加,当电场强度超过一定限度就会造成击穿。

PN结的电击穿有两种形式:雪崩击穿和齐纳击穿。

反向击穿发生时,只要外电路中采取了措施,将反向电流限制在一定范围内,保证PN结的耗散功率不超过允许值,PN结仍可恢复正常。

如果超过了允许的耗散功率,就会导致PN结温度过高而烧毁,这种现象称为热击穿。

为提高二极管的反向耐压,可以在通常重掺杂的P型和N+型半导体间加入一层低掺杂的N-型半导体。

在正向导通状态,P区及N+区的大量载流子进入N-区,使N-区保持很低的压降。

在反向截止状态,由于基本保持中性,N-区内的电场强度基本为恒值。

这样由于空间电荷区域宽度增加,在同样的反压情况下,电场强度的峰值得以降低。

采用这种结构的二极管称为P-i-N二极管。

承受反压时PN及P-i-N型二极管空间电荷区的电场强度见图5 -3。

a )PN 型二极管b )P-i-N 型二极管 图5-3 承受反压时PN 及P-i-N 型二极管空间电荷区的电场强度2.二极管的基本特性及主要参数二极管的静态特性(即伏安特性)见图5-4,当二极管承受的正向电压大于门槛电压TO U ,正向电流才开始明显增加,转为正向导通状态。

二极管导通时的正向电流F I 由外电路决定,与F I 相对应的二极管两端电压F U 即为二极管的正向压降。

当对二极管施加反向电压时,只有少数载流子引起的微小的漏电流,其数值基本不随电压而变化。

当反向电压超过一定数值后,二极管的反向电流迅速增大,产生雪崩击穿。

图5-4 二极管的静态特性二极管的主要参数有:(1)正向平均电流()F AV I 该参数是二极管电流定额中最为重要的参数,它是在指定的管壳温度(简称壳温,用C T 表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。

快恢复二极管通常采用占空比为一定数值(通常为0.5)的方波电流的平均值标注二极管的额定电流。

二极管的结温(或壳温)是限制其工作电流最大值的主要因素之一,因此在实际使用时应按有效值相等的原则来选取电流定额,并同时考虑器件的散热条件。

当用在频率较高的场合时,开关损耗造成的发热往往不能忽略,因此即使不考虑安全裕量,二极管通常也必须降额使用。

(2)反向重复峰值电压RRM U ,指对二极管所能重复施加的反向最高峰值电压,通常是其雪崩击穿电压的2/3。

(3)正向压降F U 指在指定温度下,流过某一指定的稳态正向电流时所对应的正向压降。

正向压降越低表明其导通损耗越小。

通常耐压低的二极管正向压降较低,普通整流二极管压降低于快恢复二极管。

二极管的正向压降具有负温度系数,它随着温度的上升而略有下降。

(4)反向恢复电流RP I 及反向恢复时间rr T 由于二极管PN 结中的空间电荷区存储电荷的影响,当给处于正向导通状态的二极管施加反压时,二极管不能立即转为截止状态,只有当存储电荷完全复合后,二极管才呈现高阻状态。

这期间的电压电流波形见图5 -5。

这一过程称为二极管的反向恢复过程。

反向恢复时间rr T 通常定义为从电流下降为零至反向电流衰减至反向恢复电流峰值一定数值(一般为10%或25%)的时间。

反向恢复电流及恢复时间与正向导通时的正向电流F I 以及电流下降率F di dt 密切相关。

产品手册中通常给出在一定的正向电流以及电流下降率条件下,二极管的反向恢复电流及恢复时间。

图5 -5中电流下降时间f t 与延迟时间d t 的比值称为恢复特性的软度,或称恢复系数。

恢复系数越大,在同样的外电路条件下造成的反向电压过冲RP U 越小。

反向恢复电流小、恢复时间短的快速软恢复二极管是开关电源高频整流部分的理想器件。

)U FPuii Fu F t f rt02Va)IR P图5-5 二极管的反向恢复过程在一定的工艺和材料水平下,二极管的反向恢复特性与正向通态压降存在折中关系,反向恢复特性好的器件通常正向压降较高,许多厂家一般都有多个产品系列供用户选择以适应不同场合的应用要求。

3.二极管的主要类型二极管在开关电源中有大量应用,按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同,在应用时应根据不同场合的不同要求,选择不同类型的二极管。

常用的二极管可以分为以下三类:(1)普通二极管 普通二极管又称整流二极管,多用于开关频率不高(1kHz 以下)的整流电路中。

其反向恢复时间较长,一般在5s μ以上,在参数表中甚至不列出这一参数,这在开关频率不高时并不重要。

但其正向压降低,正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上。

(2)快恢复二极管(Fast Recovery Diode , FRD)反向恢复过程很短(5s μ以下)的二极管,也简称快速二极管。

工艺上多采用了掺金措施,结构上有的采用PN 结型结构,有的采用改进的PiN 结构。

其正向压降高于普通二极管(1~2V 左右),反向耐压多在1200V 以下。

从性能上可分为快速恢复和超快速恢复两个等级。

前者反向恢复时间为数百纳秒或更长,后者则在100ns 以下,甚至达到20~30ns 。

(3)肖特基二极管以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode , SBD ),简称为肖特基二极管。

与以PN 结为基础的二极管相比,肖特基二极管具有正向压降低(0.4 ~0. 8V),反向恢复时间很短( 10 ~40ns)的优点。

肖特基二极管的弱点在于:采用传统硅材料制成的器件反向漏电流较高,并随着结温的升高而显著上升,而且其正向压降随着耐压的上升迅速增大,因此目前其耐压多低于200V 。

由于上述特点,肖特基二极管多用于低压场合。

近年来,随着新型材料碳化硅(SiC)的发展,采用碳化硅制成的肖特基二极管的性能大幅度提高,其耐压已达到1200V ,反向恢复特性显著优于常规的硅快恢复二极管,且漏电流很小,高耐压的碳化硅二极管正向通态压降与硅快恢复二极管基本相当。

由于碳化硅二极管优良的反向恢复特性,使其在升压型PFC 电路、高频整流电路等应用场合具有显著的优势。

其缺点是目前的价格仍然较高。

5.2电力MOSFET电力MOSFET 是近年来发展最快的全控型电力电子器件之一。

它显著的特点是用栅极电压来控制漏极电流,因此所需驱动功率小、驱动电路简单;又由于是靠多数载流子导电,没有少数载流子导电所需的存储时间,是目前开关速度最高的电力电子器件,在小功率电力电子装置中是应用最为广泛的器件。

5. 2. 1结构和工作原理电力MOSFET 与电子电路中应用的MOSFET 类似,按导电沟道可分为P 沟道和N 沟道。

在电力MOSFET 中,应用最多的是绝缘栅N 沟道增强型。

电力MOSFET 在导通时只有一种极性的载流子(多子)参与导电,属单极型晶体管。

与小功率MOS 管不同的是电力MOSFET 的结构大都采用垂直导电结构,以提高器件的耐压和耐电流能力。

相关文档
最新文档