三冲量水位控制系统

合集下载

三冲量汽包水位控制原理及应用教程

三冲量汽包水位控制原理及应用教程

三冲量汽包水位控制原理及应用教程本文详细介绍汽包水位三冲量控制系统的原理及控制策略,文章内容通俗易懂、图文并茂,可作为三冲量汽包水位控制系统设计和应用教程使用。

锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。

汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。

所以锅炉水位是一个极为重要的被控变量。

在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。

所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。

在锅炉控制中,主要冲量是水位。

辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。

1、三冲量控制的引入目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。

①单冲量水位调节系统单冲量水位调节系统的原理如图1所示。

由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。

它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。

但对于停留时间较短,负荷变化大的系统就不适应了。

图1 单冲量水位调节原理 图2 单冲量水位调节系统控制策略从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。

当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。

因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。

此时PID 调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。

三冲量水位控制系统

三冲量水位控制系统

三冲量水位控制系统三冲量控制系统,以汽包水位为主控制信号,蒸汽流量为前馈控制信号,给水流量为反馈控制信号组成的控制系统。

三冲量水位控制系统如图 3-5。

(a)原理图(b)框图图3-5 三冲量水位控制系统现代工业锅炉都向着大容量高参数的方向发展,一般锅炉容量越大,汽包的容水量就相对越小,允许波动的蓄水量就更少。

如果给水中断,可能在很短的时间内就会发生危险水位;如果仅是给水量和蒸汽量不相适应,也可能在几分钟呢出现缺水和满水事故,这样对汽包水位要求就更高了。

三冲量控制系统,采用蒸汽流量信号对给水流量进行前馈控制,当蒸汽负荷忽然变化时,蒸汽流量信号使给水调节阀一开始就向正确方向移动,即蒸汽流量增加,给水调节阀开大,抵消了“虚假水位”引起的反向动作,因而减小了水位和给水流量的波动幅度。

当由于水压干扰使给水流量改变时,调节器能迅速消除干扰。

如给水流量减少,调节器立即根据给水流量减小的信号,开大给水阀门,使给水流量保持不变。

I/O 分配表和PLC 外部接线图根据系统的 I/O 点数,并考虑富裕量及今后系统的扩展升级和工艺控制等问题,本系统设计采用三菱公司的 FX2N-48MR 型作为主机,FX2N-48MR 型是三菱公司的典型产品,具有功能强大,处理速度快、容量大等优点,属于高性能小型机,系统 I/O 总点数为 16点,输入、输出均为 8 点,配置扩展单元后可增加 I/O 点数。

根据上述关于 PLC 控制系统的基本单元输入和输出信号统计,制定 I/O 分配表,具体对应关系如下表 4-2 所示。

模拟量模块输入地址分配表如表 4-3 所示。

表4-2 PLC I/O 分配表表4-3 模拟量模块输入地址分配表图 4-2 PLC 外部接线。

三冲量控制系统详解

三冲量控制系统详解

换热器的反馈控制方案
蒸汽
HV, RV
TC
工艺介质
cp, RF , T1
T2
凝液
假设主要干扰为RF,T1
第三页,共20页。
控制方案比较
蒸汽
HV, RV
TC
工艺介质
cp, RF , T1
T2
凝液
反馈控制方案
FF
RF
蒸汽
HV, RV
工艺 介质
cp, RF , T1
T2
凝液
前馈控制方案
第四页,共20页。
第十九页,共20页。
谢谢大家
第二十页,共20页。
汽包水位作为主调(PID调节器)的输入信号 ,去抑制水位本身的偏差。副调(外给定调节 器)使用了一个反馈信号(给水流量)和一个 前馈信号(蒸汽流量),以消除扰动和虚假水 位。
第十五页,共20页。
锅炉汽包水位的控制
汽包水位的单回路控制, “单冲量”—汽包水位
蒸汽
适用于负荷小的锅炉
汽包
三个问题: ① 不能克服虚假水位带来的后果
后者是对主被控变量有显著影响的干扰量,是完全不受控制作用 约束的独立变量,引入前馈的目的是为了补偿原料油流量对炉出 口温度的影响。
功能上:
前馈控制器与串级控制的副控制器担负不同的功能。
第十四页,共20页。
三冲量调节控制策略
汽包水位三冲量调节系统使用的三个冲量分别 是汽包水位、给水流量和蒸汽流量。
分析比较
T2C
T1C
燃料
原油
Gff
Σ
T1C
串级控制系统
燃料 原油
第十三页,共20页。
前馈-反馈控制系统
分析比较
结构上: 串级控制:内外两个反馈回路组成

水位三冲量调节控制策略及串级调节参数整定方法

水位三冲量调节控制策略及串级调节参数整定方法

水位三冲量调节控制策略及串级调节参数整定方法水位的三冲量调节控制策略及串级调节参数整定方法主要用于水位控制系统中,该方法可以在一定程度上提高系统的控制性能和稳定性。

以下是关于水位的三冲量调节控制策略及串级调节参数整定方法的详细介绍。

一、水位的三冲量调节控制策略在水位控制系统中,三冲量调节控制策略是一种常用的调节方法。

该策略通过对水位控制系统中的三个冲量(比例、积分、微分)进行调整,来实现对水位的稳定控制。

1.比例冲量控制:比例冲量控制是根据水位与设定值之间的偏差,按照一定的比例关系加大或减小输入信号。

比例系数的选择需要根据实际系统的特性进行调整,一般情况下可以通过试探法或经验法进行初步调整,然后再通过试验的方式进行优化。

2.积分冲量控制:积分冲量控制是根据水位偏差的积分值来调节系统的输出。

积分冲量可以减小稳态误差,提高系统的稳定性和鲁棒性。

积分冲量的选择需要结合系统的动态响应特性进行调整,一般情况下需要进行试验和优化。

3.微分冲量控制:微分冲量控制是根据水位变化的速率来调节系统的输出。

微分冲量可以提高系统的响应速度和抗干扰能力,但如果参数选择不当会导致系统的震荡。

微分冲量的选择需要结合系统的动态响应特性进行调整,一般情况下需要进行试验和优化。

串级控制是一种高级的控制方法,通过在系统内部增加一个或多个级联控制环,来进一步提高系统的控制品质。

下面介绍一种常用的串级调节参数整定方法,即Ziegler-Nichols法。

1.首先选择一个合适的比例系数Kp:-将系统设为比例控制模式,调节Kp的值,直到系统发生持续振荡。

-记录下持续振荡的周期Tp。

2.根据振荡周期Tp,计算出比例增益Ku:-Ku=4/(π*Tp)。

3.根据Ku的值,选择合适的控制器类型和相应的参数:-P控制器:Kp=0.5*Ku。

-PI控制器:Kp=0.45*Ku,Ti=Tp/1.2-PID控制器:Kp=0.6*Ku,Ti=Tp/2,Td=Tp/84.将调节器参数输入控制器,并进行参数整定:-根据系统的实际情况,通过试验和仿真的方式进行参数的优化。

基于单片机的锅炉三冲量水位控制系统

基于单片机的锅炉三冲量水位控制系统

1.1 工作流程
所有电厂锅炉,虽然燃料种类各不相同,但蒸汽发生系统和蒸汽处理系统是基本 相同的。常见的锅炉设备的主要工艺流程图如图 1.1 所示。
1 燃烧嘴;2 炉膛;3 汽包;4 减温器; 5 炉墙;6 过热器; 7 省煤器; 8 空气预热器 图 1.1 锅炉设备主要工艺流程
由图可知,燃料和空气按一定的比例送入燃烧室燃烧,生产的热量传递给蒸汽发 生系统,产生饱和蒸汽。然后经过热器,形成一定气温的过热蒸汽 D,汇集至蒸汽母 管。压力为 PM 的过热蒸汽,经负荷设备调节阀给负荷设备用。与此同时,燃烧过程中 产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤气预热锅炉给水和空气预热器 预热空气,最后,经过引风机送往烟囱,排入大气。
引言 .................................................................. xi 1 火电厂锅炉基本知识 ................................................. xii 1.1 工作流程 ......................................................... xii 1.2 主要控制系统 .................................................... xiii 2 汽包水位系统控制方案 ............................................... xiv 2.1 汽包水位的动态特性 ............................................... xiv 2.1.1 汽包水位在给水流量作用下的动态特性 ........................... xv 2.1.2 汽包水位在蒸汽流量扰动下的动态特性 ......................... xvii 2.2 汽包水位控制技术分析 ........................................... xviii 2.2.1 位式控制系统 ................................................ xix 2.2.2 比值控制系统 ................................................ xix 2.2.3 单冲量控制系统 ............................................... xx 2.2.4 双冲量控制系统 .............................................. xxi 2.2.5 三冲量控制系统 ............................................. xxii 2.3 设计方案的确定 ................................................. xxiii 3 硬件电路设计 ...................................................... xxiv 3.1 最小系统设计 ..................................................... xxv 3.1.1 CPU 的选择 .................................................. xxv 3.1.2 时钟电路设计 ............................................. xxviii 3.1.3“看门狗”电路设计 .......................................... xxix 3.2 输入通道的设计 ................................................... xxx 3.2.1 传感器的选择 ............................................... xxxi 3.2.2 A/D 转换 ................................................... xxxv 3.3 输出通道的设计 ............................................... xxxviii 3.3.1 D/A 转换 .................................................. xxxix 3.3.2 V/I 电路设计 ................................................ xli 3.3.3 执行器的选择 ............................................... xlii 3.4 键盘/显示电路设计 .............................................. xliii 3.4.1 键盘电路的设计 ............................................ xliii 3.4.2 显示电路设计 ................................................ xlv 3.4.3 芯片 8155H 扩展电路 ......................................... xlvi 3.5 报警电路设计 .................................................. xlviii 4 软件设计 .......................................................... xlix 4.1 主程序设计 ...................................................... xlix 4.2 定时中断子程序设计 .............................................. xlix 4.3 采样子程序设计 .................................................... li

串级三冲量控制系统

串级三冲量控制系统

串级三冲量控制系统对于给水控制通道迟延和惯性较大的锅炉采用串级控制系统将具有较好的控制质量,调试整定也比较方便,因此,在大型汽包锅炉上可采用串级三冲量给水控制系统。

1、系统结构和工作原理串级三冲量给水控制系统如图所示。

串级三冲量给水控制系统:其给水控制的任务由两个调节器来完成,主调节器PI采用比例积分控制规律,以保证水位无静态偏差。

主调节器的输出信号和给水流量、蒸汽流量信号的都作用到副调节器PI2。

一般串级控制系统的副调节器可采用比例调节器,以保证副回路的快速性。

串级系统主、副调节器的任务不同,副调节器的任务是用以消除给水压力波动等因素引起的给水流量的自发性扰动以及蒸汽负荷改变时迅速调节给水流量,以保证给水流量和蒸汽流量的平衡;主调节器的任务是校正水位偏差。

这样,当负荷变化时,水位稳定值是靠主调节器PI1来维持的,并不要求进入副调节器的蒸汽流量信号的作用强度按所谓“静态配比”来进行整定。

恰恰相反,在这里可以根据对象在外扰下“虚假水位”的严重程度来适当加强蒸汽流量信号的作用强度,从而改变负荷扰动下的水位品质。

可见,串级三冲量系统比单级三冲量系统的工作更合理,控制品质要好一些。

2、串级三冲量给水系统的分析和整定下图是串级三冲量给水系统的方框图。

这个系统也是由两个闭合回路的前 馈部分组成的。

系统组成如下:1、由给水流量W 、给水流量变送器γW、给水流量反馈装置αW 、副调节器PI2、执行器K Z 和调节阀K μ组成副回路。

2、由被控对象W 01(S )水位测量变送器γH 、主调节器PI1和副回路组成主回路。

3、由蒸汽流量信号D ,以及蒸汽流量测量变送器γD 及蒸汽流量前馈控制部分。

(1)副回路的分析和整定根据串级控制系统的分析整定方法,应将副回路处理为具有近似比例特性的快速随动系统,以使副回路具有快速消除内扰及快速跟踪蒸汽流量的能力。

用试探的方法选择副调节器的比例带δ2,以保证内回路不振荡为原则,在试探时,给水流量反馈装置的传递函数αW 可任意设置一个数值,得到满意的δ2值,如果αW 以后有必要改变,则相应地改变δ2值,使αw/δ2保持试探时的值,以保证内回路的稳定性。

三冲量水位调节原理

三冲量水位调节原理

三冲量水位调节原理
三冲量水位调节原理是一种常用于水位控制的方法,它通过三个不同的冲量来控制水位的高低。

具体的原理如下:
1. 上冲量:当水位低于设定水位时,系统会给水箱注入一定的上冲量水来提升水位。

上冲量的大小和时长根据实际需求来设置。

2. 下冲量:当水位超过设定水位时,系统会排出一定的下冲量水来降低水位。

下冲量的大小和时长也根据实际需求来设置。

3. 中冲量:当水位接近设定水位时,系统会给水箱注入一定的中冲量水来保持水位的稳定。

中冲量一般较小,可以保持水位在一定范围内波动。

通过不断地调节上冲量、下冲量和中冲量的大小和时长,系统可以根据实际的需要,使水位保持在设定的范围内。

三冲量水位调节原理的优点是控制精度高,可以实现自动化控制,同时也能够适应不同的需求和变化的水位。

缺点是由于需要进行多次冲量,所以系统会消耗较多的能源和水资源,同时也增加了管路的复杂性。

锅炉汽包三冲量液位控制系统的特点及使用条件

锅炉汽包三冲量液位控制系统的特点及使用条件

2017年8月锅炉汽包三冲量液位控制系统的特点及使用条件155锅炉汽包三冲量液位控制系统的特点及使用条件丁慕王永觉(河南能源化工集团中原大化仪表公司,河南濮阳457004)摘要:汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平 衡关系。

汽包液位过高会造成蒸汽带水影响过热器运行,影响汽水分离效果;水位过低会造成锅炉水循环的破坏,影响省煤器运行,容易使水全部汽化烧坏锅炉甚至爆炸。

关键词:冲量三冲量锅炉是化工生产中重要的动力设备。

汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。

这就要求汽包液位在一定范围内,适应各种工况的运行。

影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。

当负荷突然增大,汽包压力突然降低,水就会急剧汽化,出现大量气泡,形成了“虚假液位”。

如果使用简单的锅炉汽包液位的单冲量控制系统(如图1所示),一旦负荷急剧变化,虚假液位的出现,调节器就会误以为液位升高而关小供水阀门。

影响了生产甚至造成危险。

冲量:作用时间短暂且不连续的量。

三冲量:汽包液位、蒸汽流量、给水流量蒸汽图1锅炉汽包液位的单冲量控制系统为此,图2采取了锅炉汽包液位的双冲量控制,它 在单冲量的基础上,再加一个蒸汽冲量,以克服“虚假 液位”。

其中调节阀为气关阀,液位调节器采用正作用,调节器输出信号在加法器内与蒸汽流量信号相减。

双冲量实际上是前馈与反馈调节相结合的调节系统。

当负荷突然变化时,蒸汽的流量信号通过加法器,使它 的作用与水位信号的作用相反;假液位出现时,液位信 号a要关小给水阀,而蒸汽信号b是开大给水阀,这就 能克服“虚假液位”的影响。

但是如果给水压力本身有波动时,双冲量控制也 不能克服给水量波动的影响。

图2锅炉汽包液位的双冲量控制系统这就要用如图3所示的锅炉汽包液位的三冲量调 节系统。

即再加一个给水流量的冲量c,使它与液位信 号的作用方向一致,这种调节系统由于引进了液位、给 水流量及蒸汽流量三个参数,叫做三冲量调节系统。

三冲量汽包水位控制原理及应用教程

三冲量汽包水位控制原理及应用教程

三冲量汽包水位控制原理及应用教程
##一、控制原理
1.水位测量装置:通过传感器或浮子测量设备中的水位,并输出电信号。

2.控制装置:通过与水位测量装置连接,接收水位信号,并与设定的
水位进行比较。

3.比较和控制:控制装置将测量到的水位信号与设定的水位进行比较,并产生一个目标控制信号。

4.进气阀控制:目标控制信号会进一步控制进气阀的开启程度,使进
气阀按需开启或关闭,从而实现水位控制。

##二、应用场景
1.蒸汽发生器控制:通过控制进气阀的开启程度,来维持蒸汽发生器
的水位稳定,防止水位过低或过高对设备的损坏。

2.锅炉水位控制:控制进气阀的开启程度,使锅炉的水位始终在设定
范围内,确保锅炉安全运行。

3.热力设备控制:控制进气阀的开启程度,来维持热力设备的水位稳定,避免设备故障或安全事故。

##三、实施步骤
1.安装水位测量装置:根据设备的具体情况,选择适合的水位传感器
或浮子,并将其连接到控制装置上。

2.设定水位范围:根据设备的要求,确定水位的设定范围。

3.编程控制器:在控制装置上,编写水位控制的程序。

4.测试和调整:启动设备,测试水位控制系统的性能,并根据需要进行调整,以确保水位在设定范围内。

5.定期维护:定期对三冲量汽包水位控制系统进行检查和维护,确保其正常运行。

##四、总结
三冲量汽包水位控制是一种常见的工业控制方法,适用于许多热力设备的水位控制。

通过测量水位、与设定水位比较以及控制进气阀的开启程度,可以实现设备的水位稳定。

因此,掌握三冲量汽包水位控制的原理和应用,对于提高设备的运行稳定性和安全性具有重要意义。

水位控制中的单冲量和三冲量

水位控制中的单冲量和三冲量

一、什么是单冲量水位控制?单冲量水位控制、ingle-element level control -}}.}}lX位控制将水位测量信号经变送器送到水位控制器,水位控制器根据水位测量值与给定值的偏差控制给水阀门,改变给水量来保持汽包水位在允许的操作范围内。

单冲量水位控制是锅炉汽包水位自动控制中最简单、最基本的形式,缺点是水位波动幅度大、调节时问长。

缺乏克服“假水位”影响的能力。

二、什么是三冲量水位调节三冲量水位控制是在水位自动控制过程中,根据汽包水位,给水流量,蒸汽流量三个冲量经过PID计算来调节给水阀门开度,从而达到自动控制给水流量的目的。

一般来说,三冲量调节是针对汽包调节的,其三个冲量分别是汽包液位,给水流量和蒸汽流量。

从结构上来说,三冲量调节实际上是一个带前馈信号的串级控制系统。

液位控制器LC与流量控制器FC构成串级控制系统。

汽包液位是主变量,给水流量是副变量。

副变量的引入使系统对给水压力(流量)的波动有较强的克服能力。

蒸汽流量的信号作为前馈信号引入。

因为蒸汽流动的波动是引起汽包液位变化的一个因素,是干扰作用,蒸汽流动波动时,通过测量引入FC,使给水流量作相应的变化,所以这是按干扰量进行控制的,是前馈作用。

三、什么是除氧器水位的单冲量调节和三冲量调节。

在除氧器水位控制过程中,以除氧器水箱水位做为反馈信号的调节方式,称为除氧器水位的单冲量调节。

以除氧器水位,给水流量和凝结水流量三个信号共同参与的调节方式,称为三冲量调节方式。

四、单冲量水位调节和三冲量水位调节的优缺点是什么?单冲量水位自动调节系统是最简单的调节方式,它是按汽包水位偏差来调节给水调节阀开度的。

其优点是调节简单,只有一个水位信号做为调节量。

单冲量水位调节方式的主要缺点是当蒸发量或蒸汽压力突然变化时,会引起炉水中蒸汽含量迅速变化,使得锅炉汽包产生虚假水位,导致给水调节阀误调。

因此,单冲量调节一般用于负荷比较稳定的小容量锅炉。

三冲量水位自动调节系统是较为完善的调节方式,该系统中除汽包水位信号H外,还有蒸汽流量D和给水流量G。

三冲量控制系统原理

三冲量控制系统原理

锅炉三冲量控制原理及调节过程。

原理:冲量控制系统从结构上来说,是一个带有前馈信号的串级控制系统.液位控制器LC与流量控制器FC构成串级控制系统。

汽包液位LIA2104是主变量、给水流量是副变量。

副变量的引入使系统对给水压力的波动有较强的克服能力.蒸汽流量的波动是引起汽包液位LIA2104变化的因素,是干扰作用,蒸汽波动时,通过引入FC,使给水流量FA2101作相应的变化,所以这是按干扰进行控制的,是把蒸汽流量信号作为前馈信号引入控制的。

调节过程:根据串级控制系统选择主、副控制器的正、反作用的原则,水位控制器LC反作用选反作用,流量控制器FC为正作用,调节器为气关阀。

当水位由于扰动而升高时,因LC反作用,它的输出下降,进入加法器后,使FC给定值减小而输出增加,调节阀的开度减小,给水流量FA2101减小,水位下降,保持在设定值上;当蒸汽流量FAQ2102增加时,FC给定值增加而输出减小,调节阀的开度增加,给水流量增加,保持水蒸汽平衡,使水位不;副回路克服给水自身的扰动,要进一步地稳定了水位的自动控制;给水流量FA2101增加,FC输出增加,调节阀的开度减小,给水量减小,从而保持水蒸汽平衡.汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,即三个被控变量对应一个调节器。

工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。

汽包水位三冲量给水调节系统1、所谓冲量,是指调节器接受的被调量的信号;2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成;3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。

三冲量锅炉汽包水位控制系统设计

三冲量锅炉汽包水位控制系统设计

前言自动控制技术在工程和科学发展中起着极为重要的作用,其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制,在不需要操作人员干预的情况下,可以很好的完成生产过程中的给水及水位控制,大大提高了生产效率。

汽包锅炉给水控制系统的任务是使给水量适应锅炉蒸发量,并使汽包中水位保持在一定的范围内。

只有保证汽包水位的波动在允许范围内,才能实现机组安全经济运行。

因此,汽包水位是影响整个机组安全经济运行的重要因素,所以就要有一套较好的控制方案,来实现汽包水位的控制。

从传统的控制方式来看,它们要么系统结构简单成本低,却不能有效的控制锅炉汽包“虚假水位”现象,要么能够在一定程度上控制“虚假现象”,系统却过于复杂,成本投入过大。

目前工业控制急需一种系统简单,并且能够控制“虚假水位”,具有高性价比的控制系统。

汽包锅炉的给水调节系统有三种基本结构:单冲量调节系统结构、双冲量调节系统结构、串级三冲量调节系统结构。

低负荷阶段,由于疏水和锅炉排污等因素的影响,给水和蒸汽流量存在着严重的不平衡,而且流量太小时,测量误差大,故在低负荷阶段,很难采用三冲量调节方式,一般均采用单冲量调节方式。

负荷达到一定值以上时,疏水和排污阀逐渐关闭,汽、水趋于平衡,流量逐渐增大,测量误差逐渐减小,这时原则上可采用三冲量调节方式。

但由于单级三冲量调节系统要求蒸汽流量和给水流量信号在稳态时必须相等,否则汽包水位存在静态偏差,而且由于测量装置及变送器的误差等因素的影响,实际上现场这两个信号在稳态时,经常难以做到完全相等,而且单级三冲量调节系统一个调节器参数整定需兼顾的因素多。

因此单级三冲量事实上一般也难以采用。

串级三冲量调节方式,采用主、副两个调节器。

两调节器任务分工明确,整定相对容易,而且不要求稳态时给水流量信号与蒸汽流量信号完全相等,易于得到较好的调节品质,因此现场多采用此控制方式。

在串级控制系统中,参数的整定也是非常重要的,由于在系统中所设计的对象是确定的,所以只有对调节器进行整定,控制系统的参数整定有理论计算方法和工程整定方法,理论计算方法是基于一定的性能指标,结合组成系统各环节的动态特征,通过理论计算求得调节器的动态参数设定值;而工程整定法,则是源于理论分析,结合实验、工程实际经验等一套工程上的方法,其具体方法将在本设计中体现。

单冲量与串级三冲量水位控制系统对比分析

单冲量与串级三冲量水位控制系统对比分析

单冲量与串级三冲量水位控制系统对比分析单冲量水位控制系统与串级三冲量水位控制系统均是常见的水位控制系统,用于控制液体的水位。

下面将对两者进行比较分析。

首先,单冲量水位控制系统是一种简单的控制系统,通常由一个水位测量装置、一个比例控制阀和一个相应的控制回路组成。

当水位低于设定值时,控制器将信号传输给阀门,打开阀门以增加进水量,提高水位;相反,当水位高于设定值时,阀门关闭以减少进水量。

单冲量水位控制系统的主要优点是设计简单、成本低廉,并且非常适用于小型水位控制系统。

然而,由于其控制器只具备单一的控制策略,因此在应对复杂工况时可能会存在一定的局限性。

相比之下,串级三冲量水位控制系统是一种先进的控制系统,由多个组件和复杂的控制算法组成。

它采用串级控制的方式,通过将水位测量信号连接到水阀的控制回路来实现对水位的精确控制。

该系统通常由三个主要组件组成:主控器、流量调节器和水位计。

主控器负责接收和处理传感器发送的水位信号,并根据设定值计算最佳的水流量控制策略。

流量调节器根据控制器发送的指令,实时调节阀门以控制水流量。

水位计则用于反馈实际水位情况,以便控制器进行调整。

串级三冲量水位控制系统具有较高的控制精度、响应速度快和适应性强的优点,能够应用于各种复杂的水位控制场景。

然而,串级三冲量水位控制系统相对于单冲量水位控制系统也存在一些缺点。

首先,它的设计较为复杂,需要较高的技术水平和较高的成本。

其次,由于系统中涉及多个组件和复杂的控制算法,如果其中一个组件出现故障,整个系统可能会受到影响。

此外,由于串级三冲量水位控制系统的复杂性,对于系统的参数设置和调试需要更多的时间和精力。

总结来说,单冲量水位控制系统和串级三冲量水位控制系统各有优劣。

单冲量水位控制系统适用于简单的水位控制场景,成本较低;而串级三冲量水位控制系统适用于精确控制水位且适应性强的场景,但需要更高的技术水平和成本投入。

在实际应用中,需要根据具体的需求和经济条件综合考虑,选择适合的水位控制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三冲量水位控制系统
三冲量控制系统,以汽包水位为主控制信号,蒸汽流量为前馈控制信号,给水流量为反馈控制信号组成的控制系统。

三冲量水位控制系统如图 3-5。

(a)原理图
(b)框图
图3-5 三冲量水位控制系统
现代工业锅炉都向着大容量高参数的方向发展,一般锅炉容量越大,汽包的容水量就相对越小,允许波动的蓄水量就更少。

如果给水中断,可能在很短的时间内就会发生危险水位;如果仅是给水量和蒸汽量不相适应,也可能在几分钟呢出现缺水和满水事故,这样对汽包水位要求就更高了。

三冲量控制系统,采用蒸汽流量信号对给水流量进行前馈控制,当蒸汽负荷忽然变化时,蒸汽流量信号使给水调节阀一开始就向正确方向移动,即蒸汽流量增加,给
水调节阀开大,抵消了“虚假水位”引起的反向动作,因而减小了水位和给水流量的波动幅度。

当由于水压干扰使给水流量改变时,调节器能迅速消除干扰。

如给水流量减少,调节器立即根据给水流量减小的信号,开大给水阀门,使给水流量保持不变。

I/O 分配表和PLC 外部接线图
根据系统的 I/O 点数,并考虑富裕量及今后系统的扩展升级和工艺控制等问题,本系统设计采用三菱公司的 FX2N-48MR 型作为主机,FX2N-48MR 型是三菱公司的典型产品,具有功能强大,处理速度快、容量大等优点,属于高性能小型机,系统 I/O 总点数为 16点,输入、输出均为 8 点,配置扩展单元后可增加 I/O 点数。

根据上述关于 PLC 控制系统的基本单元输入和输出信号统计,制定 I/O 分配表,具体对应关系如下表 4-2 所示。

模拟量模块输入地址分配表如表 4-3 所示。

表4-2 PLC I/O 分配表
表4-3 模拟量模块输入地址分配表
图 4-2 PLC 外部接线。

相关文档
最新文档