《生活中的一次模型》教案

合集下载

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教案1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教案1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教案1一. 教材分析北师大版数学八年级下册《生活中的“一次模型”》这一节主要让学生了解一次函数在现实生活中的应用。

通过具体实例,让学生理解一次函数的定义,掌握一次函数的图像和性质,并能够运用一次函数解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,对函数有一定的理解。

但是对于一次函数在实际生活中的应用可能还比较陌生,需要通过实例来引导学生理解和掌握。

三. 教学目标1.了解一次函数的定义,掌握一次函数的图像和性质。

2.能够通过实例理解一次函数在实际生活中的应用。

3.培养学生的观察能力,提高学生解决实际问题的能力。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数在实际生活中的应用。

五. 教学方法采用实例教学法,通过具体的例子让学生理解和掌握一次函数的定义和性质,以及一次函数在实际生活中的应用。

六. 教学准备1.准备相关的实例,如购物、出行等。

2.准备一次函数的图像,帮助学生理解。

七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学模型来表示购物问题。

让学生认识到数学在解决实际问题中的重要性。

2.呈现(10分钟)呈现一次函数的定义和性质,通过具体的例子让学生理解和掌握。

同时,引导学生观察一次函数的图像,加深对一次函数的理解。

3.操练(10分钟)让学生分组讨论,每组找一个实际问题,尝试用一次函数来解决。

如出行问题、购物问题等。

4.巩固(10分钟)让学生汇报自己的成果,其他学生和教师进行评价。

通过评价,让学生巩固一次函数的知识。

5.拓展(10分钟)引导学生思考一次函数在实际生活中的其他应用,如工资问题、投资问题等。

6.小结(5分钟)对本节课的内容进行小结,让学生明确一次函数的定义、性质以及在实际生活中的应用。

7.家庭作业(5分钟)布置相关的作业,让学生巩固所学知识。

如找一组实际数据,用一次函数来拟合。

8.板书(5分钟)板书一次函数的定义、性质以及实际应用,方便学生复习。

一、课题名称生活中的一次函数解读

一、课题名称生活中的一次函数解读

一、课题名称:生活中的一次函数二、课题确定的背景及可行性:我校是一所县级重点中学,具有先进的教学设备和现代化教学模式,学生的基本素质较高,具有现代教学设备的操作技能和一定的社会实践能力。

在这个“研究性学习”的课程中,我们全校师生都投入到研究性学习中,并能创造性地开展“研究性学习”的课程。

我作为一名九年级的数学教师,也积极地投入到“研究性学习”课程中的热潮中,我们面对的学生是即将毕业的中学生,他们已掌握一定的基础知识和基本技能,尤其是在我们学习了一次函数的基础知识后是更好的培养学生应用所学知识,解决实际问题能力的煅炼,也是为加强学生人际关系的沟通,为他们以后自身发展搭建一个平台,这样在师生共同研讨下我们共同拟定此课题。

三、课题确定的意义:设置本节研究性学习的目的在于通过学生自主探究的学习活动来了解科学的社会,对身边所存在问题积极思考与观察,重视对学生的应用意识的培养,强调学数学的目的就是用数学让学生认识到数学与日常生活和现实世界的联系,能用数学知识解决日常生活中的问题,这样学生就能感受到数学在自己身边,就存在于整个世界,而且对于“数学模型”也有进一步理解,尤其是学生认识到函数其实可以“看得见”也可以“摸得着”。

四、课题确定的目标:1、进一步理解一次函数的解析式及图象的用法2、激发学生观察生活、发现问题与探究的兴趣,使自己成为学习的主人。

3、学会运用所学知识,加强团结创新精神和实践能力。

4、通过与其他学生的交流培养其团结协作、交流、分享的合作精神。

5、形成尊重科学的意识和努力钻研的求知态度。

五、课题研究的场所及时间为了更好的开展本次“研究性学习”的课程,我们准备了一系列条件,有学校设立的宽带网供学生查询资料,还有图书室为学生开放便于查找相关的素材,同时配备相关的教学设备供学生运用,这样为学生提供了优越的优化条件。

设置场地:校学生活动室和多媒体教室。

研讨时间:利用二月时间收集材料,采集信息六、本活动课的实施过程前期准备:在我们共同学习了一次函数的基础知识后我发觉学生们对所学知识缺乏一定的灵活性,同时对函数的思维感到特别抽象从而使他们感到对所学知识有些枯燥无味,于是我与我班全体同学商量研讨拟定此课题,为了使课题的研究达到我们预期结果,我们做到:(1)第1—2周了解研究性学习课程为了能调动大家积极投入到研究性学习中,我告诉大家研究性学习是在教师的指导下主动获取知识,、应用知识,从而解决问题的学习活动,同时向他们阐明研究性学习的意义,通过我的讲解,调动大家的参与热嘲;其次我还以录相的形式向同学们展示成功的课题组供同学们参考,为他们能研究自己的课题而增强自信心。

初中模型知识讲解教案模板

初中模型知识讲解教案模板

教案标题:初中模型知识讲解教案教学目标:1. 让学生掌握初中阶段常见的模型知识,如杠杆模型、滑轮模型等。

2. 培养学生运用模型知识解决实际问题的能力。

3. 增强学生对物理学科的兴趣和好奇心。

教学重点:1. 常见模型的原理和特点。

2. 模型在实际问题中的应用。

教学难点:1. 模型知识的灵活运用。

2. 解决实际问题的策略。

教学准备:1. 教学PPT。

2. 相关模型道具。

3. 实际问题案例。

教学过程:一、导入(5分钟)1. 利用PPT展示各种模型图片,引导学生关注模型知识。

2. 提问:同学们,你们在生活中见过哪些模型?它们有什么作用?二、新课讲解(20分钟)1. 讲解杠杆模型:介绍杠杆的五要素,讲解杠杆平衡条件,并通过实验演示。

2. 讲解滑轮模型:介绍滑轮的原理和特点,讲解滑轮组的使用方法。

3. 讲解其他模型:如斜面模型、浮力模型等,引导学生了解其原理和应用。

三、案例分析(15分钟)1. 出示实际问题案例,如杠杆称重、滑轮提升重物等,引导学生运用模型知识解决问题。

2. 学生分组讨论,分享解题过程和答案。

3. 教师点评并总结解题方法。

四、课堂小结(5分钟)1. 回顾本节课所学模型知识,引导学生总结原理和特点。

2. 强调模型知识在实际问题中的应用重要性。

五、作业布置(5分钟)1. 请学生运用本节课所学模型知识,解决一道实际问题。

2. 收集生活中的模型现象,下节课分享。

教学反思:本节课通过讲解常见模型知识,引导学生了解模型的原理和特点,并运用模型解决实际问题。

在教学过程中,注意调动学生的积极性,鼓励学生分组讨论,分享解题过程。

通过案例分析,让学生深入理解模型知识在实际问题中的应用。

作业布置方面,注重培养学生的实践能力,鼓励学生观察生活,发现模型现象。

总体来说,本节课达到了预期的教学目标,学生对模型知识有了更深入的了解。

生活中的“一次模型”教学设计

生活中的“一次模型”教学设计

综合与实践生活中的“一次模型”宜昌市长江中学程燕云一、学生起点分析到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也发现了它们彼此之间的联系,初步感受到这三个基本数学模型的广泛应用。

但是,由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。

二、教学任务分析本课题是以探索一元一次不等式与一元一次方程、一次函数的综合应用为主题的实践活动,一方面可以使学生体会一元一次不等式与一元一次方程、一次函数之间的内在联系,初步形成对数学知识系统性的认识,发展学生的概括能力、数学研究能力;另一方面通过调查活动使学生充分认识数学知识在现实生活中的广泛应用,激发学生的学习兴趣,引发学生的数学思考,发展学生的数学抽象能力,综合应用数学的能力,做到在学数学的同时自觉的用数学。

相比前面的课题学习而言,本课是自主活动类型的课题学习,以一种新的形式呈现,任务的给出比较宽泛,没有给定的背景,没有具体的安排,只是给出了一个原始的问题,规定了一个大的方向:要求将一元一次方程、一元一次不等式和一次函数集中融入一个问题情境,至于说具体研究哪些问题、如何研究等完全由学生自主选择,因而,保证了学生学习的自主性、选择性和学习结论的开放性,给学生提供了发现问题,提出问题的机会,进一步发展学生的应用意识和创新意识。

因此,本节课的教学目标定为:⒈经历用数学的眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。

⒉综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的内在联系。

⒊会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。

三、教学过程分析在教学过程中安排两课时。

数学北师大版初中二年级下册 综合实践:生活中的一次模型 教学设计

数学北师大版初中二年级下册 综合实践:生活中的一次模型 教学设计

第二章一元一次不等式与一元一次不等式组5.一元一次不等式与一次函数(一)一、学生知识状况分析学生的知识技能基础:学生已经学习了一次函数和一元一次不等式的有关知识,为本节探究一元一次不等式与一次函数的关系奠定了必要的知识基础。

学生活动经验基础:通过前面相关知识的学习,学生已经会利用一次函数和一元一次不等式解决一些简单的实际问题,感受到了用数学知识解决实际问题的必要性和作用;同时在以前的学习中,通过经历合作学习的过程,具有了一定的合作学习的经验,提升了合作与交流的能力。

二、教学任务分析数学知识的学习是一个渐次梯进的过程,因而课堂教学既要关注整个数学教学的远期目标,也应与具体的课堂教学任务联系。

本课是八下第一章第五节《一元一次不等式与一次函数》第一课时内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。

教科书基于学生对一元一次不等式、一元一次方程和一次函数认识的基础上,提出了本课的具体学习任务,本节课的教学目标是:1、理解一次函数图象与一元一次不等式的关系。

2、能够用图像法解一元一次不等式。

3、理解两种方法的关系,会选择适当的方法解一元一次不等式三、教学过程分析本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:当堂作业。

第一环节:情境引入活动内容:上节课我们类比一元一次方程的解法,根据不等式的基本性质,学习了一元一次不等式的解法,本节课我们来学习一元一次不等式其它解法。

活动目的:以“旧”引“新”,由原有的知识为基础,利用初中生的好奇心理,激发学生探究新知的兴趣。

活动效果:学生在回忆中探索本课时的内容,从而降低了学生们“入室”的门槛。

第二环节:活动探究、合作学习活动内容:首先,我们来利用一次函数的图象求出相应的一元一次方程的解、一元一次不等式的解集。

北师大版数学八年级下册《⊙生活中的“一次模型”》说课稿1

北师大版数学八年级下册《⊙生活中的“一次模型”》说课稿1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》说课稿1一. 教材分析北师大版数学八年级下册《生活中的“一次模型”》,是学生在学习了函数基础知识后,进一步接触实际问题的一次函数模型的学习。

本节课通过具体的生活实例,让学生了解一次函数在实际生活中的应用,培养学生的数学应用意识。

教材内容主要包括:一次函数模型的建立、一次函数模型的应用以及一次函数模型在实际问题中的应用。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本知识,对一次函数的概念、性质有所了解。

但学生在解决实际问题时,往往不能将数学知识与实际问题有效地结合起来,缺乏解决实际问题的能力。

因此,在教学过程中,需要关注学生对一次函数模型的理解和应用,引导学生将数学知识运用到实际问题中。

三. 说教学目标1.知识与技能目标:让学生了解一次函数模型的建立过程,学会用一次函数模型解决实际问题。

2.过程与方法目标:通过生活实例,培养学生从实际问题中提炼数学模型的能力,提高学生的数学应用意识。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣和自信心。

四. 说教学重难点1.教学重点:一次函数模型的建立,一次函数模型在实际问题中的应用。

2.教学难点:如何引导学生从实际问题中提炼出一次函数模型,并运用到问题解决中。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极参与。

2.教学手段:利用多媒体课件、实物模型等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过展示生活中的一些实际问题,引发学生对一次函数模型的思考,激发学生的学习兴趣。

2.探究新知:引导学生从实际问题中提炼出一次函数模型,并总结一次函数模型的建立过程。

3.实例分析:通过具体的生活实例,让学生了解一次函数模型在实际问题中的应用,培养学生的数学应用意识。

4.小组讨论:让学生分组讨论,分享各自在生活中发现的一次函数模型,进一步巩固所学知识。

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教学设计1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教学设计1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教学设计1一. 教材分析北师大版数学八年级下册《生活中的“一次模型”》这一节主要介绍了“一次模型”的概念、一次函数的性质和应用。

教材通过生活中的实例,引导学生认识一次函数,理解一次函数的图像和性质,并学会运用一次函数解决实际问题。

二. 学情分析学生在学习这一节之前,已经学习了初中数学的一些基本概念和性质,具备一定的逻辑思维能力和解决问题的能力。

但是对于一次函数的理解和应用可能还存在一定的困难,因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握一次函数的知识。

三. 教学目标1.了解一次函数的概念,理解一次函数的图像和性质。

2.学会运用一次函数解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.一次函数的概念和性质。

2.运用一次函数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结,掌握一次函数的知识。

2.利用多媒体教学,结合生活中的实例,生动形象地展示一次函数的图像和性质。

3.通过练习题和实际问题,巩固学生对一次函数的理解和应用。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如购物、运动等,引导学生认识一次函数,激发学生的学习兴趣。

2.呈现(15分钟)讲解一次函数的概念和性质,通过多媒体展示一次函数的图像,让学生直观地理解一次函数的性质。

3.操练(20分钟)让学生通过练习题和实际问题,运用一次函数的知识解决问题,巩固对一次函数的理解。

4.巩固(15分钟)通过小组讨论、总结,让学生进一步理解一次函数的知识,提高解决问题的能力。

5.拓展(10分钟)讲解一次函数在实际问题中的应用,引导学生学会运用一次函数解决实际问题。

6.小结(5分钟)对本节课的内容进行总结,让学生明确一次函数的概念、性质和应用。

初中八年级下册数学综合与实践 生活中的“一次模型”

初中八年级下册数学综合与实践 生活中的“一次模型”

材料4 关于教育开销的调查
1、计算一下自己从现在起到参加工作,总共需要 多少教育资金。 2、考虑你如何支付这些费用,帮家长写一个储蓄 计划。 3、用不等式来表示你从各种渠道所能储蓄的钱的 最低数量。 4、将你的调查与同学交流一下,让大家看看你的 调查是否可行?如果可能请他们提供改进的建议。
四.展示倾听,思维碰撞 关于“选取最适合自己的话费方案” 的研究与调查.
初中数学八年级(下) 综合与实践 生活中的“一次模型”
学习目标
1.经历用数学的眼光发现现实生活中的数学问题,尝试提出问题, 并加以解决的全过程,体会模型思想,发展应用意识,提高实践能 力,了解数学的价值。
2.综合运用一元一次不等式与一元一次方程、一次函数的相关知识 解决问题,体会三者之间的内在联系。
内在联系
三者都是描述现实世界中的量与量之间的关系的模型。例 如:已知某种商品单价,数量与总价之间的关系在特定条 件下就可以转化为可以用以上三种模型解决的实际问题。
二.实例分析
例 市政府为绿化计划购买甲、乙两种树苗共500株,甲树每株50元,乙树
每株80元,统计表明,甲树的成活率为90%,乙树的成活率为95%,
思考:你们准备研究的主题是什么?研究的具体问题是什么?研究 的方案是什么?
三.讨论交流,提出问题
1.背景 (1)热点问题:环保,教育,民生,城市建设,新农村改造等 (2)生产生活:生产设计,经费预算,生产调度,市场经济等 2.解题思路 实际背景提炼构建(1)函数模型(2)方程模型(3)不等式模型 关键是分清题型 3.信息呈现的方式 (1)文字信息(对话):粗读——细读——研读——提取信息——建立模型 (2)表格信息:审题识表——提取信息——建立模型 (3)图像信息:审题识图——读图找点——确定解析式(注意坐标的实际意义) (4)综合信息

生活中的“一次模型”

生活中的“一次模型”

【活动一】永宁供电局最近推出一种新的电费收取方法,分 时计价电表收费法和普通电表收费法,经过调查,永宁县的 电价如下:
分 时电 表
峰时(8:00—21:00)
谷时(21:00—次日8:00)
0.55(元/度)
0.3(元/度)
普通电表 0.5(元/度)
1、完成下表,说说你有什么发现?
谷时电量(度)
峰时电量(度)
布置课后探究任务:
调查所居住小区的水费情况,运用所学知识 建立数学模型,确立解决方案,得到结论。
谷时电量与总电量的比
姓名
分时电费
普通电费
张楠
15
85
刘敏
20
80
李红
40
60
【活动二】
某家庭某月用电总量为a度 (a为常数),其中设谷
时用电x度,则峰时用( )度,峰时计价时电价总
价为y1元,普通计价时总价为y2元。那么y1=

),y2=( )
分 时电 表
普通电表
峰时(8:00—21:00) 0.55(元/度)
谷时(21:00—次日8:00) 0.3(元/度)
0.5(元/度)
此时你能提出哪些问题?如何解决?
【活动三】这是王浩和苗苗家两个月的用电 情况,你能用所得数学结论说明分时电表合 算还是普通电表合算?
王浩苗苗
谷时电量(度) 120 60
峰时电量(度) 240
300
数学模型
结论
探 究 深 入
课堂小结: 谈谈这节课你有那些收获以及疑惑?
综合实践:
生活中的“一次模型”
主要包括:
一元一次方程,一元一次不等式,一次函 数。
展示学生课前收集的材料

新北师大版八年级数学下册《合与实践 ⊙ 生活中的“一次模型”》教案_2

新北师大版八年级数学下册《合与实践  ⊙ 生活中的“一次模型”》教案_2

教学设计一.教学目标:知识与技能:经历用数学眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值.过程与方法:综合运用一元一次不等式与方程、一次函数的相关知识解决问题,体会三者之间的内在联系.情感态度与价值观:会反思参与活动的全过程,将研究的过程和结果形成结论并能进行交流,进一步积累数学活动经验.教学重点:根据情境提出问题并会运用一元一次不等式、一元一次方程与一次函数解决实际问题.教学难点:体会一元一次不等式与一元一次方程、一次函数之间的内在联系,形成对数学知识系统性的认识.二.教学设计思路和过程设计:(一)设计思路:到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也初步发现了它们彼此之间的内在联系,但本综合与实践是以一种新的形式呈现,且教科书给出的任务比较宽泛,没有给定的背景,没有具体的安排,只是规定了一个大的方向:要求将一元一次方程、一元一次不等式和一次函数集体融入到一个问题情境.由于对多数同学来说,从事这样开放性比较强的综合与实践活动的经验可能还一些不足,因此,教师选取了生活中常见的相遇问题进行研究,给定学生一个情境,让学生自己提出问题并解答,同过三个问题的解决,让学生体会一次方程、一元一次不等式与一次函数的内在联系.最后学生自己总结,可以用“一次模型”解决的行程问题,必须是匀速的行程问题.(二)教学过程:【第一环节】创设情境,引出课题数学源于生活,我们学习数学是为了更好地服务于生活。

通过一个生活中常见的情境:A、B两地相距180千米,甲、乙两人分别从A、B 两地相向而行.假设他们始终保持匀速行驶.教师询问学生:接下来,甲乙两人会怎样?通过提问,让学生自己想象接下来会发生的情境.从而引出我们要研究的行程问题是相遇问题.然后教师继续提问,两人相遇的地点确定吗?一定是A、B两地的中点吗?让学生意识到相遇地点与他们各自的速度有关.然后,让学生根据情境自己提出问题.【第二环节】实践探究(一)——建立一元一次方程与一元一次不等式模型解决问题教师选取了几个有代表性的问题让学生解决:①经过多长时间两人相遇?②何时两人相距20千米?③何时两人相距小于20千米?学生在解决问题的过程中发现,情境中缺少甲、乙两人速度这个条件,通过添加条件,让学生自己画线段图解决问题.对于问题一,学生通过画线段图用算术法或列一元一次方程都可以解决,相遇的时间为x=3.6小时.对于问题二,学生借助线段图分析两人相距20千米会有两种情况,一种是相遇前两人相距20千米,一种是相遇后两人相距20千米,学生列一元一次方程可以求出相距20千米有两个答案x=3.2或x=4.第三个问题,何时两人相距小于20千米?学生通过线段图可以分析得到,从第一次相距20千米之后,两人距离越来越小,直到相遇时两人之间距离最小为0,随后两人之间距离逐渐拉大,直到再次相距20千米.所以,对于第三问,很多同学会直接写出答案3.24<<,然后由老师分析,这其实是一个不等式问x题,只要将两人之间的距离表示出来,然后让其小于20千米即可,通过列出的两个不等式并解答,发现最终答案确实是3.24<<.x【第三环节】实践探究(二)——建立一次函数模型解决问题教师总结,对于刚才的问题,我们借助线段图分析,运用一元一次方程和一元一次不等式可以解决,那么有没有更加直观的方法描述刚才的情境从而更直观的解决问题?让学生意识到,可以画函数图像.让学生小组活动,自己讨论如何画函数图像.学生能想到画出甲、乙两人到某地距离的函数图像:通过分析图像,分别求出两条函数图像的解析式,明确两个解析式中的k分别是甲、乙的速度.从而借助解析式,最终也是转化成一元一次方程或一元一次不等式解决刚才提出的三个问题,并且让学生明确两条图像的交点的含义,明确图像与坐标轴交点的含义.可以让学生再提出几个问题借助图像解决.个别小组想到,可以画出两人之间距离的函数图像:然后通过分析这个图像,求出这个图像各段的表达式,仍然可以解决刚才的问题.需要注意的是,这个图像的解析式在求解过程中,学生会遇到困难,例如图像的第一段,只知道一个点并不能求出函数解析式,需要引领学生分析,相遇问题两人之间距离的减少是两人共同运动造成的,类比第一个图像的斜率k分别是甲、乙两人的速度,可以得出此线段的斜率k是甲、乙两人的速度和,又因为y随x的增大而减小,所以k=-180,从而可以直接写出第一段的解析式为y=-50x+180.以此类推,可以得到后面两段的函数解析式.从而借助此图像,仍然可以解决刚才的问题.最后引导学生找到这两个图像之间的关系,让学生分别在两个图像中可以找到,表示两人相遇的点是哪个点,表示乙到达终点的点是哪个,表示甲到达终点的点是哪个.【第四环节】课堂小结,指导概括教师总结,通过图像,也就是“型”的角度,解决了数的问题,这就是“数形结合”的思想,鼓励学生在今后的学习中灵活运用这种思想.教师继续提问,为什么列出的方程和不等式一定是一元一次的?为什么画出的函数图像一定是一条直线?或者说,为什么函数关系一定是一次函数?学生通过讨论探究,发现只有是匀速运动才是一次的,是因为在整个过程中,速度不变,路程只和时间这一个变量有关,且路程随着时间的变化而均匀变化,所以,路程与时间的变化率不变,所以路程与时间的关系才一定是一次函数.回顾整个探究过程,可以得到,对于匀速的行程问题,我们可以用一元一次方程、一元一次不等式或者是一次函数去解决,那么这个过程就是在建立“一次模型”.然后鼓励学生,能否在匀速的追及问题中建立“一次模型”解决问题.【第五环节】随堂练习,跟踪检测例题:A、B两地相距50km,甲于某日下午13:00骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地。

【教案】用一次函数模型解实际综合应用

【教案】用一次函数模型解实际综合应用

第2课时用一次函数模型解实际综合应用教学目标【知识与技能】熟练运用一次函数知识建立实际问题的数学模型,提高解决实际问题的能力.【过程与方法】经历活动过程,让学生认识数学在现实生活中的用途,发展学生运用数学知识解决实际问题的能力.【情感、态度与价值观】1.体会数学与生活的联系,了解数学的价值,加深对数学的理解和认识.2.认识到数学是解决实际问题的重要工具,了解数与形的联系以及事物之间的关联.重点难点【重点】根据题意写出函数关系式,建立实际问题的数学模型.【难点】运用一次函数解决实际问题.教学过程一、创设情境,导入新知师:这一章我们在前面都学习了哪些内容?生:在前面我们学习了一次函数的形式和画法,也学习了一次函数与二元一次方程的联系,学习了用一次函数的图象解二元一次方程组.师:很好!这节课我们用这些知识来解决实际问题,学以致用.二、共同探究,获取新知【例】奥运会每4年举办一次.奥运会的游泳成绩在不断地被刷新,如男子400m自由泳项目,1996年奥运冠军的成绩比1960年的提高了约30s.下面是该项目冠军的一些数据:冠军成绩/s231.31231.23226.95225.00227.97220.59223.10221.86根据上面的资料,能否预测2012年奥运会时该项目的冠军成绩?如何解决这个问题?分析:题中给出的数据是每4年一次奥运会上男子400m自由泳的冠军成绩.如果设x表示1980年起举办奥运会的年份,y表示相应年份奥运会上男子400m自由泳的冠军成绩,那么,对于每个x、y有唯一确定值与之对应.这样,要估算2012年这项运动的冠军成绩,设法求出变量y与x的关系式是关键.解:1.以1980年为零点,举办奥运会的年份的x值为横坐标、相应的y值为纵坐标,在坐标系中描出这些数据的点,如图:2.观察图中描写的点的整体分布,它们基本上在一条直线附近波动.因此,y与x之间的关系可以近似地以一次函数去模拟,即设y=kx+b.这里,我们选择点(0,231.31)及点(6,223.10)的坐标代入y=kx+b中得解方程组,得k=-1.37,b=231.31.所以一次函数的解析式为y=-1.37x+231.31.3.x=8代入上式,得y=-10.96+231.31=220.35(s).所以估计2012年奥运会男子400m自由泳冠军成绩约是220.35s.师:通过上面的学习,我们可以知道建立两个变量之间的函数模型的具体步骤如下:(1)将实验得到的数据在直角坐标系中描出;(2)观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;(3)进行检验;(4)应用这个函数模型解决问题.三、练习新知教师多媒体出示:某单位有职工几十人,想在节假日期间组织到外地H处旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到H地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,使其支付的旅游总费用较少?学生小组讨论.师:假设该单位参加旅游的人数为x,按甲旅行社的优惠条件,应付费用多少元?生:80x元.师:按乙旅行社的优惠条件,应付费用多少元?生:(60x+1000)元.师:那么“选择哪个旅行社,使其支付的旅游总费用较少”的问题就转化成了什么问题?生:转化成了“80x和60x+1000哪个式子的值小”的问题.师:很好!那我们怎么比较它们的大小呢?生:记y1=80x,y2=60x+1000,在同一直角坐标系内作出两个函数的图象,x的值相同时,y的值小的那部分的费用就低.师:现在请大家在方格纸上建立坐标系,画出两个函数的图象并观察图象,看能得到什么结论.学生作图,教师巡视指导,最后得到:学生观察图象后作答:当人数为50时,选择甲或乙旅行社费用都一样;当人数小于50时,选择甲旅行社费用较少;当人数大于50时,选择乙旅行社费用较少.师:同学们回答得很好.还有没有其他的方法呢?生:还可以这样做.设选择甲、乙旅行社所需费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000,画一次函数y=20x-1000的图象,由y的正负来判断y1与y2的大小.师:现在请同学们画出这个图象,然后观察图象作答. 学生作图,得到:学生观察图象后回答:当x=50时,y=0,即y1=y2;当x>50时,y>0,即y1>y2;当x<50时,y<0,即y1<y2.师:很好.四、课堂小结师:你今天学习了什么内容?学生回答,教师补充完善.教学反思本节课我给出了一个生活中的例子,让学生来解决.学生各自发挥自己的能力,用自己的办法来解决问题,锻炼学生的主动性和积极性.我鼓励他们说出自己的意见,锻炼他们的语言表达能力.在大家的讨论中,加深学生对一次函数和一次函数的意义的理解.这节课涉及了用解析式表达函数之间的关系和由函数图象比较两个函数值的大小等知识,这是对学生函数应用能力和观察能力的考察和锻炼.小升初专项卷2.图形与几何一、认真审题,填一填。

高中生物生活模型制作教案

高中生物生活模型制作教案

高中生物生活模型制作教案
一、教学目标:
1.了解生物生活模型的概念和作用;
2.掌握制作生物生活模型的方法和步骤;
3.增强学生的动手能力和创造力。

二、教学内容:
1.生物生活模型的定义和分类;
2.生物生活模型的制作方法;
3.利用生物生活模型展示生物的生存状况。

三、教学步骤:
1.引入:通过展示一些生物生活模型的图片或视频,引导学生了解生物生活模型的概念和作用;
2.讲解:介绍生物生活模型的分类和制作方法,让学生了解不同类型的生物生活模型有不同的制作步骤;
3.实践:让学生按照所学制作方法,选择自己喜爱的生物制作生活模型;
4.展示:让学生展示他们制作的生物生活模型,并向同学解释模型所代表的生物的生存状况;
5.讨论:引导学生讨论生物生活模型在生物学研究中的应用和意义。

四、教具与材料:
1.图片或视频展示生物生活模型;
2.各种生物生活模型的制作工具和材料,比如纸板、颜料、粘合剂等。

五、评价方法:
1.根据学生制作的生物生活模型的完成度和生物生存状况的展示能力评价;
2.通过学生参与讨论时的表现评价学生的理解能力和思考能力。

六、拓展与延伸:
1.让学生组成小组,合作制作大型生物生活模型;
2.邀请专业的生物学家或教师来指导学生制作生物生活模型,让学生更深入地了解生物生活模型的意义和应用。

七、总结:
通过本次教学,学生不仅了解了生物生活模型的制作方法和分类,还培养了他们的动手能力和创造力,同时也加深了他们对生物学的理解和认识。

希望学生在今后的学习和生活中能够继续保持对生物的兴趣和热爱。

生活中的一次函数模型实践研究

生活中的一次函数模型实践研究

生活中的一次函数模型实践研究文/崔槐丽摘要:函数模型学生掌握起来比较困难,教师在教学中也不容易把握。

为此,作者在教学中进行了一些尝试,通过选择符合学生实际生活,又容易操作的一些题目,让学生去实际调查,并体验完整的调查过程,写出符合要求的调查报告,从而提高了学生的问题解决能力,让学生感受到数学与实际生活的紧密联系。

关键词:一次函数;函数建模2011年版义务教育数学课程标准指出,应发展学生思想、应用意识和创新意识,其中模型思想是数学的一种基本思想。

模型思想的建立是学生体会和理解数学与实际生活及其他学科关系的基本途径。

函数建模问题是学生在解决数学问题时最难掌握的数学类型,因为没有正确的解决途径,学生在学习中出现较大的迷茫。

笔者在讲授一次函数建模时,尝试了以下几点做法:1 选择合适的函数建模问题在函数建模活动中,寻找适合的函数建模任务是非常重要问题。

由于学生初次接触函数建模,针对初中阶段每个类型的函数,教师先尝试着选择一些贴近实际生活的函数模型,供学生选择和参考。

由于刚刚起步,我们采取教师给定渐进的问题串,启发和引导学生思考。

当学生逐渐熟悉了函数建模时,可以只给学生提供问题环境,让学生自己提出问题并尝试解决问题。

笔者尝试选择的函数任务群如下:生活中的一次函数模型题目(参考)题目一:某市自来水价格问题调查问题1:调查某市目前水费问题,可以列表。

问题2:建立模型并画出图象。

问题3:小明家11月份用水28吨,该收多少费用?问题4:小明家12月份交了66元水费,用了多少吨水?问题5:影响水费的因素是什么?对于节约用水及如何选择付费方式你有哪些方面的意见及建议?题目二:某市天然气价格问题调查问题1:调查某市目前天然气费用问题,可以列表。

问题2:建立模型并画出图象。

问题3:小明家11月份用水15立方米,该收多少费用?问题4:小明家12月份交了58.36元水费,用了多少立方米的天然气?问题5:影响然气费的因素是什么?对于节约用气及如何选择付费方式你有哪些方面的意见及建议?题目三:某市内如何选择快递方式——“跑腿”问题1:调查某市常用的几家“跑腿”的收费标准。

生活中的一次模型研究报告

生活中的一次模型研究报告

生活中的一次模型研究报告(原创版)目录一、审计试算平衡表的定义与作用二、审计试算平衡表的内容与结构三、审计试算平衡表的编制方法四、审计试算平衡表的审核要点五、审计试算平衡表的应用实例正文审计试算平衡表是审计工作中常用的一种工具,用于检查企业的财务报表是否真实、准确、完整。

试算平衡表的定义是指将企业的所有账户余额进行汇总,检查借方总额是否等于贷方总额,以验证财务报表的准确性。

试算平衡表的作用主要体现在以下几个方面:1.确保财务报表的真实性。

通过试算平衡表,审计师可以初步判断企业的财务报表是否真实,从而决定是否需要深入审计。

2.及时发现错误。

试算平衡表可以帮助审计师及时发现企业财务报表中的计算错误、记账错误等问题,提高审计效率。

3.为进一步审计提供依据。

试算平衡表是审计工作的基础,审计师可以根据试算平衡表的结果,决定进一步审计的方向和重点。

试算平衡表的内容主要包括以下几个方面:1.账户名称:包括资产类账户、负债类账户、所有者权益类账户、收入类账户和费用类账户等。

2.账户编号:为了方便审计,企业应该为每个账户分配一个唯一的编号。

3.账户余额:指企业在某一特定时点的账户余额。

4.借方总额:指账户借方发生额的总和。

5.贷方总额:指账户贷方发生额的总和。

编制试算平衡表的方法比较简单,主要是将企业的所有账户余额按照账户名称、账户编号和账户余额进行汇总,然后计算借方总额和贷方总额,最后比较借方总额和贷方总额是否相等。

如果相等,则说明企业的财务报表可能没有问题;如果不相等,则说明企业的财务报表可能存在问题,需要进一步审计。

在审核试算平衡表时,审计师需要注意以下几个要点:1.账户分类是否正确。

审计师需要检查试算平衡表中的账户分类是否正确,是否包含了所有的账户。

2.账户余额是否准确。

审计师需要检查试算平衡表中的账户余额是否准确,是否与企业的账面余额一致。

3.计算方法是否正确。

审计师需要检查试算平衡表的计算方法是否正确,是否符合会计准则和审计标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《生活中的“一次模型”》教案
一、学生起点分析
到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也发现了它们彼此之间的联系,初步感受到这三个基本数学模型的广泛应用。

但是,由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。

二、教学任务分析
本课题是以探索一元一次不等式与一元一次方程、一次函数的综合应用为主题的实践活动,一方面可以使学生体会一元一次不等式与一元一次方程、一次函数之间的内在联系,初步形成对数学知识系统性的认识,发展学生的概括能力、数学研究能力;另一方面通过调查活动使学生充分认识数学知识在现实生活中的广泛应用,激发学生的学习兴趣,引发学生的数学思考,发展学生的数学抽象能力,综合应用数学的能力,做到在学数学的同时自觉的用数学。

相比前面的课题学习而言,本课是自主活动类型的课题学习,以一种新的形式呈现,任务的给出比较宽泛,没有给定的背景,没有具体的安排,只是给出了一个原始的问题,规定了一个大的方向:要求将一元一次方程、一元一次不等式和一次函数集中融入一个问题情境,至于说具体研究哪些问题、如何研究等完全由学生自主选择,因而,保证了学生学习的自主性、选择性和学习结论的开放性,给学生提供了发现问题,提出问题的机会,进一步发展学生的应用意识和创新意识。

因此,本节课的教学目标定为:
⒈经历用数学的眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。

⒉综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的内在联系。

⒊会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。

三、教学过程分析
在教学过程中安排两课时。

第一课时引领学生回顾总结,发现应用一元一次不等式、一元一次方程与一次函数解决的一些实际问题,在此基础上,学生依据不同的学习背景选择问题情境,小组讨论确定研究主题,拟定解决问题的方案,研究分析需要获取的有效数据。

具体教学过程如下:分为以下四个环节:第一环节:知识回顾,建立联系;第二环节:讨论交流,提出问题;第三环节:组建小组,确定方案;第四环节:交流评价,完善方案。

第二课时交流评价。

分为两个阶段:第一阶段以小组为单位进行交流展示。

重点展示研究调查过程和结果概述;第二阶段小组互评,选出优秀课题和优秀调查报告。

从交代问题情境、数据的来源、建立何等模型、求解过程、相关解释及应用几个方面对调查报告进行评价。

设计意图:
考虑到这样形式的课题学生还是第一次做,所以,在正文中明确的提出两点要求,作为“扶手”:一是对学生拟定方案环节做了方向的指导;二是对汇报交流的报告做了必要的内容要求。

这样可以让学生在做课题时,目的性更明确,不至于“走偏”。

通过第二课时的小组汇报,教师、同伴的交流与评价,学生反思自己的调查过程与研究结果并进一步修正与完善,提交课题活动感想。

第一课时教学过程展示:
第一环节:知识回顾,建立联系
1.举例说明一元一次方程(组)、一次函数、一元一次不等式(组)之间有什么样的关系?
2.举例说明生活中常见的用一元一次方程(组)或一次函数或一元一次不等式(组)相关知识解决的实际问题。

设计意图:
在问题的求解过程中,教师引导学生切身体会并探究三者之间的内在联系,为后续建立数学模型并求解实际问题奠定基础。

第二环节:讨论交流,提出问题
在学生提出的实际问题基础之上,汇总出几个有价值的研究材料供学生选择。

材料1
探索出租车如何计价
1.日间出租车价与里程数之间的函数关系;
2.夜间出租车价与里程数之间的函数关系;
3.当遇到红灯或堵车时的计价情况等。

材料2
探索商场促销现象
节假日商场经常打出打折的牌子,在各种以打折名义进行的促销活动中,如何选择最实惠的商品是大多数人常常面临的问题。

调查学校或居住小区附近某一商场的促销方式,列出相应的方程、函数或不等关系并作出分析,用你得到的结论,指导周围的人理性消费。

材料3
关于集资活动的调查
1.学校的社团常常需要筹措资金,如果你是某个组织中的成员,请列出一张清单,写出你所需要的资金项目。

2.在1的基础上,计划一下资金增长的方式,当你完成你的计划时,同时考虑一下为了增长资金是否还需要一些必要的开销,用方程、不等式和函数表示你的计划及盈利情况。

3.将你筹措资金的情况展示给大家,做一个报告叙述你的观点,并与同伴交流,报告中要用到2中的方程、不等式和函数。

材料4:
关于教育开销的调查
1.计算一下自己从现在起到参加工作,总共需要多少教育资金。

2.考虑你如何支付这些费用,帮家长写一个储蓄计划。

3.用不等式来表示你从各种渠道所能储蓄的钱的最低数量。

4.将你的调查与同学交流一下,让大家看看你的调查是否可行?如果可能请他们提供改进的建议。

材料5:
伴着人类电子行业的迅速发展,手机的用途越来越广,越来越被我们青睐,因此话费问题也经常会被纳入家庭经济核算.如今的话费收取种类众多,如何选取最适合自己的一套方案也被人们所重视.我们就对话费的选取这方面进行研究与调查.
首先提供一张王先生10月份话费清单:
移动公司出来两种话费计费方式:
请根据所学一元一次方程、一元一次不等式或一次函数等知识,构造相应数学模型,结合实际情况帮助王先生选择一种较合适的话费方案.
设计意图:
由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。

这时,需要教师依据学生的学习水平,给予恰到好处的帮助,在
数学模型的建立,方程、不等式、函数关系的构造等方面,可以让不同认知水平及能力层次的学生都经历“问题情境—建立模型—求解—解释与应用”的研究过程。

在深度上,不同认识层次的学生可以选择不同的问题情境,又可以不同程度地融合数学知识,让不同的学生在数学上得到不同的发展
第三环节:组建小组,确定方案
1.在教师的指导下,学生根据自己的情况选择合适的研究内容组成研究小组。

组内人员进行明确分工。

2.组内讨论,形成完整的调查研究方案。

第四环节:交流评价,完善方案
1.分小组在班上交流调查方案,并对每个方案进行评价提出修改建议。

2.组内完善方案。

利用可与时间进行实地调查,完成调查报告。

设计意图:
学生通过经历这样的数学活动,体会数学学习不仅仅是做习题,而且要学会用数学的视角分析现实问题,揭示并理解现实问题。

必要时,教师可以提供一些背景,提出研究方向,给出一些具体的问题等。

评价建议
1.本课题评价的重心在于让学生真实体验数学问题研究和解决的全过程。

2.关注学生自主参与,培养合作能力和反思意识。

3.关注学生模型思想的建立,即能从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。

4.关注学生用数学的视角分析和理解现实问题。

对于问题研究的深度,可以让不同认识层次的学生选择不同的问题情境,也可以不同程度的融合数学知识,让不同的学生得到不同的发展。

5.关注学生对于一元一次方程、一元一次不等式及一次函数的综合运用能力,研究成果的逻辑性、实用性以及报告的精练、准确程度。

相关文档
最新文档