神经元电生理学等效电路模型及参数特性研究

神经元电生理学等效电路模型及参数特性研究
神经元电生理学等效电路模型及参数特性研究

等效电路模型参数在线辨识

第四章 等效电路模型参数在线辨识 通过第三章函数拟合的方法可以确定钒电池等效电路模型中的参数,但是在实际运行过程中模型参数随着工作环境温度、充放电循环次数、SOC 等因素发生变化,根据离线试验数据计算得到的参数值估算电池SOC 可能会造成较大的估计误差。因此,在实际运行时,应对钒电池等效电路模型参数进行在线辨识,做出实时修正,提高基于模型估算SOC 的精度。 4.1 基于遗忘因子的最小二乘算法 参数辨识是根据被测系统的输入输出来,通过一定的算法,获得让模型输出值尽量接近系统实际输出值的模型参数估计值。根据能否实时辨识系统的模型参数,可以将常用的参数辨识方法分为离线和在线两类,离线辨识只能在数据采集完成后进行,不能对系统模型实时地在线调整参数,对于具有非线性特性的电池系统往往不能得到满意的辨识结果;在线辨识方法一般能够根据实时采集到的数据对系统模型进行辨识,在线调整系统模型参数。常用的辨识方法有最小二乘法、极大似然估计法和Kalman 滤波法等。因最小二乘法原理简明、收敛较快、容易理解和掌握、方便编程实现等特点,在进行电池模型参数辨识时采用了效果较好的含遗忘因子的递推最小二乘法。 4.1.1 批处理最小二乘法简介 假设被辨识的系统模型: 12121212()()()1n n n n b z b z b z y z G z u z a z a z a z ------+++==++++L L (4-1) 其相应的差分方程为: 1 1 ()()()n n i i i i y k a y k i b u k i ===--+-∑∑(4-2) 若考虑被辨识系统或观测信息中含有噪声,则被辨识模型式(4-2)可改写为: 1 1 ()()()()n n i i i i z k a y k i b u k i v k ===--+-+∑∑(4-3) 式中, ()z k 为系统输出量的第k 次观测值;()y k 为系统输出量的第k 次真值,()y k i -为系统输出量的第k i -次真值;()u k 为系统的第k 个输入值,()u k i -为 系统的第k i -个输入值;()v k 为均值为0的随机噪声。

心脏的电生理学基础

心脏的电生理学基础 一、心肌细胞的分类 心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。除此以外,还具有兴奋性、传导性而无自律性。另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。 根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。 快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。其动作电位0相除极由钠电流介导,速度快、振幅大。快反应细胞的整个APD中有多种内向电流和外向电流参与。 慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。有关两类细胞电生理特性的比较见表1。 表1快反应细胞和慢反应细胞电生理特性的比较 参数快反应细胞慢反应细胞 静息电位-80~-95mV -40~-65mV 0期去极化电流I Na I Ca 0期除极最大速率200~700V/s 1~15V/s 超射+20~+40mV -5~+20mV 阈电位-60~-75mV -40~-60mV 传导速度0.5~4.0m/s 0.02~0.05m/s 兴奋性恢复时间3期复极后 10~50ms 3期复极后100ms以上 4期除极电流I f I k,I Ca,I f 二、静息电位的形成 静息电位(restingpotential,RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV。 各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵。如Na-K泵(Na-Kpump),也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度。Na-K-ATP酶的磷酸化需要分解ATP,通常每分解一分子ATP可将3个Na+转运至膜外,同时将2个K+转运至膜内。

感应同步器的部分元等效电路模型

第30卷第6期中国电机工程学报Vol.30 No.6 Feb.25, 2010 2010年2月25日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 105 文章编号:0258-8013 (2010) 06-0105-07 中图分类号:TM 383 文献标志码:A 学科分类号:470·40 感应同步器的部分元等效电路模型 刘承军,邹继斌 (机器人技术与系统国家重点实验室(哈尔滨工业大学),黑龙江省 哈尔滨市 150001) Partial Element Equivalent Circuit Model of Inductosyn LIU Cheng-jun, ZOU Ji-bin (State Key Laboratory of Robotic Technology and System (Harbin Institute of Technology), Harbin 150001, Heilongjiang Province, China) ABSTRACT: The mathematical model of output voltage is the theoretical basis for analyzing the errors of inductosyn and optimizing design of windings. For the current misdistribution caused by contiguity effect between the exciting windings not being taken into account in traditional mathematical model, the bigger calculation error of harmonic voltages is brought out when the high frequency alternating current flows in the exciting windings. A mathematical model of output voltage based on partial element equivalent circuit (PEEC) method was built, on the basis of which, current distribution characteristic of exciting windings was studied, the output voltages of induction windings were calculated in condition of different exciting frequency and different configuration parameters. The method to eliminate harmonic voltages was proposed by analyzing harmonic component of position function. The accuracy of the model was verified by experiment. KEY WORDS: inductosyn; mathematical model; output voltage; equivalent circuit 摘要:输出电势的数学模型是分析感应同步器误差及进行绕组优化设计的理论基础。传统的数学模型未考虑激磁绕组邻近效应引起的电流分布不均对输出电势的影响,从而会在高频下带来较大的谐波电势计算误差。建立了基于部分元等效电路方法的输出电势数学模型,研究激磁绕组的电流分布特性,计算了激磁绕组在不同工作频率、不同结构参数下感应绕组的输出电势,分析其位置函数的谐波成分,并提出消除谐波电势的途径。最后通过实验验证了模型的准确性。 关键词:感应同步器;数学模型;输出电势;等效电路 0 引言 感应同步器是一种高精度的位置传感器,被广泛应用于惯导测试系统中。感应同步器各种误差的分析和计算都依赖于输出电势的准确计算,所以建立感应同步器输出电势的数学模型具有重要的意义。目前,输出电势的模型,如长线分布参数模型和谐波电势模型等[1-2],一般都假设导体截面上各点电流是均匀分布的,而实际上由于电流在导片内的趋肤效应、相邻导片的邻近效应和相间隔导片电流的斥流效应,电流在导片中分布不均匀,且频率越高,不均匀性越严重。 部分元等效电路(partial element equivalent circuit,PEEC)是一种有效的电路建模和参数提取方法,最初由IBM公司的Ruehli于20世纪70年代在计算复杂集成电路的电感时提出[3-6],后被广泛应用于集成电路和PCB布线时部分参数的计 算[7-11]。经过30多年的发展,延迟时间[12-13]、电介质单元[14]及非正交单元几何公式[15-16]的引入,使部分元等效电路方法成为一种多用途的电磁求解方法。PEEC方法从积分形式的麦克斯韦方程出发,将大尺寸导体分割成适当数量的小导体(部分电路单元),计算出各部分电路单元的部分电感、部分电容以及各单元之间的互感和互容,最后将部分电路单元构成等效电路进行电路模拟,从而将复杂形状导体的电磁场求解问题转换为等效电路的建立和分析问题。PEEC方法综合考虑了趋肤效应、邻近效应等因素的影响[17],可以准确地计算感应同步器在不同结构参数下的阻抗分布,分析定子绕组和转子绕组在不同工作频率下的绕组电流分布,进而得到了定子绕组的输出电势。本文用PEEC方法对感应同步器输出电势进行建模研究,分析输出电势位置函数的谐波组成,并通过实验验证该模型的准确性。 基金项目:国家自然科学基金项目(50777012)。 Project Supported by National Natural Science Foundation of China (50777012).

电生理学发展简史

电生理学发展简史(一) 生物电活动是机体一种基本的生命现象,它产生的基础是细胞膜上离子通道活动的总和效应。从生物电现象的发现到如今对离子通道功能与结构如此深入的了解,电生理学走过了200 多年的历程。 一、生物电现象的发现 最初的实验研究是从18 世纪后叶开始的。当时没有任何测量电流的仪器,只是发现利用电容器(如雷顿瓶)的放电,或雷电发生时竖起一根长导线,引导大气中的电,都可以刺激蛙的神经肌肉标本,引起肌肉收缩,所以当时就用蛙的神经肌肉标本作为电流存在的标志。1791 年意大利解剖学教授Galvani L 发现,如果将蛙腿的肌肉置于铁板上,再用铜钩钩住蛙的脊髓,当铜钩与铁板接触时肌肉就会发生收缩。他把这个现象的发生归因于机体的“动物电”(animal electricity )。他认为神经与肌肉带有相反的电荷,肌肉带正电,神经带负电,金属导体的作用是把神经与肌肉之间的电路接通。同时代的意大利物理学家Volta A 不同意Galvani 的见解,他认为实验中发现的电现象,不是动物机体产生的动物电,而是由于实验中连接肌肉和神经的金属不同所致,是不同金属接触时产生的电流刺激了肌肉标本,如果用同一种金属作导体,收缩就不会发生。事实上,Volta 和Galvani 的观点都有其正确的一面。Volta 后来因此而发明了伏特电池;Galvani 则继续进行了一个出色的实验。在无金属参与的情况下,他将一个肌肉标本横断,又将另一个神经肌肉标本的神经干搭在横断肌肉上,并使之跨越肌肉的完好面和损伤面,结果该神经支配的肌肉产生收缩,证实了动物电的存在。这成为第一次观察到生物电存在的电生理实验。但是直接测量到生物电的实验是在电流计发明之后。 1825 年意大利物理学家Nobili 发明电流计。 1837 年意大利物理学教授Matteucci C 用电流计在肌肉的横断面与未损伤部位之间,测量到电流流动,电流是从未损伤部位流向横断面的,所以横断面呈负电位。这是第一次直接测量到生物体内存在生物电的实验。 1843 年瑞士生理学家Du Bios-Reymond 用电流计观察到神经的损伤电位,也是损伤部位呈负性。1849 年,他又发现神经在活动期间出现负波动,即使用电流计从细胞外记录到的动作电位。 1850 年von Helmholtz H 测定了神经传导速度,证明蛙神经的传导速度仅20 ~ 30m/s 。此前人们认为既然电的传导速度等于光速,因而神经的传导速度可能也是光速。 二、早期对生物电发生机制的认识 1. Bernstein 的膜学说对于这种生物电现象的解释,当时提出了不同的学说。Du Bios-Reymond 认为,组织内带负电,外表带正电,是正常状态下存在的,即所谓“现存学说”(preexistence theory );而他的学生Hermann (Du Bios-Reymond )则认为,组织内的负电是被切割时组织损伤变质造成的,即所谓“变质学说”(alteration theory )。1890 年,著名的化学家Ostwald W 提出了膜的通透性理论,即如果在电解质弥散的途径上有一层半透膜,它只允许一种离子通过,而带有相反电荷的另一种离子不能通过,就会通过静电作用限制透过膜的离子不能进一步弥散,如此,在膜两侧就会形成电位差,它的大小可按Nernst 公式计算。1902 年Du Bios-Reymond 的另一名学生Bernstein J 接受了Ostwald 通透性理论,在现存学说的基础上提出了“膜学说”(membrane theory )。他根据细胞内液比细胞外液含较多的K +,而细胞损伤处电位较完好处为低的事实,推测静息时细胞内电位低于细胞外,并假定静息时细胞膜只对K +有通透性,由于胞内带正电荷的K +顺浓度差扩散到膜外,相应的负电荷仍留在膜内,使细胞膜呈现外正内负的极化状态,形成静息电位。按照Bernstein 的设想,细胞的静息电位就等于K +的平衡电位。动作电位则是由于膜在一瞬间失去了对K +的选择性通透,变得对所有离子通透性一过性地升高,导致膜两侧电位差瞬间消失。1904 年,他又设计了一个精巧的实验,证实肌肉切断后断面的负电位在0.3 s 后即出现,并持续缓慢地减小而不是

太阳能电池等效电路分析

?太阳能电池等效电路分析 ?引言 太阳能电池是利用光伏效应直接将光能转换为电能的器件。其理想等效电路模型是一个电流源和一个理想二极管的并联电路,其输出特性可以用J-V曲线图表示。如图1(略)。 在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性与理想特性有很大差异,这是因为理想模型不能正确反映实际器件的特点。实际模型采用串联电阻及并联电阻来等效模拟实际器件中的各种非理想效应的影响。本文针对太阳电池的等效电路模型,利用Matlab软件建立了仿真模块,模拟了太阳电池各输出参数受其内部电阻影响的程度。 太阳能电池等效电路分析 实际太阳电池等效电路如图2所示,由一个电流密度为JL的理想电流源、一个理想二极管D和并联电阻Rsh,串联电阻Rs组合而成。Rsh为考虑载流子产生与复合以及沿电池边缘的表面漏电流而设计的一个等效并联电阻,Rs 为扩散顶区的表面电阻、电池体电阻及上下电极之间的欧姆电阻等复合得到的等效串联电阻。太阳电池两端的电压为V,流过太阳电池单位面积的电流为J。由图2可以得出其电流电压关系(公式略): 式中,Js——二极管反向饱和电流密度。当太阳电池两端开路时,即负载阻抗为无穷大时,通过太阳电池的净电流J 为零,此时的电压为太阳电池的开路电压VOC。在(1)式中令J=0,则有(公式略) (2)式表明,开路电压不受串联电阻Rs,的影响,但与并联电阻Rsh有关。可以看出,Rsh减小时,开路电压VOC 会随之减小。 太阳电池两端短路即负载阻抗为零时,电压V为零,此时的电流为短路电流密度Jsc。在(1)式中令V=0,并且考虑到一般情况下R<

20170420-实际变压器的等效电路模型

实际变压器的等效电路模型 普高(杭州)科技开发有限公司 张兴柱 博士 实际变压器中的铁芯,其导磁率虽然很高,但并不是无限大,另外由外部电流所产生的磁场也并不能全部分布在铁芯内部,而总会有一小部分分布到铁芯周围的空气中。所以实际的变压器,其等效电路模型与(1)式所表示的会有一些区别。 s p p s N N i i //=p s p s N N v v //= (1) 下面先来看看在漏磁可以忽略,但铁芯导磁率μ为有限这一情况下的变压器等效电路模型。 图1:变压器结构 当铁芯的导磁率μ有限时,从图1及磁路KVL 定律可得: s s p p c i N i N R ?=Φ 故铁芯中的磁通为: )(s s p p c i N i N R ?=Φ1 再因为: dt d N v p p Φ= ,dt d N v s s Φ= 所以有: dt L i N N i dt d R N v p mp s p s p c p p m 2di ][=?= (2) s p s p N N v v = (3) 其中:m c p c p mp l A N R N L 22μ==,为变压器原边绕组的电感量,也叫原边的激磁电感。

s p s p mp i N N i i ?=,为变压器原边激磁电感中的电流,称为变压器原边的激磁电流。 观察方程(2)和(3),发现在铁芯导磁率有限且忽略漏磁时的变压器等效电路模型,可用图2表示。由该等效电路可以看出,此时的变压器模型实际上可以看作是由匝比为Np:Ns 的理想变压器(如红色虚线框所示)和原边激磁电感Lmp 并联所成。 图2: 变压器的实际等效电路(1) 从图2还可以看出,如果变压器的副边开路,即i s =0,那么变压器的原边就等效为一个激磁电感Lmp ,所以变压器原边的激磁电感可以通过电桥进行测试,测试时只要将变压器的副边开路,在变压器的原边测量其电感就可。 事实上,任何变压器在原边都有一个激磁电感。在开关电源中,其功率变压器所允许的这个激磁电感大小往往与变换器的拓扑有关,在有些拓扑中(如对称驱动的半桥变换器、全桥变换器),其变压器的激磁电感可以非常大,因而在这些拓扑中的变压器可采用高导磁率的铁芯,而且不用加气隙;在有些拓扑中(如反激变换器、不对称半桥变换器),其变压器的激磁电感不能很大,所以在这些拓扑中的变压器要加上一定的气隙或采用导磁率相对低一些的铁芯。激磁电感虽然是变压器由于铁芯导磁率不是很高而引入的一个等效参数,但在开关电源的不少拓扑中,且可以采用这个激磁电感来实现别的功能,如在不对称半桥变换器和有源去磁正激变换器中,可用这个激磁电感来实现原边MOSFET 的ZVS ;在半桥或全桥LLC 变换器中,可用这个激磁电感来实现谐振工作方式等等。 除了激磁电感外,变压器铁芯中的磁通还会有一小部分漏到铁芯外面,形成所谓的漏磁。图3 (a)是包含漏磁时的变压器示意图,图3(b)是将原边和副边的漏磁分别用两个小电感表示 v (a) (b) 图3:包含漏磁时的变压器结构示意图

太阳能电池基本原理-光生伏特原理-PN结-内建电场-等效电路

太阳能电池基本原理 基本原理——光生伏特效应 太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。典型太阳电池是一个p-n结半导体二极管。 光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。光能就以产生电子-空穴对的形式转变为电能。 内建电场 当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N型一边扩散。与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。 (1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。 (2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。 (3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。 (4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。 (5)电荷收集:电荷的收集效率也是影响光伏器件功率转换效率的关键因素,金属与半导体接触时会产生一个阻挡层,阻碍电荷顺利地到达金属电极。 等效电路模型 太阳能电池等效电路 无光照时类似二极管特性,外加电压时单向电流I D 称为暗电流;有光照时产生光生电流I L ; R s 、R sh 分别为太阳电池中的串、并联电阻R L 为负载。 (1)恒流源:在恒定光照下,一个处于工作状态的太阳电池,其光电流不随工作状态而变化, 在等效电路中可把它看做恒流源。 (2)暗电流I D :光电流一部分流经负载R L ,在负载两端建立起端电压U,反过来,它又正向 偏置于PN结,引起一股与光电流方向相反的暗电流I D 。 (3)串联电阻R S :由于前面和背面的电极接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的引入附加电阻。流经负载的电阻经过它们时,必然引起损耗。在等效电路中,他们 的总效果用一个串联电阻R S 表示。 并联电阻R SH 由于电池边沿的漏电和制作金属电极时在微裂纹、划痕等处形成的金属桥漏电等, 使一部分本应通过负载达到电流短路,这种作用的大小可以用一个并联电阻R SH 等效。 决定太阳能电池能量转换效率的三个参数分别是短路电流(I sc )、开路电压(V oc )和填充因子 (FF)。因为电流(I)与太阳能电池的面积(A)成正比例关系,因此一般用电流密度(J)取代电

公卫执业医师考试生理学复习要点:心肌的生物电现象和电生理特性

心肌的生物电现象和电生理特性 (一)工作细胞和自律细胞的跨膜电位及其形成机制根据组织学和电生理学特性,可粗略地将心肌细胞分为两大类型,一类是普通的心肌细胞,包括心房肌和心室肌,含有丰富的肌原纤维,执行收缩功能,故又称为工作细胞。另一类是一些特殊分化了的心肌细胞,组成心脏的特殊传导系统,其中主要包括起搏细胞(β细胞)和浦肯野细胞。窦房结主任慢反应自律浦肯野细胞主治快反应自律心室肌细胞住院医师快反应非自律1.工作细胞的跨膜电位及其形成机制: 人和哺乳类动物的心室肌细胞和骨骼肌细胞一样,在静息状态下膜两侧呈极化状态,膜内电位比膜外电位约低90mV,但两者的动作电位却有明显的不同。骨骼肌细胞动作电位的时程很短,仅持续几个毫秒。心室肌细胞动作电位的主要特征在于复极过程比较复杂,持续时间很长,通常用 0、1、 2、3、4等数字分别代表心室肌细胞动作电位的各个时期。各期的特点和离子机制见表2-3。表2-3心室肌细胞动作电位的分期及形成机制 去极化过程 复极化过程 分期 0期(去极化期) 1期(快速复极初期) 2期(平台期) 3期(快速复极末期) 4期(静息期) 电位变化

-90mV→+30mV(除极速度极快,幅度可达120mV) +30mV→0mV(与0期一起形成锋电位) 基本停滞于0mV 0mV→-90mV -90mV(膜电位稳定) 历时 1~2ms 10ms左右 100~150ms 100~150ms 形成机制 Na+内流 K+外流 K+外流Ca2+内流 K+外流 钠泵活动↑Na+-Ca2+交换↑ 2期复极又称平台期,是心室肌细胞区别于神经和骨骼肌细胞动作电位的主要特征,也是心室肌动作电位复极较长的主要原因。4期(静息期)心室肌细胞复极完毕,静息电位基本上稳定于-90mV,但此时钠泵活动,逆浓度差转运Na+和K+,同时Na+-Ca2+交换增强,使细胞内外各离子浓度梯度得以恢复。心房肌细胞动作电位分期及特点与心室肌细胞基本相同,不同的是心房肌细胞动作电位的时程较短,仅150~200毫秒。2.自律细胞的跨膜电位及其形成机制

太阳能电池等效电路

太阳能电池等效电路 图1.1是利用P/N 结光生伏特效应做成的理想光电池的等效电路图,图中把光照下的p-n 结看作一个理想二极管和恒流源并联,恒流源的电流即为光生电流I L ,R L 为外负载。I L 的能力通过p-n 结的结电流I j 用二极管表示。这个等效电路的物理意义是:太阳能电池光照后产生一定的光电流I L ,其中一部分用来抵消结电流I j ,另一部分即为供给负载的电流I R 。其端电压V 、结电流I 以及工作电流I 的大小都与负载电阻R 有关,但负载电阻并不是唯一的决定因素。如上所述,I 的大小为 j L I I I -= (1-1) 根据扩散理论,二极管结电流I j 可以表示为 )1(0-=kT qV j j e I I (1-2) 将式(2-2)代入(2-1),得 )1(0--=kT qV L j e I I I (2-3) 实际的太阳能电池,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻R S 来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一并联电阻R SH 来等效。则实际的光电池的等效电路如图1.2所示[17-20] 。p-n 结光生伏特效应最主要的应用是作为太阳能电池。太阳辐射的光能有一个光谱分布,禁带宽度越窄的半导体,可以利用的光谱越广。但是,禁带宽度E g 太小的话相应能产生的光电动势又会比较小。反之,E g 大的半导体,虽然V OC 可以提高,但可以利用的太阳光谱范围就会比较小[35]。也就是说,开路电压V oc 随E g 的增大而增大,但另一方面,短路电流密度J SC 随E g 的增大而减小。结果是可期望在某一个确定的E g 处出现太阳能电池效率的峰值。因此如何充分合理的利用太阳能资源,是一个太阳能电池生产商面临的关键技术问 图 1.2 太阳能电池的实际等效电路 Fig.1.2 Equivalent circuit of the actual solar cell

实验1神经的电生理特性及影响因素实验

实验1神经的电生理特性及影响因素实验 【目的】探讨神经干双相动作电位的形成机制及影响因素。 1 材料 蟾蜍;任氏液;BB-3G 标本屏蔽盒,微机生物信号采集处理系统。 2 方法 2.1 系统连接和参数设置 系统连接按图1-1所示连接生物信号采集处理系统与标本盒。启动RM6240系统软件,设置仪器参数: (1)RM6240系统:点击“实验”菜单,选择“神经干动作电位”项目。仪器参数:1、2通道时间常数0.02s 、滤波频率3KHz 、灵敏度5mV ,采样频率100KHz ,扫描速度0.2ms/div 。单刺激激模式,刺激波宽0.1ms ,延迟1ms ,同步触发(图1-2)。 2.2 制备蟾蜍坐骨神经干标本 2.2.1 毁脑脊髓 取蟾蜍一只,用左手握住,以食指压其头部前端使其尽量前俯,右手持探针自枕骨大孔处垂直刺入,到达椎管,即将探针改变方向刺入颅腔,向各侧不断搅动,彻底捣毁脑组织;再将探针原路退出,刺向尾侧,捻动探针使逐渐刺入整个椎管内,捣毁脊髓。此时蟾蜍下颌呼吸运动应消失,四肢松软,即成为一毁脑脊髓的蟾蜍(pithed toad )。否则须按上法再行捣毁。 2.2.2 下肢标本制备 用粗剪刀在颅骨后方剪断脊柱。左手握住蟾蜍脊柱,右手将粗剪刀沿两侧(避开坐骨神经)剪开腹壁。此时躯干上部及内脏即全部下垂。剪除全部躯干上部及内脏组织,弃于瓷盆内。避开神经,用右手拇指和食指夹住脊柱,左手捏住皮肤边缘,逐步向下牵拉剥离皮肤拉至大腿时,如阻力较大,可先剥下一侧,再剥另一侧。将全部皮肤剥除后,将标本置于盛有任氏液的培养皿中。 2.2.3 分离神经干 剥皮的下肢标本俯卧位置于蛙板上,用尖头镊子夹住骶骨尾端稍向上提,使骶部向上隆起,用粗剪刀水平位剪除骶骨。标本仰卧置于蛙板上,用玻璃分针分离脊柱两侧的坐骨神经,穿线,紧靠脊柱根部结扎,近中枢端剪断神经干,用尖头镊子夹结扎线将神经干从骶部剪口处穿出。标本俯卧位置于蛙板上,使其充分伸展呈人字形,用三根大头针将标本钉在蛙板上。然后再用玻璃分针循股二头肌和半膜肌之间的坐骨神经沟,纵向分刺激 S+ S- 神经干 r 3 r 1 r 1′ r 2 r 2′ 4 3 2 1 RM6240 图1-1 观察神经干动作电位和测定神经冲动传导速度装置图 S+、S-刺激电极;r 3 接地电极;r 1、r 1′、r 2、r 2′引 导电极分别与生物信号采集处理系统1、2通道连接

@2太阳能电池的数学模型

2太阳能电池的数学模型 太阳能电池的数学模型是太阳能电池模拟器系统设计的基础,本章从太阳能电池的工作原理、等效电路出发,详细介绍了太阳能电池数学模型的建模过程,给出了太阳能电池的数学模型,并且对该数学模型进行了仿真,证明了该数学模型的正确性,为下文提出六折线模型拟合太阳能电池的I-V特性曲线奠定了基础。 2.1太阳能电池的工作原理 通常所说的太阳能电池指的是太阳能电池单体,太阳能电池单体是一种能够利用光伏效应将太阳能直接转换为电能的半导体装置,它的转换效率一般可达百分之十五左右。它通常是由大量的PN结串联而成的,整体结构一般是由一个P型半导体作为底座,在上面刻入N 型薄膜,并且通过金属导线把PN结的两端引出。太阳能电池单体是最小的光电转换单位,输出电压和输电电流都很小,一般不可以直接作为电源使用。通常都是将一定数量太阳能电池单体通过串联构成太阳能电池组件来使用。太阳能电池组件的输出电压一般达到24V左右,24V的电压可用来为蓄电池充电,能够应用在各个系统和领域中。当需要进行大功率光伏发电系统时,可以把这些太阳能电池组件通过一定的形式串联或并联起来,形成太阳能电池阵列。太阳能电池阵列能够产生较大的功率,可以用在各个领域中。 太阳能电池发电的原理主要是半导体的光生伏特效应,也称为光伏效应。硅半导体结构如图2-1 a)所示,在图中,硅原子用正电荷来表示,硅原子四周的四个电子用图中的负电荷来表示。当向晶体硅中掺入其他的杂质,如硼、磷等就会形成一个个很小的PN结。当向晶体中掺入硼时,含有杂质硼的晶体硅的内部电子排列如图2-1 (b)所示。图中,硅原子用正电荷来表示,硅原子四周的四个电子用负电荷表示,而图中黄色的就表示掺入的硼原子,由于硼原子的外部只有三个电子,就会吸引硅原子的一个电子过来,这样就会产生如图中蓝色的空穴,这个空穴又会因为没有足够的电子而去吸引别的电子,这样就形成了P ( positive)型半导体。 同样的原理,如图2-1 (c),当掺入的杂质为磷时,因为磷原子的周围有五个电子,磷原子与硅原子结合时就会多出来一个电子,多出来的这一个电子通常在晶体内部是很活跃的,这样就形成了N ( negative)型半导体。 如上面的分析,P型半导体内部含有多余的电子,而同时N型半导体内部含有多余的空穴,当这两种半导体材料结合在一起时,就会在交界处的区域内形成一个特殊的薄层,这个薄层就是PN结。PN结靠近P型半导体的这侧带负电,靠近N型半导体的这侧带正电。这是因为P型半导体内部含有多余的空穴,而N型半导体内部含有多余的电子,当二者结合在一起时就会出现电子和空穴的浓度差,这样就会出现P型半导体的空穴向N型半导体

第二单元 电力系统各元件的数学模型

第二单元电力系统各元件的数学模型 练习题 一、选择题(每小题至少有一个正确答案) 1.一台容量为20MV A的115.5kV/10.5kV的降压变压器高压侧一次侧电流为()。 A.100A B.171.9A C.1.004A D.1.719A 2.取基准容量为100MV A,110kV线路一次阻抗为40Ω,如果采用近似计算法,其标幺值()。A.0.302 B.0.330 C.5290 D.4840 3.取基准容量为100MV A,容量为20MV A的110kV/11kV降压变压器,其短路电压百分数为10.5%,如采用近似计算法,其短路电抗标幺值为()。 A.0.525 B.0.021 C.1.004 D.1.719 4.取基准容量为100MV A,一台600MW发电机的功率因数为0.85,额定电压为20kV,次暂态电抗值为0.112,如采用近似计算法,其标幺值为()。 A.0.01587 B.0.672 C.0.01877 D.0.7906 5.描述线路中储存磁场能量的参数()。 A.电阻B.电感C.电源D.电容 6.在三相对称电路中,基准值通常取()。 A.线电压B.相电压C.三相视在功率D.三相有功功率 7.变压器等效电路中的电纳与线路等效电路中的的电纳性质不同,具体的说就是()。A.线路消耗的是容性无功B.变压器消耗的是感性无功 C.变压器的电纳是感性的D.线路的电纳是容性的 8.三绕组变压器的结构,通常将高压绕组放在()。 A.内层B.中间层C.外层D.独立设置 9.三相导线的几何均距越大,则导线的电抗()。 A.越大B.越小C.不变D.无法确定 10.变压器的电导参数G T,主要决定于哪一个实验数据()。 A.?P0B.?P K C.U K% D.I0% 11.当功率的有名值为时(功率因数角为φ)取基准功率为S n,则有功功率的标幺值为()。 A.B.C.D. 12.相同截面的导线,使用的电压等级越高,其电阻()。 A.一样B.越大C.越小D.都不对

20170419-理想变压器的等效电路模型

理想变压器的等效电路模型 普高(杭州)科技开发有限公司 张兴柱 博士 理想变压器,是我们电路中非常熟悉的一个元件。既然图1是一个实际变压器的物理结构,那么它在理想情况下的等效电路模型又会是怎样呢?假定组成图1磁元件的铁芯具有非常大的导磁率,即μ→无穷,且由外部电流产生的全部磁场均均匀地分布在铁芯内。 (a) 方形铁芯 (b) 环形铁芯 图1: 单输出变压器的物理结构 因为:→∝μ 所以:01→= c m c A l R μ 所以:02211→+i n i n 或有: 2 1 12n n i i ?= (1) 再由法拉第电磁感应定律,可得: dt d n v Φ=11 ,dt d n v Φ =22 故有: 1 2 12n n v v = (2) 从方程(1)和(2 ),可得图1变压器在理想情况下的等效电路,如图2(a)所示。 (a) (b) 图2: 理想变压器的等效电路模型

由于方程(1)中有一个负号,故也可采用图2(b)来表示理想变压器的等效电路模型,它与图2(a)的区别是电流i 2的参考方向,在这种参考方向下,一个理想变压器满足下列电压电流关系: 2 112//n n i i =1 212//n n v v = (3) 方程组(3)就是我们在电路中看到的关于变压器元件的电压和电流关系,通过关系,可以看出,由铁芯和两个绕组组成的单输出变压器,其绕组两端的电压之比与绕组的匝数之比成正比,绕组中流过的电流之比与绕组的匝数成反比,如果将两个绕组中的一个看成是输入绕组(或原边绕组),将绕组中的另一个看成是输出绕组(或副边绕组),那么图1的变压器和其等效电路模型就可分别用图3 (a)和图3 (b)来表示,这种变压器的表示方法已被开关电源文献和书籍中所规范,所以本文及后续要介绍的文章,也将以此来表示变压器。原边或一次侧用下标p 表示,副边或二次侧用下标s 表示。因此方程组(3)将变成方程组(4): (a) 变压器结构 (b) 等效电路 图3: 开关电源中规范化表示的变压器 s p p s N N i i //=p s p s N N v v //= (4) 当变压器的副边不止一个绕组时,该变压器就是多输出变压器,多输出变压器在理想情况下的电压电流关系可以用方程组(5)表示,其中K 为副边绕组的个数。此时原边的电流, ∑==K j sj sj p i N i N p 1p sj p sj N N v v //=K j ,1= (5) 可用各副边电流折算到原边后的电流之和来计算,即)(1 sj K j p sj p i N N i ∑== ,一般情况下,各副边 的电流与负载电流有关,所以在每一副边的负载电流决定后,变压器原边的电流也就可以被决定了。

HH神经元模型

H H神经元模型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

HH神经元模型 摘要:运用Fortran等软件凭借计算物理的知识进行HH神经系统模型模拟,进而了解神经细胞的一些运行机制及其特性。 关键词:HH神经系统模型;电流刺激;频率;离子个数;应激反应 1. 引言 1952年Hodgkin和Huxley连续发表了四篇描述神经传导实验与模型的论文。他们利用Cole发明的电压钳位技术获得了乌贼轴突电生理活动的大量实验数据,并在这些数据的基础上推导出一个采用四维非线性微分方程系统描述的数学模型,称为Hodgkin-Huxley模型。该模型能够准确的解释实验结果,量化描述了神经元细胞膜上电压与电流的变化过程。对Hodgkin-Huxley模型的研究主要分为两个方向:一方面是实验研究,通过改进实验手段获取精确数据,对Hodgkin-Huxley模型中的某些环节赋予更切合实验现象的数学表达形式;或是对神经元以外的其他组织器官进行实验,推导出心肌等不同细胞中Hodgkin-Huxley模型的形式与参数。另一方面则是对Hodgkin-Huxley模型本身的数学分析。当前对Hodgkin-Huxley 模型的分岔现象研究主要采用数值计算方法,选取不同生理参数探寻其变化时对系统的动态影响,取得了一定成果。对一些疾病的治病原理有了进一步的认识。 2. HH神经系统模型 2.1脑细胞的HH模型概述 脑细胞神经元具有可激励性。可激励性是当介质受到小扰动时,介质很快恢复到平衡态(静态); 但当扰动超过某一阈值时,介质将有一个快速又陡峭的响应,呈现激发状态.。Hodgkin-Huxley模型可对脑细胞一些性质进行数值模拟。 寻找起振阈值

心内电生理检查

心内电生理检查 适应症 心脏电生理检查适用于: 1.确定房室传导阻滞的精确部位。 2.鉴别异位激动的起源(如室上性激动与室性激动的鉴别)。 3.对预激综合征进行精确分型。 4.检查窦房结功能。 5.明确某些异位性心动过速的折返机制。 6.对某些复杂的心律失常揭示发病的特殊机制及某些特殊电生理现象(如隐匿性传导、空隙现象等)。 7.晕厥原因不明。 8.心律失常考虑介入性治疗或植入起搏器。 9.抗心律失常药物筛选或药理学研究。 禁忌证 1.严重心功能不全。 2.长QT间期且伴室性心动过速。 3.全身感染、局部化脓、细菌性心内膜炎。 4.出血性疾病和严重出血倾向。 5.严重肝肾功能障碍、电解质紊乱、恶病质。 6.不具备心电生理检查条件。 用品及准备 电生理检查室的基本要求和设备 1.严格无菌的导管室。 2.有电视监视器的X线机。 3.多导电生理记录仪。 4.多极电极导管。 5.心脏监护仪和电复律设备。

6.必要的急救药品和设备。 1.导管电极 (1)心内导管电极:在盲端导管的远侧装有白金电极环,宽2mm,电极间距离为10mm。记录希氏束图的通常用三极电导管,每个电极在导管内有一导线从导管尾端通出连接记录导线,导管直径以7F较为合适。如欲在心房、心室内同时进行刺激或记录,应另准备二极或四极导管,前者只作刺激或记录用,后者一对电极作记录用。 (2)食管导管电极:为一特制的Z极电极导管,经鼻腔送入食管,在距鼻孔35cm 左右(32-37cm)即达左心房水平,如再向下送4-5cm,则电极达左室后壁水平。以上为可进行心房或心室调搏的位置。 2.放大器 前极必须用浮地式隔离放大器。 希氏束电图及其他部位心内心电图放大器有关指标 项目希氏束放大器其他部位心内心电图放大器 频率范围35~500Hz 0.05~100Hz 输入阻抗≥5MΩ≥5MΩ 放大倍数5×103~2×104 7×103~1.2×104 输入电流≤10-9A ≤10-9A 共模抑制比≥86db ≥80db 本机噪声≤5μV(P-P)≤30μV(P-P) 输入信号幅度80~100μV(P-P)3~10mV(P-P) 输出幅度0.5~2V(P-P)2~8V(P-P) 镉-镍蓄电池 供电 ±12.5V 12.5V 3.示波器 多导程示波器(与记录仪的导程相同),其移动速度自25-200mm/s。检查时连续

相关文档
最新文档