应用数理统计吴翊李永乐第五章方差分析课后作业参考答案
《概率论与数理统计答案》第五章
P{ X − 8 > 3} = 0.1336
3.设 X 1 , X 2 , " , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
2
=(
1
hd a
) e
n 2 − 1
n
为
2σ 2
2πσ 2
w. c
∑ ( xi − µ )2
i =1
om
,
8.设 X 1 , X 2 , " , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2
第五章 习题参考答案与提示
⎧ ⎪λax a −1e − λx , x > 0, (2) f ( x, λ ) = ⎨ ⎪ x ≤ 0, ⎩ 0,
1 3 1 (3) X 1 + X 2Leabharlann + X 3 。 5 10 2
om
(1)
(2)
第五章 习题参考答案与提示
3,求 θ 的矩估计值和极大似然估计值。
ˆ = 1/ 4 。 答案与提示: θ 的矩估计值为 θ
对于给定的样本值,似然函数为 L(θ ) = 4θ 6 (1 − θ ) 2 (1 − 2θ ) 4 ,解得
其中 θ > −1 为未知参数。
网
9.设 X ~ N ( µ , 1) , X 1 , X 2 , " , X n 为来自正态总体 X 的一个样本,试求 µ 的极
概率论与数理统计》课后习题习题详解第五章
习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{m a x (,,,,)12}P X X X X X >. 解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.751.86 1.982.453.21<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.012.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X +++ 及2221210()D X X X +++ .解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i = ,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++= 2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.6=-= 2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)X Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29≥,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,92.3805P F =<< 0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.05S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S 又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ~()29χ 由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭, ),22)1(σS n - ~( 2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211ni i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n = ,则有 22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.32<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++ 服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考标准答案
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案————————————————————————————————作者:————————————————————————————————日期:第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图9080706050xi360340320300280y i由散点图不能够确定y 与x 之间是否存在线性关系,先建立线性回归方程然后看其是否能通过检验线性回归分析的系数模型 非标准化系数标准化系数T 值 P 值95% 系数的置信区间β值 学生残差 β值下限上限 1 常数项 193.951 46.796 4.145 0.003 86.039 301.862x1.8010.6850.6812.629 0.030 0.2213.381由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
第6章 方差分析课后练习参考答案
第6章 方差分析6.1 从三个总体中各抽取容量不同的样本数据,得到如下资料。
检验3个总体的均值之间是否有显著差异?(0.01α=)样本1 样本2 样本3 158 148 161 154 169153 142 156 149169 158 180解:提出假设:01231123::,,H H μμμμμμ==不完全相等方差分析 差异源 SS df MS F P-value F crit 组间618.91672309.45834.65740.0408778.021517组内 598 9 66.44444总计1216.91711因F=4.6547<8.021517,故不拒绝原假设,表明三个总体均值之间没有显著差异。
因P-value=0.040877>0.01, 故不拒绝原假设,表明三个总体均值之间没有显著差异。
6.2某家电制造公司准备购进一批5#电池,现有A 、B 、C 三个电池生产企业愿意供货,为比较它们生产的电池质量,从每个企业各随机抽取5只电池,经试验得其寿命(小时)数据如下:试分析三个企业生产的电池的平均寿命之间有无显著差异?(0.05α=)如果有差异,用LSD 方法检验哪些企业之间有差异?解:01231123::,,H H μμμμμμ==不完全相等方差分析差异源 SS df MS F P-value F crit 组间 615.6 2 307.8 17.06839 0.00031 3.885294 组内 216.4 12 18.03333 总计 832 14因F=17.06839>3.885294,故拒绝原假设,表明三个总体均值之间存在显著差异。
因P-value=0.0031<0.05, 故拒绝原假设,表明三个总体均值之间存在显著差异。
由表中,红色标注可知相对应的P 值<0.05,故可知A 与B ,B 与C 企业之间存在显著差异。
6.3 某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。
概率论与数理统计第五章习题参考答案
F = S甲2 ~ F (4,4) S乙2
由
P⎪⎨⎧ ⎪⎩
S甲2 S乙2
<
F 1−
0.05
(4,4)
U
2
S甲2 S乙2
>
F0.05
2
(4,4)⎪⎬⎫ ⎪⎭
=
0.05
查表得: F0.05 (4,4) = 9.6,
2
F 1−
0.05
2
(4,4)
=
1 F0.025 (4,4)
=
0.1042
,
故拒绝域为 (0, 0.142) U (9.6, + ∞) .
54 67 68 78 70 66 67 70 65 69 问患者与正常人的脉搏有无显著差异(患者的脉搏可视为服从正态分布。α = 0.05 ) 解:设患者的脉搏为 X , 计算其样本均值与样本方差分别为 x = 67.4, s = 5.93
在检验水平α = 0.05 下,检验假设 H 0 : µ = µ0 = 72 H1 : µ ≠ µ0 = 72
问两台机器的加工精度是否有显著差异(α = 0.05 )?
解:在检验水平α = 0.05 下,检验假设 H 0 : µ1 = µ 2
H1 : µ1 ≠ µ2
因为
µ1,µ
2,σ
12,σ
2 2
均未知,且不知
σ
12与σ
2 2
是否相等,
故先检验假设 H 0′
:
σ
2 1
=
σ
2 2
,
H
1′
:
σ
2 1
≠
σ
2 2
。
H1 : µ1 ≠ µ2
当假设 H 0 为真时,取检验统计量
概率论与数理统计第五章课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
方差分析习题答案
方差分析习题答案【篇一:方差分析习题】lass=txt>班级_______ 学号_______ 姓名________ 得分_________一、单项选择题1、方差分析所要研究的问题是() a、各总体的方差是否相等 b、各样本数据之间是否有显著差异 c、分类型自变量对数值型因变量的影响是否显著 d、分类型因变量对数值型自变量是否显著2、组间误差是衡量因素的不同水平(不同总体)下各样本之间的误差,它()a、只包含随机误差b、只包含系统误差c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差3、组内误差() a、只包含随机误差b、只包含系统误差 c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差4、在单因素方差分析中,各次实验观察值应()a、相互关联b、相互独立c、计量逐步精确d、方法逐步改进5、在单因素方差分析中,若因子的水平个数为k,全部观察值的个数为n,那么()a、sst的自由度为n b 、ssa的自由度为k c、 sse的自由度为n-k-1 d、sst的自由度等于sse的自由度与ssa的自由度之和。
6、在方差分析中,如果拒绝原假设,则说明()a、自变量对因变量有显著影响b、所检验的各总体均值之间全部相等c、不能认为自变量对因变量有显著影响d、所检验的各样本均值之间全不相等7、在单因素分析中,用于检验的统计量f的计算公式为() a、ssa/sseb、ssa/sst c、msa/msed、mse/msa8、在单因素分析中,如果不能拒绝原假设,那么说明组间平方和ssa () a、等于0 b、等于总平方和c、完全由抽样的随机误差所决定d、显著含有系统误差9、ssa自由度为()a、r-1b、n-1c、n-rd、r-n二、实验分析题1、某公司采用四种颜色包装产品,为了检验不同包装方式的效果,抽样得到了一些数据并进行单因素方差分析实验。
实验依据四种包装方式将数据分为4组,每组有5个观察值,用excel中的数据分析工具,在0.05的显著水平下得到如下方差分析表:方差分析(1)填表:请计算表中序号标出的七处缺失值,并直接填在表上。
概率论与数理统计第五章习题解答.dot
当零假设H o 成立时,变量:汕 X32.0. 6~N(0, 1)1.10.89 1.9632.0,所以可以认为这批机制砖的平均抗断强度 显着为32.0kg/cm 2。
解:这是检验正态总体数学期望是否大于10提出假设:H 。
:10, H 1 : 10 即:H 0 :10,H 1 :10由题设,样本容量n5,20.12,0.120.1,检验解:这是检验正态总体数学期望提出假设:H 。
:32.0, 由题设,样本容量n 6,是否为H 1 : 32.01.21,1.21 1.1,所以用 U因检验水平 0.05,由 P{| U|0.05,查表得1.96得到拒绝域: |u |1.96计算得:1(32.6 30.0 31.6632.0 31.8 31.6) 31.600-壮叫0.89它没有落入拒绝域,于是不能拒绝H 。
,而接受H 0,即可以认为X 10.1万 km ,所以用U 检验当零假设H o 成立时, 变量: X10一5~N(0,1)0.1因检验水平 0.05,由P{U} 0.05,查表得'1.64得到拒绝域: 1.64计算得:ux 0 斤 10.1n0.110” 52.242.24 1.64它落入拒绝域, 于是拒绝零假设 H 0,而接受备择假设H 1,即可认为 10所以可以认为这批新摩托车的平均寿命 有显者提高。
解:这是检验正态总体数学期望是否小于240提出假设:H 。
:即:H 。
:由题设,样本容量n240, H 1 : 240 240,H 1 : 2402625,、625 25, x 220,所6 以用U 检验当零假设H o 成立时, 变量:因检验水平 0.05, 由P{U得到拒绝域: u1.64计算得:u Xn220U 02406 25”nX 2406 ~ N(0,1)250.05,查表得'1.641.959它落入拒绝域,于是拒绝H o,而接受H i,即可以认为240所以可以认为今年果园每株梨树的平均产量显着减少。
【湘教版】九年级数学上册:第五章 《用样本推断总体》课时作业+同步练习合集(含答案)
5.1 总体平均数与方差的估计一.选择题1.为了解实验中学某班学生每天的睡眠情况,随机抽取该班10名学生,在一段时间里,每人平均每天的睡眠时间(单位:时)统计如下:6,8,8,7,7,9,10,6,9,7.由此估计该班学生平均每天的睡眠时间为( )A.7小时B.7.5小时C.7.7小时D.8小时2.从总体中随机抽取一个样本,计算出样本方差为2,可以估计总体方差( )A.一定大于2B.约等于2C.一定等于2D.与样本方差无关3.甲.乙.丙.丁四名射击队员考核赛的平均成绩(环)及方差统计如下表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是( )A.甲丁4.张老师买了一辆汽车,为了掌握汽车的耗油情况,在连续两次加油时做了如下工作:(1)把油箱加满油;(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程),以下是张老师连续两次加油时的记录:A.3升B.5升C.7.5升D.9升5.要估计某鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,过一段时间后,再从鱼塘中打捞出100条鱼,发现只有2条鱼是做了记号的鱼.假设鱼在鱼塘内均匀分布,那么这个鱼塘的鱼数约为( )A.5000条B.2500条C.1750条D.1250条二.填空题6.甲.乙两台机器分别灌装每瓶质量为500克的酸奶,从甲.乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是s甲2=4.8,s乙2=3.6,那么________(填“甲”或“乙”)机器灌装的酸奶质量较稳定.7.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷________千克.三.解答题8.为保护环境,创建绿色鹰潭,某环保小组随机调查了市区30个家庭一天丢弃塑料袋的情况,统计结果如下:(1);(2)这30个家庭一天丢弃塑料袋个数的众数是________,中位数是________;(3)鹰潭市市区人口约有44万(含余江.贵溪两县城),假设平均一个家庭有4个人.若根据30个家庭这一天丢弃塑料袋个数的平均数估算,则全市一天丢弃塑料袋总数约有多少个(写出解答过程,结果用科学记数法表示)?通过该环保小组的统计和你的估算,写出你的感想或对市民提出一条科学性的建议.9.某校九年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.10.甲.乙两名队员参加射击训练,成绩分别被制成如图K-37-1所示两个统计图:图K -37-1根据以上信息,整理分析数据如下:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名队员参赛,你认为应选派哪名队员?11数学活动生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500 mL 的矿泉水,会后对所发矿泉水的情况进行统计,大致可分为四种:A.全部喝完;B.喝剩约13;C.喝剩约一半;D.开瓶但基本未喝.同学们根据统计结果绘制成如图K -37-2所示的两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图②中D 所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费矿泉水约多少毫升(计算结果保留整数);(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500 mL/瓶)约有多少瓶(可使用科学计算器).图K-37-2参考答案1.[答案] C2.[答案] B3.[答案] C4.[解析] C 由题意可得:两次加油间耗油30升,行驶的路程为6600-6200=400(千米),所以该车每100千米平均耗油量为30÷(400÷100)=7.5(升).5.[答案] B6. [答案] 乙[解析] 方差越小,数据越稳定.7.[答案] 24000[解析] 根据题意,得200÷5×600=24000(千克).8.解:(1)抽样调查(2)2出现的次数最多,是11次,所以众数是2.30个数据中,中位数应是第15个和第16个的平均数,显然是3.故答案为2,3.(3)样本平均数x -=130×(1×0+1×1+11×2+7×3+5×4+4×5+1×6)=3(个),∴全市一天丢弃塑料袋总数=44×1044×3=3.3×105(个).答案不唯一,只要有实际意义即可,如感想:生活垃圾不统不知道,一统吓一跳等;建议:少用一次性塑料袋,多用健康环保袋;爱护环境,从我做起或人人有责等等.9.解:(1)甲班的优秀率是35×100%=60%;乙班的优秀率是25×100%=40%. (2)甲班5名学生比赛数据的中位数为100个;乙班5名学生比赛数据的中位数为97个.(3)x 甲= 15×500=100(个), x 乙= 15×500=100(个). s 甲2= 15[(100-100)2+(98-100)2+(110-100)2+(89-100)2+(103-100)2]=46.8,s 乙2= 15[(89-100)2+(100-100)2+(95-100)2+(119-100)2+(97-100)2]=103.2.(4)应该把冠军奖状发给甲班.理由:因为甲班5名学生比赛数据的优秀率比乙班高.中位数比乙班大.方差比乙班小,所以应该把冠军奖状发给甲班.10.解:(1)甲的平均成绩a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大排列为3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数b =7+82=7.5(环), s乙2=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2.故a =7,b =7.5,c =4.2.(2)(答案合理即可)从平均成绩看,甲.乙二人的成绩相等,均为7环;从中位数看,甲射中7环以上的次数少于乙;从众数看,甲射中7环的次数最多而乙射中8环的次数最多; 从方差看,甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参赛,可选派乙参赛,因为乙获得高分的可能性更大.11 解:(1)根据所给扇形统计图,可知喝剩约13的人数占总人数的50%,∴25÷50%=50(人),∴参加这次会议的有50人.∵550×360°=36°, ∴D 所在扇形的圆心角是36°.补全条形统计图如图所示:(2)(25×13×500+10×500×12+5×500)÷50=275003÷50≈183(mL).答:这次会议平均每人浪费矿泉水约183 mL.(3)该单位每年参加此类会议的总人数约为2400~3600,则浪费矿泉水约为2400+36002×183÷500=1098(瓶).答:该单位一年中因此类会议浪费的矿泉水约有1098瓶.第5章用样本推断总体5.1 总体平均数与方差的估计要点感知从总体中抽取样本,然后通过对样本的分析,去推断总体的情况,这是统计的基本思想.用样本平均数.样本方差分别去估计总体平均数.总体方差就是这一思想的一个体现.在大多数情况下,当______足够大时,这种估计是比较合理的.由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可以用______的平均数与方差分别去估计总体的平均数与方差.预习练习1-1 从鱼塘打捞草鱼240尾,从中任选9尾,称得每尾的质量分别是1.5,1.6,1.4,1.6, 1.2,1.7,1.8,1.3,1.4(单位:kg),依此估计这240尾草鱼的总质量大约是( )A.300 kgB.360 kgC.36 kgD.30 kg1-2 (常德中考)已知甲.乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差s2甲=1.327 5,乙种棉花的纤维长度的方差s2乙=1.877 5,则甲.乙两种棉花质量较好的是______.1-3 为了了解某市九年级8 000名学生某次考试的数学成绩,从中随机抽取800名学生组成一个样本,计算他们的平均成绩为89分,由此可以估计,全市九年级学生的数学成绩的平均分约为______分.知识点1 用样本平均数估计总体平均数1.随机抽查某商场四月份5天的营业额分别如下(单位:万元)3.4,2.9,3.0,3.1,2.6,试估计这个商场四月份的营业额约是( )A.90万元B.450万元C.3万元D.15万元2.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到右边的条形图,观察该图,可知共抽查了______株黄瓜,并可估计出这个新品种黄瓜平均每株结______根黄瓜.3.为了解家庭丢弃塑料袋对环境造成的影响,某班研究性学习小组的六位同学记录了自己家中一周内丢弃塑料袋的数量.结果如下(单位:个):30,28,23,18,20,31.若该班有50名学生,请你估算本周全班同学的家共丢弃塑料袋______个.4.在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:试据此估计该校八年级学生读书的册数的平均数.知识点2 用样本方差估计总体方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲.乙的方差分别是3.5.10.9,则下列说法正确的是( )A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲.乙出苗一样整齐D.无法确定甲.乙出苗谁更整齐6.为比较甲.乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试.测试结果是两种电子钟的走时误差的平均数相同,方差分别是s2甲=6.s2乙=4.8,则走时比较稳定的是______.(填“甲”或“乙”)7.从鱼塘打捞草鱼240尾,从中任选9尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.8,1.3,1.4(单位:kg),依此估计这240尾草鱼的平均质量大约是( )A.1.2 kgB.1.3 kgC.1.5 kgD.1.6 kg8.某学校为了了解该学校七年级学生双休日上网的情况,随机调查了该学校七年级的25名学生,得到了上周双休日上网时间的一组样本数据,其频数分布直方图如图所示,那么估计该学校七年级每名学生双休日上网的平均时间是( )A.3.2小时B.3.4小时C.3.5小时D.3.6小时9.某校为了了解甲.乙两班同学每天进行体育锻炼的时间,现分别从两班中各随机抽取8名同学,了解到他们每天进行体育锻炼的时间的平均时间均为50分钟,方差分别是s2甲=31,s2乙=16.则甲.乙两班每天进行体育锻炼的时间比较稳定的班级是______.10.为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170 请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.11.为了比较市场上甲.乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):根据以上数据判断哪种电子钟的质量比较稳定.挑战自我12.王大伯几年前承包了甲.乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲.乙两山样本的平均数,并估算出甲.乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?参考答案要点感知样本容量简单随机样本预习练习1-1 B1-2 甲1-3 891.A2.60 133.1 2504.样本数据的平均数是:(0×3+1×13+2×16+3×17+4×1)÷50=2(本),所以可估计该校八年级学生读书的册数的平均数为2本.5.A6.乙7.C8.B9.乙班10.由题中7周的数据.可知小亮家平均每周日常生活消费的费用为:1/7×(230+195+180+250+270+455+170)=250(元).∴小亮家每年日常生活消费总费用为:250×52=13 000(元).11.甲种电子钟走时误差的平均数是:1/10×(1-3-4+4+2-2+2-1-1+2)=0,乙种电子钟走时误差的平均数是:1/10×(4-3-1+2-2+1-2+2-2+1)=0,s2甲=1/10×[(1-0)2+(-3-0)2+…+(2-0)2]=110×60=6,s2乙=1/10×[(4-0)2+(-3-0)2+…+(1-0)2]=110×48=4.8,因为平均水平相同,且甲的方差比乙的大,说明乙种电子钟的质量比较稳定.12.(1)甲=40千克,乙=40千克,总产量为40×100×98%×2=7 840(千克);(2)s2甲=1/4[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38(千克2);s2乙=1/4[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24(千克2).∵s2甲>s 2乙.∴乙山上的杨梅产量较稳定.第5章用样本推断总体5.1 总体平均数与方差的估计01 基础题知识点1 用样本平均数估计总体平均数1.从鱼塘打捞草鱼240尾,从中任选9尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.8,1.3,1.4(单位:kg),依此估计这240尾草鱼的平均质量大约是(C)A.1.2 kgB.1.3 kgC.1.5 kgD.1.6 kg2.某班“环卫小组”为了宣传环保的重要性,随机调查了本班10名同学的家庭在同一天内丢弃垃圾的情况.经统计,丢垃圾的质量如下(单位:千克):2,3,3,4,4,3,5,3,4,5,若这个班共有50名同学,估算这50个家庭在这一天丢弃垃圾的质量约为(C)A.150千克B.170千克C.180千克D.200千克3.某学校为了了解该学校七年级学生双休日上网的情况,随机调查了该学校七年级的25名学生,得到了上周双休日上网时间的一组样本数据,其频数分布直方图如图所示,那么估计该学校七年级每名学生双休日上网的平均时间是(B)A.3.2小时B.3.4小时C.3.5小时D.3.6小时4.为了估计县城空气质量情况,某同学在30天里做了如下记录:污染指数(w) 40 60 80 100 120 140天数(天) 2 6 9 7 5 1其中w<100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为292天.5.一个农民种了5亩西瓜,每亩地可收获1 200个西瓜,从种到收预计总投资1 000元,等到西瓜成熟的时候,他随机选了20个西瓜,称量了它们的重量,分别为(单位:斤):13.12.15.16.14.12.13.17.16.12.14.11.11.18.16.13.15.15.12.15,按照以往的经验,西瓜的平均价格是每斤0.25元,请你预算一下这个农民这5亩地能收入多少元?解:20个西瓜的平均重量为120(13+12+15+16+14+12+13+17+16+12+14+11+11+18+16+13+15+15+12+15)=14(斤),所以这个农民这5亩地的收入为1 200×14×0.25×5-1 000=20 000(元).知识点2 用样本方差估计总体方差6.从总体中抽取一个样本,计算出样本方差为2,可以估计总体方差(B)A.一定大于2B.约等于2C.一定等于2D.与样本方差无关7.(重庆中考)为了比较甲.乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲.乙的方差分别是3.5.10.9,则下列说法正确的是(A)A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲.乙出苗一样整齐D.无法确定甲.乙出苗谁更整齐8.(青岛中考)某茶厂用甲.乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200 g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).9.(德州中考)甲.乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):经计算,x甲=10,x乙=10,试根据这组数据估计甲种水稻品种的产量比较稳定.02中档题10.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该A.240吨B.360吨C.180吨D.200吨11.某种品牌的水果糖的售价为15元/kg,酥糖的售价为18元/kg.现将两种糖均匀混合,为了估算混合糖的售价,称了10份糖,每份糖1 kg,其中水果糖的质量(单位:kg)如下:0.58 0.52 0.59 0.49 0.60 0.55 0.56 0.49 0.52 0.54 你认为这种糖比较合理的定价为(B)A.16.6元/kgB.16.4元/kgC.16.5元/kgD.16.3元/kg12.某人买了一辆小轿车,他连续记录了七天中每天行驶的路程:路程(千米) 36 29 27 40 43 72 33(1)此人的轿车每月(按30天计算)约行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升7.60元,请你算出此人一年(按12个月计算)的汽油费用大约是多少元(精确到百元)?解:(1)17(36+29+27+40+43+72+33)=40(千米), 40×30=1 200(千米).答:此人的轿车每月(按30天计算)约行驶1 200千米.(2)1 200×12×8100×7.60≈8 800(元). 答:此人一年(按12个月计算)的汽油费用大约是8 800元. 03 综合题13.王大伯几年前承包了甲.乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲.乙两山样本的平均数,并估算出甲.乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?解:(1)x-甲=40千克,x-乙=40千克,总产量为40×100×98%×2=7 840(千克).(2)s2甲=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38;s2乙=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24.∵s2甲>s2乙,∴乙山上的杨梅产量较稳定.5.2 统计的简单应用一.选择题1.某市关心下一代工作委员会为了了解全市九年级学生的视力状况,从全市30000名九年级学生中随机抽取了500人进行视力测试,发现其中视力不良的学生有100人,则可估计全市30000名九年级学生中视力不良的有( )A.100人B.500人C.6000人D.15000人2.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图K-38-1所示的条形统计图和扇形统计图(部分信息未给出).图K-38-1根据以上信息,下列结论错误的是( )A.被抽取的天数为50天B.空气轻微污染的天数所占比例为10%C.扇形统计图中表示优的扇形的圆心角度数57.6°D.估计该市这一年(365天)达到优和良的总天数不多于290天3.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如图K-38-2所示的折线统计图.由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )图K-38-2A.9B.10C.12D.15二.填空题4.某校为鼓励课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”“反对”“弃权”三种意见的人数进行统计,绘制成如图K-38-3所示的扇形统计图.若该校有1000名学生,则赞成该方案的学生约有________人.图K-38-35.某企业对其生产的产品进行抽检,抽检结果如下表:________.6.如图K-38-4是某市电视台记者为了解市民获取新闻的主要途径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数为________万人.图K-38-4三.解答题7.从全校1200名学生中随机选取一部分学生进行调查,调查情况分为:A.上网时间≤1小时;B.1小时<上网时间≤4小时;C.4小时<上网时间≤7小时;D.上网时间>7小时.将统计结果绘制成如图K-38-5所示的统计图:图K-38-5根据图中提供的信息,回答下列问题:(1)参加调查的学生有________人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.8.“约在江苏,共筑梦想”,为了解某校1000名学生在2017年5月20日“江苏发展大会”期间对会议的关注方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问卷调查的结果绘制成如下不完整的统计表:(1)注会议的学生有________人;(2)从上表的“人数”.“百分比”两列数据中选择一列,用适当的统计图表示出来;(3)根据抽样的结果,估计该校学生通过报纸关注会议的约有多少人?链接听课例2归纳总结9阅读下列材料:2016年,北京市坚持创新.协调.绿色.开放.共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育.科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比2015年增长1.1万人.2013年.2014年.2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比上一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生.普通高校本专科学生.成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为________万人;(3)根据材料中的信息,估计2017年北京市全年研究与试验发展(R&D)经费支出约________亿元,理由是___________________________________________________________参考答案1.[答案] C2.[解析] D A 项,被抽查的天数是32÷64%=50(天),故本选项正确;B 项,空气轻度微污染的天数是50-8-32-3-1-1=5(天),则所占百分比为550×100%=10%,故本选项正确; C 项,扇形统计图中表示优的扇形的圆心角度数是360°×850=57.6°,故本选项正确;D 项,一年中达到优和良的天数约是365×8+3250=292(天),故本选项错误.3 [解析] C 因为10天中有4天该时段通过该路口的汽车数量超过200辆,410×30=12(天),所以一个月(30天)该时段通过该路口的汽车数量超过200辆的天数约为12.故选C.4.[答案] 7005.[答案] 200[解析] 抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+7+10=23,P (抽到不合格产品)=231150=0.02.则10000×0.02=200(件),∴估计不合格产品的件数为200件.6.[答案] 151.8[解析] 由统计图可知调查的人数为260+400+150+100+90=1000(人),所以将报纸和手机上网作为获取新闻的主要途径的人数所占百分比为260+4001000×100%=66%.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数为230×66%=151.8(万人).7.解:(1)200(2)C 对应的人数是200-20-80-40=60,补图如下:(3)根据题意得1200×20+80+60200=960(人). 答:估计全校上网不超过7小时的学生人数是960人.8.解:(1)23÷46%=50(人),15÷50=30%,50×(1-46%-8%-30%)=8(人).答:本次问卷调查抽取的学生共有50人,其中通过电视关注会议的学生有8人.(2)选择条形统计图,如图所示:(3)1000×8%=80(人).答:估计该校学生通过报纸关注会议的约有80人.[素养提升]解:(1)答案不唯一,如用统计表(单位:万人)表示如下:(3)设2014到2016的平均增长率为x,则1268.8(1+x)2=1479.8,解得x≈8%,用近3年的平均增长率估计2017年的增长率,则2017年北京市全市研究与试验发展(R&D)经费支出约为1479.8×(1+8%)≈1598.2(亿元).理由是用近3年的平均增长率估计2017年的增长率.故答案为1598.2,用近3年的平均增长率估计2017年的增长率.5.2 统计的简单应用要点感知1 对于简单的随机抽样,可以用_______去估计总体的“率”.也可以用样本百分比(合格率等)去估计总体的百分比(合格率等).预习练习1-1 株洲关心下一代工作委员会为了了解全市九年级学生的视力情况,从全市30 000名九年级学生中随机抽取了500人进行视力测试,发现其中视力不良的学生有100人,则可估计全市30 000名九年级学生中视力不良的约有( )A.100人B.500人C.6 000人D.15 000人1-2 某工厂生产了一大批产品,通过抽样检查得出该产品的次品率为0.1%,这说明所抽取的_______件产品中有1件次品.要点感知2 通过科学调查,在取得真实可靠的数据后,可以利用已有的统计数据来对事物在未来一段时间内的发展趋势做出判定和预测.预习练习2-1 一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如下表:根据统计的数据,鞋店进货时尺寸码为23 cm,23.5 cm,24 cm的鞋双数合理的比是( )A.1∶2∶4B.2∶4∶5C.2∶4∶3D.2∶3∶4知识点1 用样本的“率”去估计总体相应的“率”1.(青岛中考)在一个有15万人的小镇,随机调查了3 000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( )A.2.5万人B.2万人C.1.5万人D.1万人2.为调查某校2 000名学生对新闻.体育.动画.娱乐.戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A.500名B.600名C.700名D.800名3.质量检验部门抽样检测出某品牌电器产品的次品率为3%,一位经销商现有这种产品1 000件,估计其中次品有_______件.4.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书_______本.知识点2 对事物的发展趋势做出判断和预测5.下表是某厂2011~2014年的产量数据:(1)请根据表中数据,建立直角坐标系,并描出坐标(年份,产量);(2)试用直线表示该厂产量在近几年内的发展趋势.6.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只7.某学校计划开设A.B.C.D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各部门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1 200名,由此可以估计选修C课程的学生有_______人.8.小玲上星期帮学校商店统计后知道,平均每天销售A.B.C三种商品的数量分别为20件.30件.50件,现在学校商店要进A.B.C三种商品共1 000件,应分别进多少件比较合理?。
《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案
第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。
⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
概率论与数理统计习题及答案-第五章
习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.【解】设i X 表每次掷的点数,则41i i X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而 22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.现要求n ,使得1{0.760.84}0.9.n i i X P n =≤≤≥∑即0.80.9ni X n P -≤≤≥∑ 由中心极限定理得0.9,Φ-Φ≥整理得0.95,Φ≥⎝⎭1.64,≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ 查表知1.64,= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量20205~(0,1).k V Z N -⨯==∑近似的于是105205{105}10P V P ⎧⎫⎪⎪-⨯⎪>=>⎬⎪⎪⎭1000.3871(0.387)0.348,10V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩ 第人治愈其他 令1001.ii X X ==∑ (1) X ~B (100,0.8),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭ 8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T =故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ= 9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ 故0.95, 1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2P 0.05 0.80.15 易知E (Xi =1.1),D (X i )=0.19,i =1,2, (400)而400i i X X=∑,由中心极限定理得400400 1.1~(0,1).i X N -⨯=∑近似地 于是{450}1{450}1P X P X >=-≤≈-Φ 1(1.147)0.1357.=-Φ= (2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得{340(2.5)0.9938.P Y ≤≈Φ=Φ= 11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.P X ≤≈Φ=Φ-=-Φ= 12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件{}.n m S ≤=≤ 由中心极限定理知:{}1{}10.95.n n P m S P S m ≤=-<≈-Φ≥ 从而 0.05,Φ≤ 故1.65,=- 所以 m =900-15.65=884.35≈884人(2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.n P S M ≤≈Φ==1.65,M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”.于是所求概率为{120}P X =≈21(60230.18110.0517e 0--===⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为{060}P X ≤≤≈Φ-Φ(0)0.5.⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)【解】令Z =X -Y ,有()0,()()()()2 3.E Z D Z D X Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = =依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199,即最多可装98箱.。
《应用数理统计》吴翊李永乐第五章方差分析课后作业参考答案
第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Dep endent Variable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
数理经济学第5章课后题答案
第五章 习题答案1.求下面等式约束最优化问题可能的极值点,要求写出一阶必要条件并求解由一阶必要条件构成的方程组。
(1)164..),(max 212121=+=x x t s x x x x f ,(2)32..),(min max 222122121=+=x x t s x x x x f or(3)11..),(min max 22=+=+=y x y x t s xy y x f or 和解:(1)首先写出拉格朗日函数:121212(,,)(164)L x x x x x x λλ=+--将L 对1x ,2x 和λ分别求偏导数可得:1221120401640x x L x L x L x x λλλ=-=⎧⎪=-=⎨⎪=--=⎩ 解得128, 2x x **==,2λ*=,此时16f =。
则点(8,2)为目标函数的驻点,且在该点处约束条件满足约束规格。
(2)首先写出拉格朗日函数:222121212(,,)(32)L x x x x x x λλ=+--将L 对1x ,2x 和 λ分别求偏导数可得:12121212221224020320x x L x x x L x x L x x λλλ=-=⎧⎪=-=⎨⎪=--=⎩ 解得121, 1x x **==,12λ*=,此时1f =;或者121, 1x x **==-,12λ*=-,此时1f =-;或者121, 1x x **=-=,12λ*=,此时1f =;或者121, 1x x **=-=-,12λ*=-,此时1f =-。
则点(1,1)、(1,1)-、(1,1)-和(1,1)--为目标函数的驻点,且在这些点处约束条件满足约束规格。
(3)首先写出拉格朗日函数:221212(,,,)(1)(1)L x y xy x y x y λλλλ=+--+--将L 对x ,y ,1λ和2λ分别求偏导数可得:1212122220201010x yL y x L x y L x y L x y λλλλλλ=--=⎧⎪=--=⎪⎨=--=⎪⎪=--=⎩ 解得111,0,2x y λ***===-2,1λ*=,此时0f =;或者110,1,2x y λ***===- ,21λ*=,此时0f =。
应用数理统计课后答案
1 n ˆ xi x n i 1 1 n 2 ˆ 2 ( xi x) 2 sn n i 1
则 , 2 的极大似然估计量:
1 n ˆ n X i X i 1 1 n 2 ˆ 2 ( X i X )2 Sn n i 1
1 e x, F (x) 0,
x 0, x 0.
(1) FY ( y) P{Y y} P{aX b y} P{ X
y b yb }(a 0) F ( ) a a
y b y b 当 0,即y b时,FY ( y ) 1 e a . a 当 y b 0,即y b时,F ( y ) 0. Y a
Xi
i 1
2
(t ) e i1
i ( eit 1)
2
根据特征函数的性质(5)得: X 1 X 2 ~ P(1 2 )
第二章 数理统计的基本概念
8.解:设 X 为样本,x 为样本的观测值。由于数据已经按照从小到大的顺序排列,
于是经验分布函数为:
0, 1 , 8 1 , 4 3 , 8 1 Fn ( x ) , 2 5 8 , 3, 4 7 , 8 1,
y
1 e y, FY ( y ) 0,
y 0, y 0.
14.证明:
Cov( , ) Cov(aX b, cY d ) acCov ( X , Y ) D( ) D(aX b) a 2 D( X )同理:D( ) c 2 D(Y )
由极大似然估计的不变性可知
ˆ Sn
概率论与数理统计(经管类)第五章课后习题答案
Φ 2.5
7. 某车间有同型号机床 200 台,它们独立地工作者,每台开动的概率均为 0.6,开动时耗电均为 1 千瓦. 问电厂至少要供给该车间多少电力,才能以 99.9%的概率保证用电需要? 解:用 X 表示 200 台机台开动的台数. X~B(200,0.6) np 200 0.6 120, npq 6.9, 设 N 为满足条件的最小正整数 P0 P Φ Φ 0 N N 120 6.9 120 6.9 120 6.9 X 120 6.9 Φ N 120 6.9
D X
2
1
µ|
250 1002
3σ .
0.975.
3. 设随机变量 X 服从正态分布N µ, σ .试估计概率P |X 解:因 X 服从正态分布,则D X σ P |X µ| 3σ
D X
2
σ 3σ
2
1 9
4. 已知随机事件 X 的期望 E(X)=100,方差 D(X)=10,估计 X 落在(80,120)内的概率. 解: P 80 120 P |X 100| 20 1
Y
1,2,··· ,0
∑
X ,n
1,2,
, Φ x 为标准正态分布函数,则
lim
P
1 = B .(依据棣莫弗‐拉普拉斯中心极限定理)
Φ 1 D.1.6 0, 事件 A 不发生, 1, 事件 A 发成 , (i=1,2,…,100),且 P(A)=0.8, X1,X2,…,X100 相互独
1 Φ 1.66 1 1 Φ 1.67 0.9525 6. 有一批建筑房屋用的木柱,其中 80%的长度不小于 3 米,现从这批木材中随机抽取 100 根,问其中至少 有 30 根短于 3 米得概率是多少? 解:用 X 表示 100 根木柱中短于 3 米得根数则 X~B(100,0.2), np PX 1 1 100 0.2 20, npq 30 1 P X 30 P X 4 20 30 4 0.0062 20 4,
《应用数理统计》第五章方差分析课后作业参考答案
第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Dependent Var iable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
方差分析习题答案
方差分析习题答案【篇一:方差分析习题】lass=txt>班级_______ 学号_______ 姓名________ 得分_________一、单项选择题1、方差分析所要研究的问题是() a、各总体的方差是否相等 b、各样本数据之间是否有显著差异 c、分类型自变量对数值型因变量的影响是否显著 d、分类型因变量对数值型自变量是否显著2、组间误差是衡量因素的不同水平(不同总体)下各样本之间的误差,它()a、只包含随机误差b、只包含系统误差c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差3、组内误差() a、只包含随机误差b、只包含系统误差 c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差4、在单因素方差分析中,各次实验观察值应()a、相互关联b、相互独立c、计量逐步精确d、方法逐步改进5、在单因素方差分析中,若因子的水平个数为k,全部观察值的个数为n,那么()a、sst的自由度为n b 、ssa的自由度为k c、 sse的自由度为n-k-1 d、sst的自由度等于sse的自由度与ssa的自由度之和。
6、在方差分析中,如果拒绝原假设,则说明()a、自变量对因变量有显著影响b、所检验的各总体均值之间全部相等c、不能认为自变量对因变量有显著影响d、所检验的各样本均值之间全不相等7、在单因素分析中,用于检验的统计量f的计算公式为() a、ssa/sseb、ssa/sst c、msa/msed、mse/msa8、在单因素分析中,如果不能拒绝原假设,那么说明组间平方和ssa () a、等于0 b、等于总平方和c、完全由抽样的随机误差所决定d、显著含有系统误差9、ssa自由度为()a、r-1b、n-1c、n-rd、r-n二、实验分析题1、某公司采用四种颜色包装产品,为了检验不同包装方式的效果,抽样得到了一些数据并进行单因素方差分析实验。
实验依据四种包装方式将数据分为4组,每组有5个观察值,用excel中的数据分析工具,在0.05的显著水平下得到如下方差分析表:方差分析(1)填表:请计算表中序号标出的七处缺失值,并直接填在表上。
研究生《应用数理统计基础》庄楚强 四五章部分课后答案
4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α)(参考数据:)4-45. 解:数据的顺序统计量为:10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82所以 6131.0][)()1(51)(=-=-+=∑k k n k k x x aL , 又 5264.10=x , 得38197.0)(1112=-∑=i ix x故 984.0)(11122=-=∑=i ix xLW , 又 当n = 11 时,85.005.0=W 即有 105.0<<W W , 从而 接受正态假设,亦即 零件直径服从正态分布。
4-47. 甲、乙两个车间生产同一种产品,要比较这种产品的某项指标波动的情况,从这两个在05.0=α下,用符号检验法检验假设“这两个车间所生产的产品的该项指标的波动性情况的分布重合”。
(参考数据:) 4-47. 解: 在05.0=α下, 检验假设 )()()()(211210x F x F H x F x F H ≠=:;:由上表知:2,11==-+n n ,13=+=⇒-+n n n查 13=n ,05.0=α的符号检验表, 得 临界值5.2=αS , 而 2},min{==-+n n S , 即:αS S <, 故 拒绝0H 即 认为这两车间所生产的产品的该项指标波动情况不同.4-51. 对核动力工厂的某类仪器实施甲、乙两种不同的维修方案,现观测到两组失效时间(单位:小时)如下表所示:在显著性水平05.0=α下,用游程检验法(两种方法)检验这两种维修方案是否有一种维修方案显著地优于另一种方案? (参考数据:) 4-51. 解:(1)基于游程总个数R 的检验法设 甲仪器失效时间ξ服从分布)(1x F ,乙仪器失效时间η服从分布)(2x F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 方差分析课后习题参考答案下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显着差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri nj ij iA ii X n X n S7.137=-=A T e S S S当H 成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=>,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显着影响。
(2)软件计算解答过程组建效应检验Dependent Variable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为,对应的检验概率p 值为,小于,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显着影响。
现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显着水平0.05α=下,检验电池的平均寿命有无显着性差异?并求121323,μμμμμμ---及的95%置信区间。
这里假定第i 种电池的寿命2i X (,)(1,2,3)i N i μσ=:。
解:手工计算过程: 1.计算平方和其检验假设为:H0:,H1:。
2.假设检验:所以拒绝原假设,即认为电池寿命和工厂显着相关。
3.对于各组之间的均值进行检验。
6.615])394.44()3930()396.42[(*4)()(4.216)3.28108.15(*4*))(1()(832429.59*14*))(1()(22212212122222=-+-+-=-=-==++=-==-===-==-=∑∑∑∑∑∑∑∑∑===ri i i i A ri i i ri ii i ij e ij T X X n X X S S n S n X X S s n ns X X S 0684.170333.188.30712/4.2162/6.615)/()1/(===--=r n S r S F e A 89.3)12,2(),1(95.01==-->-F r n r F F α对于各组之间的均值进行检验有LSD-t 检验和q 检验。
SPSS 选取LSD 检验(最小显着差t 检验),原理如下: 其检验假设为:H0:,H1:。
方法为:首先计算拒绝H0,接受H1所需样本均数差值的最小值,即LSD (the leastsignificant difference ,LSD )。
然后各对比组的与相应的LSD 比较,只要对比组的大于或等于LSD ,即拒绝H0,接受H1;否则,得到相反的推断结论。
LSD-t 检验通过计算各对比组的与其标准误之比值是否达到t 检验的界值)()11(||21B r N t n n MS x x BA e A -≥+--α由此推算出最小显着差LSD ,而不必计算每一对比组的t 值)11()(||21B BA e A n n MS r N t x x LSD +-≥-=-α如果两对比组的样本含量相同,即时,则n MS r N t x x LSD eA 2)(||21B -≥-=-α的置信区间为:B A μμ-)(n MS r N t x x e A 2)(||21B -±--α则本题中686.25033.18*22==n MS e852.5686.2*1788.2686.2*)12(2)(975.012===--t n MS r N t eα所以的置信区间21μμ-为:( +), 即:(,) 同理可得的置信区间为:3132,μμμμ--(,),(,)从以上数据还可以看出,说明甲和丙之间无显着差异(<)。
而甲和乙之间>,乙和丙之间>有显着差异(显着水平为。
SPSS软件计算结果:1.方差齐性检验方差齐性检验结果从表中可以看出,成立。
2.计算样本均值和样本方差。
(可用计算器计算)描述性统计量3.从表中可以看出,F值为,P值为0,拒绝原假设,即认为电池寿命和工厂显着相关。
4.方差分析表单因素方差分析表从表中可以看出,F值为,P值为0,拒绝原假设,即认为电池寿命和工厂显着相关。
5.最小显着性差异法(LSD)结果多重均值比较(Multiple Comparisons )* The mean difference is significant at the .05 level. 从表中可以看出12μμ-的置信区间为: ( +), 即:(,)同理可得1323,μμμμ--的置信区间为:(,),(,)从以上数据还可以看出,说明甲和丙之间无显着差异(sig=)。
而甲和乙之间(sig=,乙和丙之间(sig=有显着差异(显着水平为。
对用5种不同操作方法生产某种产品作节约原料试验,在其它条件尽可能相同的情况下,假定原料节约额服从方差相等的正态分布,试问:操作法对原料节约额的影响差异是否显着?哪些水平间的差异是显的?(01.0=α) 解:(1)手工计算解答过程 提出原假设:()5,4,3,2,10:0==i H i μ记910.891211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====ri n j ij ri n j ij T iiX n X S 537.5511211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S373.34=-=A T e S S S当0H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=5,经过计算,得方差分析表如下:查表得()()06.315,4,195.01==---F r n r F α且F=>,在95%的置信度下,拒绝原假设,认为不同工厂之间操作法的差异对原料节约额有显着影响。
(2)软件计算解答过程从上表可以看出,工厂使用的操作法这个因素的检验统计量F 的观测值为,对应的检验概率p 值为,小于,拒绝原假设,认为不同工厂之间操作法的差异对原料节约额有显着影响。
(3)判断各种操作方法之间的差异的显着,使用SPSS 软件中最小显着性差异法(LSD )计算。
以看出,在给定的置信水平01.0=α时,操作法A1和A4,A1和A5,A2和A4,A2和A5的P 值都小于,因此可以认为他们之间的差异显着。
在化工生产中为了提高得率,选了三种不同浓度,四种不同温度情况做实验。
为了考虑浓度与温度的交互作用,在浓度与温度的每一种水平组合下做两次实验,其得率数据如下面的表所示(假定数据来自方差相等的正态分布,试在05.0=α的显着水平下检验不同浓度、不同温度以及他们之间的交互作用对得率有无显着影响。
解:(1)手工计算解答过程 提出原假设:()3,2,10:01==i H i α()4,3,2,10:02==j H j β()4,3,2,1;3,2,10:03===j i H ij γ为了便于计算,记∑=••==tk ij ijk ij X t X T 1()92,68,90;32111=====••••••==••••∑∑T T T X st X T sj tk i ijk i()∑∑==••••••••••••======r i tk j ijk j T T T T X rt X T 11432162,65,67,56;25011111=====∑∑∑∑∑====••=••r i sj tk sj j r i i ijk T T X rst X T27521112==∑∑∑===ri sj tk ijk X W则有:833.1472=-=rst T W S T333.441212=-=∑=••rst T T st S r i i A5.111212=-=∑=••rst T T rt S s j j B 000.2712112=---=∑∑==•⨯B A r i s j ij BA S S rst T T t S000.65=---=⨯B A B A T e S S S S S当01H 成立时,()()()()1,1~1/1/----=t rs r F t rs S r S F e A A当02H 成立时,()()()()1,1~1/1/----=t rs s F t rs S s S F e B B当03H 成立时,()()()()()()()1,11~1/11/------=⨯⨯t rs s r F t rs S s r S F e B A B A查表得()()()89.312,21,195.01==---F t rs r F α且A F =>,在95%的置信度下,拒绝原假设,认为浓度的差异对化工得率有显着影响。
()()()49.312,31,195.01==---F t rs s F α 且B F =<在95%的置信度下,接受原假设,认为温度的差异对化工得率无显着影响。
()()()()()00.312,61,1195.01==----F t rs s r F α且CF =<在95%的置信度下,接受原假设,认为温度和浓度的交互作用之间的差异对化工得率无显着影响。
(2)软件计算解答过程从上表可以看出,因素A 浓度的检验统计量F 的观测值为,对应的检验概率p 值为,小于,拒绝原假设,认为浓度之间的差异对化工得率有显着影响。
因素B 温度的检验统计量F 的观测值为,对应的检验概率p 值为,大于,接受原假设,认为温度之间的差异对化工得率无显着影响。
交互作用的检验统计量F 的观测值为,对应的检验概率p 值为,大于,接受原假设,认为温度和浓度的交互作用之间的差异对化工得率无显着影响。
下表记录三位工人分别在四台不同机器上三天的日产量。