钛酸钡功能陶瓷制备及应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米钛酸钡制备工艺的研究进展

摘要:综述了目前国内外制备纳米陶瓷材料BaTiO 粉体的主要方法,包括固相烧结法、化学沉淀法和水热合成法等多种工艺,分析了各种合成方法制备工艺的特点与不足,并提出了其发展方向。

关键词:纳米钛酸钡;电子陶瓷;制备工艺;研究进展

Abstract:Barium titanate(BaTiO3)is an important functional dielectric materials.A number of recent advancementpreparation technology of BaTiO3 were reviewed in this paper.The most important method such as the sol—gel,hydrothermal and chemical precipitation are introduced.The merit and drawback of these techniques were discussed.The developments of the preparation technology of nm-sized barium titanate is presented.

Key words:nano-barium titanate;electronic ceramic;preparation technology ;advance

1前言

钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻( ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点之一。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶一凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。

2 钛酸钡粉体的制备工艺

2.1 固相合成法

固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24 h,反应式为:BaCO3+TiO→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3,晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。

2.2 化学沉淀法

2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物翻。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解

产物可得沉淀的BaTiO,粉体翻。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3,Ti02等杂质,且粒度分布宽,需进行后处理。

2.2.2 草酸盐共沉淀法将精制的TiCl4和BaC12的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2 O4)2·4H2O(BT0)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒:

TiCl4+BaC12+2H2C204+4H2O-→BaTiO(C204)2·4H20↓+6Hcl

BaTiO(C204)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑

该法工艺简单,但容易带入杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO 煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比,微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法嘲,但仍难于实现工业化生产。

2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之一嘲。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

2.2.4 碳酸盐沉淀法此法可分为液相悬浮碳酸盐沉淀法和碳酸盐共沉淀法。碳酸盐共沉淀法是在控制一定pH条件下,把沉淀剂(NH4)2CO3溶液缓慢加入到等物质的量的BaC12和TiC14

混合水溶液中,得到高分散BaCO3和TiO(OH)2沉淀。对沉淀物过滤、洗涤、干燥、煅烧(1 300℃),得到BaTiO3粉体。该法原料易得,操作简单适于大规模生产。但易掺杂,煅烧温度高,操作条件的微小变化对产物理化性能有较大影响。

2-3 水热合成法

水热合成法是指在密封高压釜中,以水为溶剂在一定的温度和蒸汽压力下,使原始混合物进行反应的合成方法。近年来用水热法制备高质量亚微细BaTiO3微粒受到了广泛关注,如通过高活性水合氧化钛与氢氧化钡水溶液反应,反应温度和压力大大降低,合成的钛酸钡粉体粒径在60~100nm之间。该法原料价格低,Ba/Ti物质的量比可准确地等于化学计量比,粉体具有高的烧结活性。但该法存在需要较高压力,氯盐易引起腐蚀,采用活性钛源时要控制活性钛源前驱体的水解速率,避免Ti—OH基团快速自身凝聚和Ba缺位等问题。

2.4 溶胶一凝胶法

溶胶一凝胶法是指将金属醇盐或无机盐水解成溶胶,然后使溶胶凝胶化,再将凝胶干燥焙烧后制得纳米粉体。其基本原理是:Ba和Ti的醇盐或无机盐按化学计量比溶解在醇中,然后在一定条件下水解,使直接形成溶胶或经解凝形成溶胶。再将凝胶脱水干燥、焙烧去除有机成分,得到BaTiO3粉体。

2.4.1 醇盐水解法一般以Ba和Ti的醇盐为原料。将两种醇盐按化学计量溶解在醇中,或用钡钛双金属醇盐溶解在醇中。然后在一定条件下水解,最后将水解产物经过热处理制得BaTi03粉体。该法制得的粉体纯度高、分散性好、烧结活性好、粒度小,并且在制成溶液中一步加入掺杂剂,如镧、钕、钪、铌等元素,从而获得原子尺寸混合掺杂。该方法可以制备多组分钛酸钡基陶瓷粉体。但醇盐价格高,且容易吸潮水解,不适合大规模生产。

相关文档
最新文档