热电偶测量回路干扰来源分析及抗干扰的措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电偶测量回路干扰来源分析及抗干扰的措施
一、干扰来源分析
归纳为两大类:端间干扰和对地干扰。
(一)端间干扰:就是由于种种原因在仪表输入端之间出现交流信号而造成对仪表的干扰,这种干扰又称横向干扰或线间干扰。
端间干扰电压的大小,可以用万用表(电压表)在仪表输入端测出,一般情况下端间干扰电压约在几毫伏到几十毫伏的范围内。
(测量时万用表测量端钮不应接地,以免引进附加的对地干扰造成测量误差)。
端间干扰来源
1、交变磁场:大功率变压器、交流电动机、强电流导线等周围都有较强的交变磁场,如果补偿导线在邻近通过就会受到这些交变磁场的影响,从而在输入回路中感应出交流电动势,从而形成干扰。
2、热电偶焊接在带电体上引进干扰:在一些特殊要求的测温场合下,需要将热电偶的工作端焊接到用电流直接加热的金属试样的表面上。由于在金属试样平行于电流方向的各点上存在电位差,从而引进了端间干扰电压,其值为UCD,如果试样的截面是均匀的,则
UCD=UAB
UCD----引起的干扰电压
UAB----试样两端的加热电压
CD-----热电偶丝焊接点距离
AB----试样长度
设UAB=5伏,AB=100㎜,CD=1㎜,则
UCD=5×103×1/100=50mV
3、日常大量遇到的端间干扰信号,是由于有干扰电流通过热电偶及其连接导线或仪表测量系统串接的阻抗所产生的电压降而造成的。
(二)对地干扰:是指干扰电压出现于仪表输入端的一端(正端或负端)对地之间的交流信号,这种干扰又称为纵向干扰。现场的对地干扰电压的大小,可用万用表(电压表)跨接于仪表输入的一端(正端或负端)与地之间测量,一般情况下对地干扰电压大多在几伏到几十伏的范围内。
对地干扰的来源:
1、高温漏电产生的干扰
使用氧化铝或瓷质保护套管的热电偶测量电炉炉膛温度,在高温时人体碰触到热电偶接头的金属或热电偶丝,会有触电的感觉,如果用试电笔测量氖泡会暗暗发亮,测量热电偶对地之间的电压,可达几十伏的交流电压。这种现象一般在700℃以上出现,温度愈高,测出的温度也愈高。
这说明有些绝缘材料常温时是良好的绝缘体,但随着温度的升高,其绝缘性能逐渐下降,甚至有些绝缘体在高温时会变成导电体,所有的耐火砖,用氧化铝制成的热电偶保护管和热电极绝缘管都具有这种性质。
不同材料耐火砖的比电阻与温度关系
产品名称主要成分比电阻(欧/母厘米
3)常温 1000℃ 1200℃ 1400℃ 1500℃(氧化铝砖) Al2O3 65~95% 133×106
17200 6100 2200 1100
(耐火粘土砖) Al2O3 30%,SiO2 65% 137×106 10800 4160 1420 890
氧化镁砖 MgO85%左右 137×106 708000 193000 22400 2500
这些材料在常温时电阻是很高的,但随着温度升高,其绝缘性迅速降低。
2、地电流干扰
附近大功率用电设备绝缘性能不良,对地就会有漏电流产生,或者利用大地作为一条输电线,以及配电系统三相不平衡等都有是产生地电流的原因。如果输入回路中有两个不同的接地点,例如补偿导线自由端直接接地,而热电偶工作端又与金属保护管接触成第二个接地点,这样由于a点和b点电位不相等,就会出现干扰电流i干,i干流经补偿导线电阻R2,在R2上的电压降就会转化成端间干扰电压。
3、高压电场干扰
如果补偿导线靠近高压导线平等敷设,在高压电场的作用下,将有电流i干通过高压导线和补偿导线之间
的分布容经过仪表输入端的接地电容(或分布电容)至地,这样i干在R上的电压降就会转化成端间干扰电压。
(三)直流干扰
以上所谈的都是人们熟知的交流干扰。同样如果有外加的直流电流出现在测量系统,也会影响仪表的正常工作。产生直流干扰的原因大致如下:
1、附加热电势
从热电偶的测量原理可知,凡是两种不同的金属连接在一起,构成闭合回路且在它们的连接点处于不同温度下会产生热电势。如果热电偶或补偿导线的正负极接头,当温度不一致时,就会出现附加热电势。
2、化学电势
凡是两种不同的金属浸入盐类、碱类或酸类的水溶液中,在两种金属导体之间会出现电势,称为化学电势。补偿导线是由两种不同金属材料组成的。如果它浸润了上述溶液或其它电解液时便会产生化学电势而形成干扰。
3、热电偶与高压直流电源接触
当热电偶焊接在带有高压直流电的金属物体上测量温度时,由于高压直流电源与仪表的测量系统之间存在漏电阻,这样就会有漏电流经过测量系统而形成干扰。
二、抗干扰的措施
(一)抗端间干扰的措施
1、信号线远离干扰源
电磁感应耦合是端间干扰的主要来源,仪表的输入信号线(补偿导线)应远离干扰源。(在大功率的交流电动机、电磁接触器、变压器和载有强电流的导线附近不应敷设补偿导线,更不允许将信号线、补偿导线和动力线穿在同一金属管内)
2、信号线相互绞合
干扰电压的大小,除与交流磁场的强度有关外,还与磁通穿过信号线回路的面积有关,把信号线绞合起来,能有效地缩小回路所包围的面积。绞合的越紧越好。(将绞合线与不绞合的平行线一起放在同一磁场内比较,结果平行线比绞合线干扰量约大20倍左右)。信号线绞合也是消除静电感应的有效措施,未绞合时两信号线与电网动力线的距离d1,d2不相等,分布电容c1,c2也不相等,造成a点电位不等于b点电位,从而在仪表输入端出现干扰电压。
如果把信号线绞合起来,则两信号线与干扰线的距离d1,d2大致相等,分布电容c1,c2也大致相等。因此在输入端呈现的干扰电压也就减小。
3、信号线采取屏蔽措施
屏蔽就是将信号线用金属管套起来。为了消除工频磁场的干扰,屏蔽管可采用厚的软铁管,这样大部的磁通将沿磁阻很小的铁管通过,因此对信号线的影响减弱。(仅仅将信号线用屏蔽管套起来,是不能消除静电感应的影响,因为干扰线与屏蔽管之间有分布电容存在,而屏蔽管与信号线之间也存在分布电容,所以静电感应作用仍然存在,只有当屏蔽管接地并与信号线处于等电位时,静电感应才能消除)
4、在仪表输入端加装滤波器
常见的滤波器有两种,即“L”型滤波器和双“T”形滤波器。
⑴“L”型滤波器
我们可以简单地把图中的R和C看作一个分压器,C两端的电压就是滤波器的输出电压,设