二元一次方程组错解剖析
中考数学 二元一次方程组易错压轴解答题(及答案)
中考数学二元一次方程组易错压轴解答题(及答案)一、二元一次方程组易错压轴解答题1.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.2.我们用表示不大于x的最大整数,例如请解决下列问题:(1) =________. =________.(其中为圆周率);(2)已知x,y满足方程组求x,y的取值范围.3.仔细阅读下面解方程组的方法,然后解决有关问题:解方程组时,如果直接消元,那将会很繁琐,若采用下面的解法,则会简单很多.解:①-②,得:2x+2y=2,即x+y=1③③×16,得:16x+16y=16④②-④,得:x=-1将x=-1代入③得:y=2∴原方程组的解为:(1)请你采用上述方法解方程组:(2)请你采用上述方法解关于x,y的方程组,其中.4.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)10001200150024000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).5.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.6.文雅书店出售A,B两种书籍,已知A书籍单售为每本50元,B书籍单售为每本30元,整套(A,B各一本)出售为每套70元。
(完整版)二元一次方程组的同解错解参数等问题(最新整理)
请解答:已知关于
x、y
的方程组
y y
kx b
3k 1
x
2
分别求出 k,b 为何值时, 方程组的解为:
⑴有唯一解; ⑵有无数多个解; ⑶无解?
5x y 7 ① 例 2. 选择一组 a,c 值使方程组 ax 2 y c
1.有无数多解, 2.无解, 3.有唯一的解
与
x 2y 5 5x by 1
(3) (4)
。
有相同的解,
2、错解 由方程组的错解问题,求参数的值。
ax by 2
x 3
x 2
例:解方程组 cx 7 y 8
时,本应解出
y
2
由于看错了系数
c,从而得到解
y
2
试求 a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的 值。
4. 已知方程组
4
x
by
2
① ②
x 3
由于甲看错了方程①中的
a
得到方程组的解为
y
1
;
x 5
乙看错了方程②中的
b
得到方程组的解为
y
4
,若按正确的
a、b
计算,求原方程组的解.
5..关于
x、y
的二元一次方程组
x x
y y
5k 9k
的解也是二元一次方程
2x
3y
6
的解,则
k
的值?
6.
若
4x
3y
6z
0,
x
2y
7z0 xyz来自0,求代数式5x2 2y2 z2 2x2 3y2 10z2
部编数学七年级下册专题12含“字母系数”(含参)的二元一次方程组的解题思路(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题12 含“字母系数”(含参)的二元一次方程组的解题思路(解析版)第一部分典例剖析类型一利用二元一次方程的定义构造一元一次方程或二元一次方程组1.(2020春•博兴县期中)若方程3x|m|﹣2=3y n+1+4是二元一次方程,则m,n的值分别为( )A.2,﹣1B.﹣3,0C.3,0D.±3,0思路引领:根据二元一次方程的定义得出|m|﹣2=1,n+1=1,解之可得答案.解:∵方程3x|m|﹣2=3y n+1+4是二元一次方程,∴|m|﹣2=1,n+1=1,解得m=3或m=﹣3,n=0,故选:D.总结提升:本题主要考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.(2022春•开州区期中)若关于x,y的方程(n﹣1)x|n|+3y m﹣2=0是二元一次方程,则m+n的值( )A.1B.2C.4D.2或4思路引领:由二元一次方程的定义可知x,y的次数为1,据此可列出方程,并求解.解:∵关于x,y的方程(n﹣1)x|n|+3y m﹣2=0是二元一次方程,∴|n|=1且n﹣1≠0,m﹣2=1,解得m=3,n=﹣1,∴m+n=3﹣1=2.故选:B.总结提升:此题考查二元一次方程定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的次数都为一次;(3)方程是整式方程.3.(2017春•分宜县校级期中)方程(m2﹣9)x2+x﹣(m+3)y=0是关于x、y的二元一次方程,则m的值为( )A.±3B.3C.﹣3D.9思路引领:根据二元一次方程的定义可得m2﹣9=0,且m+3≠0,再解即可.解:由题意得:m2﹣9=0,且m+3≠0,解得:m=3,总结提升:此题主要考查了二元一次方程的定义,关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.类型二利用二元一次方程(组)的解的定义构造一元一次方程或二元一次方程组4.若关于x、y的二元一次方程组x+y=2tx−y=4t的解也是二元一次方程2x+3y=9的解,求t的值和这个方程组的解.思路引领:将t看作已知数求出方程组的解表示出x与y,代入二元一次方程中即可求出t的值,进而确定出方程组的解.解:x+y=2t①x−y=4t②,①+②得:2x=6t,解得:x=3t,①﹣②得:2y=﹣2t,解得:y=﹣t,将x=3t,y=﹣t代入2x+3y=9中得:6t﹣3t=9,解得:t=3,则方程组的解为x=9y=−3.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.(2020春•天津期末)已知方程组ax+by=7ax−by=5的解为x=2y=1,则a,b的值为( )A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3思路引领:把x与y的值代入方程组求出a与b的值即可.解:把x=2y=1代入方程组得:2a+b=7①2a−b=5②,①+②,得4a=12,∴a=3,把a=3代入①,得6+b=7,∴a =3,b =1,故选:C .总结提升:此题考查了二元一次方程组的解.解题的关键是掌握二元一次方程组的解的定义,方程组的解即为能使方程组中两方程成立的未知数的值.6.已知方程2x +(1+m )y =﹣1与方程nx ﹣y =1有一个相同的解x =−2y =1,你能求出(m +n )2020的值吗?思路引领:把x 与y 的值代入方程求出m 与n 的值,即可确定出所求式子的值.解:把x =−2y =1代入2x +(1+m )y =﹣1,得﹣4+1+m =﹣1,解得m =2;把x =−2y =1代入程nx ﹣y =1,得﹣2n ﹣1=1,解得n =﹣1.∴(m +n )2020=(2﹣1)2020=1.总结提升:此题考查了有理数的乘方以及二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.类型三 已知方程组的错解构造一元一次方程求解7.(2021春•青神县期中)甲、乙两人同时解方程组mx +y =5①2x−ny =13②甲解题看错了①中的m ,解得x =72y =−2,乙解题时看错②中的n ,解得x =3y =−7.试求:(1)原方程组m ,n 的正确值;(2)原方程组的解.思路引领:(1)把甲的解代入②中求出n 的值,把乙的解代入①中求出m 的值即可;(2)把m 与n 的值代入方程组求出解即可.解:(1)把x =72y =−2代入②得:7+2n =13,解得n =3,把x =3y =−7代入①得:3m ﹣7=5,解得m =4.所以m =4,n =3;(2)把m =4,n =3代入方程组得:4x +y =5①2x−3y =13②,①×3+②得:14x =28,即x =2,把x=2代入①得:y=﹣3,则方程组的解为x=2y=−3.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.类型四利用方程同解构造二元一次方程组8.(2021春•上思县期末)若方程组2x+4y=−68x−4y=16和方程组ax−by=11bx−ay=13的解相同,试求(3b﹣2a)2021的值.思路引领:求出第一个方程组的解,代入第二个方程组求出a与b的值,代入原式计算即可求出值.解:2x+4y=−6①8x−4y=16②,①+②得:10x=10,解得:x=1,把x=1代入①得:2+4y=﹣6,解得:y=﹣2,∴方程组的解为x=1y=−2,把x=1y=−2代入方程组ax−by=11bx−ay=13得:a+2b=11b+2a=13,解得:a=5 b=3,则(3b﹣2a)2021=(3×3﹣2×5)2021=(﹣1)2021=﹣1.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.已知关于x,y的方程组3x−y=54ax+5by=−22与2x−3y+4=0ax−by−8=0有相同的解,求a,b的值.思路引领:因为关于x,y的方程组有相同的解,根据二元一次方程组的解的定义,只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.解:由题意,关于x,y的方程组3x−y=52x−3y+4=0和4ax+5by=−22ax−by−8=0的解也相同.解方程组3x−y=5①2x−3y+4=0②,得x=197y=227.把x=197y=227代入4ax+5by=−22ax−by−8=0,a+1107b=−22a−227b=8解得a=1419b=−2111.总结提升:本题考查了二元一次方程组的解法及方程组解的意义,由于数比较大,计算较复杂,理解方程组公共解的意义和掌握解二元一次方程组的解法是解决本题的关键.10.(2019春•大丰区期末)已知关于x、y的方程组4x+ay=162x+y=4b+2和3x+ay=132x−3y=−6的解相同,求a、b值.思路引领:先把方程4x+ay=16和3x+ay=13相减,可得x的值,再代入方程2x﹣3y=﹣6,求出y的值,再把x,y的值代入第一个方程组即可求得a,b的值.解:方程4x+ay=16和3x+ay=13相减,得x=3,把x=3代入方程2x﹣3y=﹣6,得y=4.把x=3,y=4代入方程组4x+ay=162x+y=4b+2,得12+4a=166+4=4b+2解这个方程组,得a=1,b=2.总结提升:利用方程组的解相同,可以重新组合方程组,求得未知数的值.类型五利用二元一次方程组的解适合第3个方程,构造一元一次方程或者用整体思想求解11.已知方程组2x+3y=7,5x−y=3m+1的解能使等式x﹣7y=2成立,求m的值.思路引领:观察方程组中两方程的x与y的系数,发现方程①减去方程②×2后恰好直接得到(x﹣7y)的值.解:2x+3y=7①,5x−y=3m+1②,由②﹣①×2,得x﹣7y=3m﹣13,∴3m﹣13=2,解得m=5.总结提升:本题主要考查的是解二元一次方程组,求得x、y的值是解题的关键.12.(2022春•沙坪坝区期末)已知关于x,y的方程组3x+4y=a+22x+3y=2a的解满足x+y=1,求a的值及方程组的解.思路引领:根据题意,①﹣②得x+y=﹣a+2,再根据已知条件可得a的值,根据加减消元法解二元一次方程组即可.解:3x+4y=a+2①2x+3y=2a②,①﹣②得x+y=﹣a+2,∵x+y=1,∴﹣a+2=1,解得a=1,∴原方程组化为3x+4y=3①2x+3y=2②,①×2﹣②×3得﹣y=0,解得y=0,将y=0代入3x+4y=3,得3x=3,解得x=1,∴原方程组的解为x=1 y=0.总结提升:本题考查了二元一次方程组的解以及解二元一次方程组,熟练掌握解二元一次方程组的方法是解题的关键.13.(2019春•西湖区校级月考)已知关于x,y的二元一次方程组3x+2y=m+32x−y=2m−1的解x与y的值互为相反数,试求m的值和方程组的解.思路引领:由已知方程组,利用加减消元法求出x=5m17,y=9−4m7,再由x与y的值互为相反数,即可求出m的值,再将m的值代入所求x、y的表达式,即可求方程组的解.解:方程组3x+2y=m+3①2x−y=2m−1②,②×2+①得7x=5m+1,∴x=5m17,将x=5m17代入②,得y=9−4m7,∵x与y的值互为相反数,∴5m17+9−4m7=0∴m=﹣10,∴x=﹣7,y=7,∴原方程组的解为x=−7 y=7.总结提升:本题考查二元一次方程组的解;熟练掌握加减消元法解二元一次方程组,同时结合相反数的性质灵活解题是关键.14.当m,n都是实数,且满足2m﹣n=8时,我们称Q(m﹣1,n+1)为巧妙点.(1)若A(m﹣1,5)是巧妙点,则m= ,巧妙点A( ,5);(2)判断点P(3,1)是否为巧妙点,并说明理由.(3)已知关于x,y的方程组x+y=4x−y=2a,当a为何值时,以方程组的解为坐标的点B(x,y)是巧妙点?思路引领:(1)利用题中的新定义列式计算即可;(2)利用题中的新定义判断即可;(3)表示出方程组的解,根据题中的新定义判断即可.解:(1)由题意得:2(m﹣1+1)﹣(5﹣1)=8,解得:m=6,∴m﹣1=5,∴巧妙点A(5,5),故答案为:6,5;(2)点P(3,1)是巧妙点,理由如下:根据题意得m−1=3n+1=1,解得:m=4 n=0,代入得:2m﹣n=8﹣0=8,∴点P(3,1)是巧妙点;(2)x+y=4①x−y=2a②,①+②得:2x=2a+4,解得:x=a+2,把x=a+2代入①得:y=2﹣a,根据题意得:m−1=a+2 n+1=2−a,解得:m=a+3 n=1−a,代入得:2m﹣n=2a+6﹣1+a=3a+5,当3a+5=8,即a=1时,满足2m﹣n=8,即以方程组的解为坐标的点B(x,y)是巧妙点.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.第二部分专题提优训练1.(2022春•滨海县月考)若方程(a﹣6)x|a|﹣5+5y=1是关于x,y的二元一次方程,则a的值为( )A.±6B.﹣6C.±5D.5思路引领:根据二元一次方程的定义解答即可.解:∵(a﹣6)x﹣y|a|﹣5=1是关于x,y的二元一次方程,∴a−6≠0|a|−5=1,解得a=﹣6.故选:B.总结提升:本题考查解二元一次方程的定义,解题关键是熟知二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.(2021春•银海区期中)若(R﹣2)x|R|﹣1﹣3y=2是关于x,y的二元一次方程,那么3R﹣2的值为( )A.4B.﹣8C.8D.4或﹣8思路引领:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.解:根据题意得:R−2≠0|R|−1=1,解得R=﹣2,∴3R﹣2=﹣6﹣2=﹣8,故选:B.总结提升:此题考查了二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.3.(2021春•平凉期末)如果x=3y=−2是方程组ax+by=1ax−by=5的解,则a2008+2b2008的值为( )A .1B .2C .3D .4思路引领:将方程组的解代入方程组可得关于a 、b 的二元一次方程组3a−2b =13a +2b =5,再求解方程组即可求解.解:∵x =3y =−2是方程组ax +by =1ax−by =5的解,∴3a−2b =1①3a +2b =5②,①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .总结提升:本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二.解答题(共8小题)4.若x =2y =1是方程组ax +y =b 4x−by =3a−1的解,求a 、b 的值.思路引领:把x =2y =1代入方程组ax +y =b 4x−by =3a−1,然后解关于a ,b 的方程组即可.解:把x =2y =1代入方程组ax +y =b 4x−by =3a−1,得:2a +1=b 8−b =3a−1,解得:a =85b =215,故a =85,b =215.总结提升:本题考查了二元一次方程组的解,属于基础题,关键是掌握用代入法解方程组.5.已知二元一次方程px +2y =8,5x ﹣6y =4,2x +5y ﹣8=0有公共解,求p 的值.思路引领:解方程组5x−6y =42x +5y−8=0得x ,y 的值,再代入px +2y =8求解即可.解:解方程组5x−6y =42x +5y−8=0得x =6837y =3237,代入px +2y =8,得6837p +2×3237=8,解得p =5817.总结提升:本题主要考查了二元一次方程的解,解题的关键是求出方程组公共解.6.(2021秋•金寨县期末)解方程组ax+by=6x+cy=4时,甲同学因看错a符号,从而求得解为x=3y=2,乙因看漏c,从而求得解为x=6y=−2,试求a,b,c的值.思路引领:甲同学因看错a符号,把x=3,y=2代入x+cy=4,求出c,因看错a符号,得﹣3a+2b=6,乙因看漏c,把x=6,y=﹣2代入ax+by=6,组成新的二元二次方程组,解出即可.解:∵甲同学因看错a符号,∴把x=3,y=2代入x+cy=4,得c=1 2,﹣3a+2b=6.∵乙因看漏c,∴把x=6,y=﹣2代入ax+by=6,得6a﹣2b=6,得−3a+2b=6 6a−2b=6,解得,a=4,b=9;综上所述,a=4,b=9,c=1 2.总结提升:本题主要考查了二元一次方程组的解,掌握做题的方法是解题关键.7.(2019秋•平桂区期末)已知x=2y=1是二元一次方程组mx+ny−7=0nx+my−2=0的解,求m+3n的值.思路引领:把方程组的解代入方程组求出m与n的值,即可求解.解:把x=2y=1代入方程组mx+ny−7=0nx+my−2=0,得2m+n−7=02n+m−2=0,解方程组,得m=4,n=−1把m=4n=−1代入m+3n,得m+3n=4+3×(﹣1)=1.总结提升:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(2021春•娄底月考)已知方程组2x+3y=10ax+by=9与方程组bx−ay=84x−3y=2的解相等,试求a、b的值.思路引领:两个方程组的解相同,也就是有一组x、y的值是这四个方程的公共解,当然也是其中任意两个方程的公共解,所以可以把原来的方程组打乱,重新组合起来求解.解:由已知可得2x+3y=104x−3y=2,解得x=2y=2,把x=2y=2代入剩下的两个方程组成的方程组ax+by=9bx−ay=8,得2a+2b=9 2b−2a=8,解得a=14b=174.故a、b的值为a=14b=174.总结提升:解答此题的关键是熟知方程组有公共解得含义,考查了学生对题意的理解能力.9.(2018春•岳麓区校级期中)(1)已知关于x,y方程组x+2y=3k2x+y=2k+1的解满足x﹣y=3,求k的值;(2)在(1)的条件下,求出方程组的解.思路引领:(1)方程组中两式相减后可得x﹣y=1﹣k,再根据条件即可求出k的值.(2)根据二元一次方程组的解法即可求出答案.解:(1)∵x+2y=3k①2x+y=2k+1②,∴②﹣①得:x﹣y=1﹣k,∵x﹣y=3,∴1﹣k=3,∴k=﹣2.(2)将k=﹣2代入x+2y=−6①2x+y=−3②,①×2得:2x+4y=﹣12③②﹣③得:﹣3y=9,∴y=﹣3,将y=﹣3代入①得:x﹣6=﹣6,∴x=0,∴方程组的解为x=0 y=−3总结提升:本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.10.已知方程组2x+y=5ax−by=−4与5x−4y=62ax−3by=2有公共解,求a、b的值.思路引领:由于两方程组有公共解,所以可把方程①和方程③联立为一个方程组进行求解,然后把所求结果代入方程②和方程④中,形成一个关于a、b的二元一次方程组,解答即可.解:在方程组2x+y=5①ax−by=−4②与5x−4y=6③2ax−3by=2④,因为有公共解,所以有2x+y=55x−4y=6和ax−by=−42ax−3by=2.由第一组可解得x=2 y=1,代入第二组,得2a−b=−4 4a−3b=2,解得a=−7b=−10.总结提升:本题考查解二元一次方程组,二元一次方程组的解,掌握二元一次方程组的解法是解题的关键.11.(2021秋•长丰县月考)已知关于x,y的二元一次方程组x+2y=a2x−y=1.(1)当方程组的解为x=1y=1时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将x=−2y=−2代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.思路引领:(1)将x=1y=1代入方程组x+2y=a2x−y=1即可求a的值;(2)用加减消元法求方程组的解即可;(3)x=−2y=−2不是方程2x﹣y=1的解,因此x=−2y=−2不是方程组的解.解:(1)∵x=1y=1是方程组x+2y=a2x−y=1的解,∴1+2×1=a,∴a=3;(2)∵a=﹣2,∴x+2y=−2①2x−y=1②,②×2得,4x﹣2y=2③,①+③得,5x=0,∴x=0,将x=0代入②得,y=﹣1,∴方程组的解为x=0y=−1;(3)不正确,理由如下:将x=−2y=−2代入方程2x﹣y=1,可得2×(﹣2)﹣(﹣2)=﹣2≠1,∴x=−2y=−2不是方程组的解,∴解法不正确.点睛:本题考查二元一次方程组的解,熟练掌握二元一次方程组的解与二元一次方程组的关系,会用加减消元法解二元一次方程组是解题的关键.。
第五章 二元一次方程组易错剖析+重难点突破训练(含答案) 2024-2025-北师大版数学八年级上册
第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底【例1】下列方程中,是二元一次方程的是().A. 3x−2y=4zB. 6xy+9=0C. 1x +4y=6 D. 4x=y−24本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.跟踪练习1. 下列方程中,是二元一次方程的是().A. xy=2B. 3x+4y=0C. x+1y=2 D. x2+2y=4易错点二解方程组时不注意项的符号导致错误【例2】解方程组:{x−2y=2,①x−y=−2.②用加减消元法中减法消元时,易出现符号错误,所以要特别细心.跟踪练习2. 解方程组:{2x−5y=−3,①2x−3y=−1.②易错点三不理解待定系数法而出错【例3】已知一次函数图象经过点(0,3),(3,0),写出它的表达式: .本题容易把待定的系数与变量混为一谈,直接误认为k=3,b=3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.跟踪练习3. 已知一次函数的图象经过点(1,3)和点(−2,−3),则此一次函数的表达式是 .易错点四列方程组解应用题时不能正确理解题意【例4】现有食盐水两种,一种含盐12%,另一种含盐20%,分别取这两种盐水a kg和b kg,将其混合成18%的盐水100kg,求a,b的值.在列方程时,对背景不熟而出错,如:列方程12%a+20%b=100×18 %,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.跟踪练习4. 今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.重难点突破重难点一 二元一次方程(组)的有关概念注意理解定义中“元”是指未知数,“二元”就是指方程中有且只有两个未知数,且“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.1. 下列四个方程中是二元一次方程的是( ).A. 4x−1=xB. x +1x =2C. 2x−3y =1D. xy =82. 已知2x 3−k +y =0是二元一次方程,那么k 的值为( ).A. 3 B. 0 C. 2 D. 43. 在下列方程组:①{x +y =5,3y−x =1,②{xy =1,x +2y =3,③{1x +1y =1,x +y =1,④{x =1,y =3中,是二元一次方程组的是( ).A. ①③B. ①④C. ①②D. 只有①4. 已知3x a−1−5y b +2=1是关于x ,y 的二元一次方程,则a +b = .5. 若方程组{x +y ∣a∣−2=0,(a−3)x +9=0是二元一次方程组,求a 的值.重难点二 求解二元一次方程组解二元一次方程组的基本方法:代入消元法和加减消元法,核心思想是“消元”.6. 方程组{x +y =5,x−y =1的解是( ).A. {x =3,y =2 B. {x =−2,y =−3 C. {x =4,y =1 D. {x =4,y =37. 方程组{x +y =10,2x +y =16的解是( ).A. {x =7,y =3B. {x =6,y =4C. {x =5,y =5D. {x =1,y =98. [2023·深圳期末]解方程组:(1) {y =2x ,x +y =12;(2) {3x +5y =21,2x−5y =−11.重难点三 二元一次方程组的应用利用二元一次方程(组)解决实际问题的一般步骤:(1)审,(2)设,(3)找,(4)列,(5)解,(6)答.9. 某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:甲食材乙食材每克所含蛋白质0.3单位0.7单位每克所含碳水化合物0.6单位0.4单位若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x克,乙食材y克,那么可列方程组为().A. {0.3x+0.6y=21,0.7x+0.4y=40 B. {0.6x+0.3y=21, 0.4x+0.7y=40C. {0.3x+0.7y=21,0.6x+0.4y=40 D. {0.3x+0.7y=40, 0.6x+0.4y=2110. [2023·东莞校考]某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设分配x 人生产螺母,y人生产螺栓,依题意列方程组为某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物65 1 140第二次购物37 1 110第三次购物98 1 062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A,B的标价.12. 某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.重难点四二元一次方程与一次函数的综合一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.13. 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y 的二元一次方程组{kx−y=−b,y−x=2的解是().A. {x=3,y=4 B. {x=2,y=4 C.{x=1.8,y=4 D.{x=2.4,y=414. 若关于x,y的二元一次方程组{y=kx+b,y=mx+n的解为{x=2,y=5,则一次函数y=kx+b与y=mx+n的图象的交点坐标为().A. (2,5)B. (5,2)C. (−2,−5)D. (1,5)15. 如图是函数y=−x+4与y=x+2的图象,则方程组{y=−x+4,y=x+2的解是 .16. 如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),分别与x 轴交于A,B两点.(1)求b,m的值,并结合图象写出关于x,y的方程组{2x−y=−1,mx−y=−4的解;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD的长为2,直接写出a的值.第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底跟踪练习1.B本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.【例1】 D易错点二解方程组时不注意项的符号导致错误跟踪练习2.解:①−②,得−2y=−2,解得y=1,把y=1代入②,得2x −3=−1,解得x=1,所以原方程组的解为{x=1,y=1.用加减消元法中减法消元时,易出现符号错误,所以要特别细心.【例2】解:①−②,得−y=4,∴y=−4.把y=−4代入②,得x −(−4)=−2,解得x=−6,所以原方程组的解为{x=−6,y=−4.易错点三不理解待定系数法而出错跟踪练习3.y=2x+1本题容易把待定的系数与变量混为一谈,直接误认为k=3,b= 3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.【例3】y=−x+3易错点四列方程组解应用题时不能正确理解题意跟踪练习4.解:设去年外来旅游的人数为x万人,外出旅游的人数为y万人,由题意得{x−y=20,(1+30%)x+(1+20%)y=226,解得{x=100, y=80,所以(1+30%)x=(1+30%)×100=130,(1+20%)y=(1+20%)×80=96.答:该市今年外来和外出旅游的人数分别是130万人和96万人.在列方程时,对背景不熟而出错,如:列方程12%a+20%b= 100×18%,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.【例4】解:根据题意得{a+b=100,12%a+20%b=100×18%,解得{a=25, b=75.答:a,b的值分别为25,75.重难点突破重难点一二元一次方程(组)的有关概念1.C2.C3.B4.15.解:∵方程组{x+y∣a∣−2=0,(a−3)x+9=0是二元一次方程组,∴|a|−2=1且a−3≠0,∴a=−3.重难点二求解二元一次方程组6.A7.B8.(1)解:{y=2x①,x+y=12②,将①代入②,得3x=12,解得x=4.将x=4代入①,得y=8,∴原方程组的解为{x=4,y=8.(2){3x+5y=21①,2x−5y=−11②,①+②,得5x=10,解得x=2,将x=2代入①,得6+5y=21,∴5y=15,解得y=3,∴原方程组的解为{x=2,y=3.重难点三二元一次方程组的应用9.C10.{x+y=60,20x=2×14y11.(1)三解:∵第三次购买的数量最多,总费用最少,∴小明以折扣价购买商品A,B是第三次购物.故答案为三.(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得{6x+5y=1140,3x+7y=1110,解得{x=90,y=120.答:商品A的标价为90元,商品B的标价为120元.12.(1)解:设A,B两种型号的汽车每辆进价分别为x万元,y万元.依题意,得{2x+3y=80,3x+2y=95,解得{x=25, y=10,答:A,B两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得25m+10n=200,∴m=8−25n.∵m,n均为正整数,∴n为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意,舍去,∴共有2种购买方案.方案一:购进A型汽车4辆,B型汽车10辆;方案二:购进A型汽车2辆,B型汽车15辆.重难点四二元一次方程与一次函数的综合13.B14.A15.{x=1,y=316.(1)解:把点P(1,b)的坐标代入y=2x+1,得b=2+1= 3,把点P(1,3)的坐标代入y=mx+4,得m+4=3,∴m=−1.∵直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,3),∴关于x,y的方程组{2x−y=−1,mx−y=−4的解为{x=1, y=3.(2)∵l1:y=2x+1,l2:y=−x+4,∴A (−12,0),B(4,0),∴AB=4−(−12)=92.设点P到x轴的距离为ℎ,则ℎ=3,∴S △ABP =12AB ⋅ℎ=12×92×3=274.(3) 直线x =a 与直线l 1 的交点C 的坐标为(a ,2a +1),与直线l 2 的交点D 的坐标为(a,−a +4).∵CD =2,∴|2a +1−(−a +4)|=2,即|3a−3|=2,∴3a−3=2 或3a−3=−2,∴a =53或a =13.。
二元一次方程组常见错解剖析
二元一次方程组常见错解剖析同学们在学习二元一次方程组时,由于对概念理解和解法掌握程度不够,常会出现一些错误。
现我举一些常见的错误,供同学们在学习上参考。
一、概念上的错误例1 下列哪些方程是二元一次方程?(1) 1=xy , (2) ,13=-y x (3) ,21=+yx (4) ,032=-+x x (5) ,732=+x (6) 122=-y x错解:(1)、(2),(3),(4),(6)剖析:二元一次方程定义:①、是整式方程;②、有两个未知数;③、未知数项的最高次数为1。
方程(1)(6)不符合③,方程(3)不符合①,方程(4)不符合②,故它们都不是二元一次方程。
例2 下列哪些方程组不是二元一次方程组? (1)⎪⎩⎪⎨⎧=--=21y x y x ( 2)⎩⎨⎧==30y x (3)⎪⎩⎪⎨⎧==+-=+4362y y x y x (4)⎩⎨⎧=-=+1053253y x y x (5)⎩⎨⎧=+=+21z y y x 错解:(1) (2) (3) (5)剖析:二元一次方程组应从三个方面来理解:①未知项最高次数是1的整式方程;②方程组总共只有二个未知数;③方程的个数可以多于2个。
方程(1)不符合①;(5)不符合②,故(1)(5)不是二元一次方程组。
例3 已知方程3)1()1(12||=++--b a y b x a 是二元一次方程,求b a ,的值。
错解:由题意得:⎩⎨⎧=-=1121||b a ∴ ⎩⎨⎧=±=11b a 剖析:根据二元一次方程定义可知,方程含有两个未知数但未知数系数不能为0。
正解:(接上)∵01≠-a ∴1=a∴⎩⎨⎧=-=11b a 二、解法上的错误例4 解方程组⎩⎨⎧-=-=-222y x y x )2()1(错解:(1)+(2)得:42=x 2=∴x原方程组的解是:2=x正解:(接上)将2=x 带入(2)得:1=y ⎩⎨⎧==∴12y x 例5 解方程组⎩⎨⎧-=-=-222y x y x )2()1( 错解:方程(1)-(2)得:424-=-y x (3)(1)-(3)得: 03=-y∴0=y把0=y 带入(2)得:2-=x⎩⎨⎧=-=∴02y x 剖析:在(1)-(2)时,符号出错。
全效学习七下培优专题二元一次方程组的同解、错解、参数问题
∵z≠0,∴将③两边都除以 z,得7zx+1=0,解得xz=-17.
数学
人教版七年级下册
课件目录
首页
末页
9.已知|a-2b+7|+(2c+a-7)2=0,b≠0,求a+b c的值. 解:依题意,得 a-2b+7=0,2c+a-7=0, 即a2-c+2ab==7-,7②,① 由①得:b=a+2 7, 由②得:c=7-2 a,
① ②
②×2-①得,
y=37a-272,
把 y=37a-272代入②得,
x=87a-172,
数学
人教版七年级下册
课件目录
首页
末页
则87a-172-(37a-272)=a, 解得 a=5, ∴方程组的解为xy==-4,1.
数学
人教版七年级下册
课件目录
首页
末页
6.由于粗心,在解方程组■7xx--42y=y=△5,时,小明把系数■抄错了,
得 到 的 解 是 yx==--11330,; 小 亮 把 常 数 △ 抄 错 了 , 得 到 的 解 是
xy==--196,. 请找出错误,并写出■和△的原来数字,求出正确的解.
数学
人教版七年级下册
课件目录
首页
末页
解:∵7×-13-4×-130=△,∴△=11,
∵-9■-2×(-16)=5,∴■=3,
∴原方程组是37xx- -24yy= =
5, 11,
① ②
②-①×2,得 x=1.
把 x=1 代入①得 y=-1,
所以原方程组的解为xy==-1,1.
∴a+b c=a+a+7-27 a=aa+ +77=1. 2
数学
人教版七年级下册
课件目录
首页
末页
二元一次方程组(难点、考点、易错点)
DSE 金牌数学专题系列二元一次方程组(难点、考点、易错点)一、导入:讲个故事:“从前有个太监…………………………”有人耐不住问:“下面呢?”继续讲故事:“下面?没了啊……”一、知识点回顾(一)二元一次方程组1.二元一次方程:像x+y=2这样的方程中含有两个未知数(x和y),并且未知数的指数都是1,这样的方程叫做二元一次方程.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程x+y=3和2x+3y=10合写在一起为像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5.代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.6.加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法. (二)二元一次方程组的实际应用列方程组解应用题的常见类型主要有:1. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程=速度×时间;2. 工程问题.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.基本等量关系为:工作量=工作效率×工作时间;3. 和差倍分问题.基本等量关系为:较大量=较小量+多余量,总量=倍数× 1倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速5. 几何问题、年龄问题和商品销售问题等.二、专题讲解专题一错题分析【误解】A或D.【思考与分析】二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而中的一个方程的解,并不能让另一方程左、右两边相等,所以它们都不是这个方程组的解,只有C是正确的.验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解.【正解】C.把式③代入式②得8-3y+3y=8,0×y=0.所以y可以为任何值.所以原方程组有无数组解.【正解】由式②得x=8-3y③把式③代入式①得2(8-3y)+5y=-21,解得y=37.把y=37代入式③得x=8-3×37,解得x=-103. 所以【例3】解方程组【错解】方程①- ②得:-3y=0,所以y=0,把y=0,代入②得x=-2,所以原方程组的解为【分析】在①- ②时出错.【正解】①- ②得:(x-2y)-(x-y)=2-(-2)x-2y-x+y=4-y=4 y=-4把y=-4代入②得x=-6,所以原方程组的解为【小结】两方程相减时,易出现符号错误,所以要特别细心.【例4】某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?错解: 设晚会上男生有x人,女生有y人.根据题意,得把①代入②,得x=(2x-1),解得x=3.把x=3代入②,得y=5.所以答:晚会上男生3人,女生5人.【分析】本题错在对题中的数量关系没有弄清.每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,这里涂蓝色油彩的人数不是题中所有的男生人数,而是除自己之外的男生人数,同理,女生看到的人数也应是除自己以外的女生人数.正解: 设晚会上男生有x人,女生有y人.根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12.把x=12代入④,得y=21.所以答:晚会上男生12人,女生21人.解二元一次方程组的问题看似简单,但如果你稍不注意,就有可能犯如下错误.【例5】解方程组【错解】方程①+②得:2x=4,原方程组的解是:x=2【错因分析】错解只求出了一个未知数x,没有求出另一个未知数y.所以求解是不完整的.【正解】(接上)将x=2带入②得:y=0.所以原方程组的解为【小结】用消元法来解方程组时,只求出一个未知数的解,就以为求出了方程组的解,这是对二元一次方程组的解的意义不明确的表现.应牢记二元一次方程组的解是一组解,而不是一个解.【例6】解方程组【错解】由式①得y=2x-19 ③把式③代入式②得2(2x-19-【错因分析】“错解”在把变形后的式③代入式②时,符号书写出现了错误.当解比较复杂的方程组时,应先化简,在求出一个未知数后,可以将它代入化简后的方程组里的任意一个方程中,求出第二个未知数,这样使得运算方便,避免出现错误.【正解一】化简原方程组得【正解二】化简原方程组得①×6+②得17x=114,【小结】解二元一次方程组可以用代入法,也可以用加减法.一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.专题二思维点拨【例1】小红到邮局寄挂号信,需要邮资3元8角. 小红有票额为6角和8角的邮票若干张,问各需多少张这两种面额的邮票?【思考与解】要解此题,第一步要找出问题中的数量关系.寄信需邮资3元8角,由此可知所需邮票的总票额要等于所需邮资3.8元. 再接着往下找数量关系,所需邮票的总票额等于所需6角邮票的总票额加上所需8角邮票的总票额. 所需6角邮票的总票额等于单位票额6角与所需6角邮票数目的乘积. 同样的,所需8角邮票的总票额等于单位票额8角与所需8角邮票数目的乘积. 这就是题中蕴含的所有数量关系.第二步要抓住题中最主要的数量关系,构建等式.由图可知最主要的数量关系是:所需邮资=所需邮票的总票额.第三步要在构建等式的基础上找出这个数量关系中牵涉到哪些已知量和未知量.已知量是所需邮资3.8元,两种邮票的单位票额0.6元和0.8元,未知量是两种邮票的数目. 第四步是设元(即设未知量),并用数学符号语言将数量关系转化为方程. 设0.6元的邮票需x张,0.8元的邮票需y张,用字母和运算符号将其转化为方程:0.6x+0.8y=3.8. 第五步是解方程,求得未知量. 由于两种邮票的数目都必须是自然数,此二元一次方程可以用列表尝试的方法求解.方程的解是第六步是检验结果是否正确合理. 方程的两个解中两种邮票的数目均为正整数,将两解代入方程后均成立,所以结果是正确合理的.第七步是答,需要1张6角的邮票和4张8角的的邮票,或需要5张6角的邮票和1张8角的的邮票.【例2】小聪全家外出旅游,估计需要胶卷底片120张. 商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片. 小聪一共买了4卷胶卷,刚好有120张底片. 求两种胶卷的数量.【思考与解】第一步:找数量关系. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数. A型胶卷的底片总数=每卷A型胶卷所含底片数×A型胶卷数,B型胶卷的底片总数=每卷B型胶卷所含底片数×B型胶卷数.第二步:找出最主要的数量关系,构建等式. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数.第三步:找出未知量和已知量. 已知量是:胶卷总数,度片总数,每卷A型胶卷所含底片数,每卷B型胶卷所含底片数;未知量是:A型胶卷数,B型胶卷数.第四步:设元,列方程组. 设A型胶卷数为x,B型胶卷数为y,根据题中数量关系可列出方程组:第五步:答:A型胶卷数为3,B型胶卷数为1.【小结】我们在解这类题时,一般就写出设元、列方程组并解出未知量和答这几步,如有必要可以加上验证这一步.其他步骤可以省略.【例3】用加减法解方程组【思考与分析】经观察,我们发现两个方程中y的系数互为相反数,故将两方程相加,消去y.解:①+②,得4x=8.解得x=2.把x=2代入①,得2+2y=3.解得y=.所以,原方程组的解为:【思考与分析】经观察,我们发现x的系数成倍数关系,故先将方程①×2再与方程②作差消去x较好.解:①×2,得4x-6y=16. ③②-③,得11y=-22.解得y=-2.把y=-2代入①,得2x-3×(-2)=8. 解得x=1.所以原方程组的解为【思考与分析】如果用代入法解这个方程组,就要从方程组中选一个系数比较简单的方程进行变形,用含一个未知数的式子表示另一个未知数,然后代入另一个方程.本题中,方程②的系数比较简单,应该将方程②进行变形.如果用加减法解这个方程组,应从计算简便的角度出发,选择应该消去的未知数.通过观察发现,消去x比较简单.只要将方程②两边乘以2 ,然后将两方程相减即可消去x.解法1:由②得x=8-2y.③把③代入①得2(8-2y)+5y=21,解得y=5.把y=5代入③得x=-2.所以原方程组的解为:解法2:②×2得2x+4y=16. ③①-③得2x+5y-(2x+4y)=21-16,解得y=5.把y=5代入②得x=-2.所以原方程组的解为【小结】我们解二元一次方程组时,用到的都是消元的思想,用代入法还是加减法解题,原则上要以计算简便为依据.【例6】用代入法解方程组【思考与分析】经观察,我们发现方程①为用y表示x的形式,故将①代入②,消去x.解:把①代入②,得3(y+3)-8y=14.解得y=-1.把y=-1代入①,得x=2.所以原方程组的解为【例7】用代入法解方程组【思考与分析】经观察比较,我们发现方程①更易于变为用含一个未知数的代数式表示另一个未知数的形式,故选择①变形,消去y.解:由①,得y=2x-5. ③把③代入②,得3x+4(2x-5)=2.解得x=2.把x=2代入③,得y=-1.所以原方程组的解为:【例8】甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【思考与分析】我们可以采用两种方法设未知数,即直接设法和间接设法.直接设法就是题目要求什么就设什么为未知数,本题中就是设上月甲厂超额生产x台,乙厂超额生产y台;而间接设法就是问什么并不设什么,而是采用先设出一个中间未知数,求出这个中间未知数,再利用它同题中要求未知数的联系,解出所要求的未知数,题中我们可设上月甲厂原计划生产x台,乙厂原计划生产y台.解法一:直接设法.设上月甲厂超额生产x台,乙厂超额生产y台,则共超额了100-90=10(台),而甲厂计划生产的台数是台,乙厂计划生产的台数是台.根据题意,得答:上月甲厂超额生产6台,乙厂超额生产4台.解法二:间接设法.设上月甲厂原计划生产x台,乙厂原计划生产y台.根据题意,得所以x×(112%-1)=50×12%=6,y×(110%-1)=40×10%=4.答:上月甲厂超额生产6台,乙厂超额生产4台.【例9】某学校组织学生到100千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发.【思考与分析】我们从行程问题的3个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,有题意知,先坐车的一半人,后坐车的一半的人,车三者所用时间相同,所以根据时间来列方程组.如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系.解:设先坐车的一半人下车点距起点x千米,这个下车点与后坐车的一半人的上车点相距y千米,根据题意得化简得从起点到终点所用的时间为所以出发时间为:17-10=7.即早晨7点出发.答:要使学生下午5点到达,必须早晨7点出发.【例10】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)【思考与分析】设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则答:存教育储蓄的钱为1500元,存一年定期的钱为500元.【反思】我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.专题三竞赛数学【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k 的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解.最后,比较各个解对应的x+y的值,即可知道哪种付款方式付出的张数最少.解:设付出2元钱的张数为x,付出5元钱的张数为y,则x,y的取值均为自然数. 依题意可得方程:2x+5y=33.因为5y个位上的数只可能是0或5,所以2x个位上数应为3或8.又因为2x是偶数,所以2x个位上的数是8,从而此方程的解为:由得x+y=12;由得x+y=15. 所以第一种付款方式付出的张数最少.答:付款方式有3种,分别是:付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱.其中第一种付款方式付出的张数最少.【例3】解方程组【思考与分析】本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零.解:由①,得y=4-mx,③把③代入②,得2x+5(4-mx)=8,解得(2-5m)x=-12,当2-5m=0,即m=时,方程无解,则原方程组无解.当2-5m≠0,即m≠时,方程解为将代入③,得故当m≠时,原方程组的解为【小结】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于x、y的方程组中,a1、b1、c1、a2、b2、c2均为已知数,且a1与b1、a2与b2都至少有一个不等于零,则①时,原方程组有惟一解;②时,原方程组有无穷多组解;③时,原方程组无解.【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.根据题意,得所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人.(2)这栋楼最多有学生4×8×45=1440(人).拥挤时5分钟4道门能通过5×2×(120+80)×(1-20%)=1600(人).因为1600>1440,所以建造的4道门符合安全规定.答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定.【例5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手.通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.解:设张强第一次购买香蕉x千克,第二次购买香蕉y千克.由题意,得0<x<25.①当0<x≤20,y≤40时,由题意,得②当0<x≤20,y>40时,由题意,得(与0<x≤20,y≤40相矛盾,不合题意,舍去).③当20<x<25时,25<y<30.此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去).综合①②③可知,张强第一次购买香蕉14千克,第二次购买香蕉36千克.答:张强第一次、第二次分别购买香蕉14千克、36千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的可能性,看有几种情况符合题意.【例6】用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数2000,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系:每个竖式纸盒要用的正方形纸板数×竖式纸盒个数+ 每个横式纸盒要用的正方形纸板数×横式纸盒个数= 正方形纸板的总数每个竖式纸盒要用的长方形纸板数×竖式纸盒个数+ 每个横式纸盒要用的长方形纸板数×横式纸盒个数= 长方形纸板的总数通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系.设竖式纸盒做x个,横式纸盒做y个. 根据题意,得①×4-②,得5y=2000,解得y=400.把y=400代入①,得x+800=1000,解得x=200.所以方程组的解为因为200和400均为自然数,所以这个解符合题意.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.三、巩固练习:一)精心选一选(每题7分,共35分)1. 方程组的解是().2. 在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组().3. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶、乙种水y桶,则所列方程组中正确的是().4. 一个两位数被9除余2,如果把它的十位与个位交换位置,则所得的两位数被9除余5,设个位数字为x,十位数字为y,则下面正确的是().(以下选项中k1、k2都为整数)5. 用面值l元的纸币换成面值为l角或5角的硬币,则换法共有()种.A. 4B. 3C. 2D. 1二)用心填一填(每题7分,共35分)1. 一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为 ______,水流速度为______.2. 一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有______人,全队每天制造的工件数额为______件.3. 已知甲、乙两人从相距18千米的两地同时相向而行,1小时相遇.再同向而行如果甲比乙先走小时,那么在乙出发后小时乙追上甲.设甲、乙两人速度分别为x千米/时、y千米/时,则x=______,y=______.4. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果乙让甲先跑2秒钟,那么乙跑6秒钟落后于甲28米,甲每秒钟跑______,乙每秒钟跑______.5. 小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元.三)耐心做一做(每题10分,共30分)1. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达乙地,求他以每小时多少千米的速度行驶可准时到达.2. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?3. 《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?答案一、精心选一选1. B2. C3. B4. C5. B二、用心填一填1.18千米/时,2千米/时.2. 25,155.3. 4,6.4. 8米,6米.5. 4.三、耐心做一做1. 【解题思路】由于甲地到乙地的距离不知道是多少,从甲地到乙地规定的时间也不知道,所以不能直接求速度.我们可以设甲地到乙地的路程和规定的时间为未知数,列方程求解,最后用速度=路程÷时间得到标准速度.解:设甲、乙两地的之间距离为s千米,从甲地到乙地的规定时间为t小时.根据题意,得解得经检验,符合题意.则=60(千米/小时).答:他以每小时60千米/小时的速度行驶可准时到达.2. 【解题思路】由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得。
人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解二元一次方程组(答案与全解全析)
人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解二元一次方程组知识网络重难突破知识点一消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。
代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
基本思路:未知数由多变少。
代入消元法解二元一次方程组的一般步骤:1.变:将其中一个方程变形,使一个未知数用含有另一个的未知数的代数式表示。
2.代:用这个代数式代替另一个方程中的相应未知数,得到一元一次方程。
3.解:解一元一次方程4.求:把求得的未知数的值带入代数式或原方程组中的任意一个方程中,求得另一个未知数的值。
5.写:写出方程组的解。
6.验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。
加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
加减消元法解二元一次方程组的一般步骤:1.变形:将两个方程中其中一个未知数的系数化为相同(或互为相反数)。
2.加减:通过相减(或相加)消去这个未知数,得到一个一元一次方程。
3.求解:解这个一元一次方程,得到一个未知数的值。
4.回代:将求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值。
5.写解:写出方程组的解。
6.检验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。
整体消元法:根据方程组各系数的特点,可将方程组中的一个方程或方程的一部分看成一个整体,带入另一个方程中,从而达到消去其中一个未知数的目的,并求得方程的解。
初二数学:上册第三章用字母表示数3.5去括号剖析去括号常见的错解类型
剖析去括号常见的错解类型去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.去括号是同学们能否正确进行整式加减的一个重要环节,因此括号去的是否正确非常重要,现将去括号运算的常见错误归类如下,以便同学们引以为鉴.1、忘记改变符号【例1】计算:)53(46-+--y x y x【错解】)53(46-+--y x y x=5346-+--y x y x=533--y x【剖析】括号前是“-”号,把括号和它前面的“-”号去掉后,原括号各项的符号都要改变.本题错在只改变了括号内的第一项的符号,而后两项的符号忘记改变了.【正解】)53(46-+--y x y x=5346+---y x y x=553+-y x2、去括时错用乘法分配律【例2】化简:22232[2(2)4]a a ab a ab ---+【错解】原式=22232[224]a a ab a ab ---+=2223424a a ab a ab ---+=222.a ab -+【剖析】以上解法有两种典型错误:一是忽视括号前面的负号,去掉括号时,括在括号里的各项应改变符号;二是忽视括号前面的数字,去掉括号时,应运用乘法分配律.【正解】原式=22232[224]a a ab a ab --++=22234428a a ab a ab -+--=234.a ab --3、违背去括号法则【例3】)(32)(3x y y x x ---- 【错解】)(32)(3x y y x x ---- =)(2)(93x y y x x ----=x y y x x 22993+-+-=y x 74+-【剖析】本题混淆了去括号与去分母之间的区别,去括号是改变代数式的一种形式,而去分母是改变等式的一种形式.两者有着明显的不同,不可混为一谈. 【正解】)(32)(3x y y x x ---- =x y y x x 323233+-+- =y x 3734+-七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm【答案】B【解析】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A 、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B 、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C 、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D 、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B .点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.2.如图,直线//AC BD ,,AO BO 分别是,BAC ABD ∠∠的平分线,则BAO ∠与ABO ∠的和一定是( )A .90B .80C .180D .60【答案】A 【解析】根据平行线的性质得出∠CAB +∠ABD =180°,再根据角平分线的定义得出结论.【详解】解:∵AC ∥BD ,∴∠CAB +∠ABD =180°,∵AO 、BO 分别是∠BAC 、∠ABD 的平分线,∴∠CAB =2∠BAO ,∠ABD =2∠ABO ,∴∠BAO +∠ABO =90°,故选:A .【点睛】此题考查平行线的性质,关键是根据平行线的性质得出∠CAB +∠ABD =180°.3.下列图形中,∠1和∠2不是同位角的是()A .B .C .D .【答案】C【解析】两条直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】根据两条直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;只有C 选项这两个角的任意一条边都不在同一条直线上故选:C.【点睛】此题考查同位角的判定,难度不大4.在-3.14,227394-0,2π中,无理数的个数是( ) A .1B .2C .3D .4 【答案】B【解析】无理数就是无限不循环小数,结合无理数的概念即可解答. 392π,故答案选B . 【点睛】本题考查无理数的概念,解题的关键是熟悉无理数的概念.5.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与腰垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是()A.110°B.125°C.140°D.160°【答案】B【解析】根据等腰三角形的性质及三角形内角和定理可求得另一底角及顶角的度数,再根据四边形的内角和公式求得∠ADE的度数,最后通过比较即可得出最大角的度数.【详解】如图,作DE垂直BC于点E交AC于点D,∵AB=AC,∠B=35°,∴∠C=35°,∠A=110°,∵DE⊥BC,∴∠ADE=360°−110°−35°−90°=125°∵125°>110°>90°>35°∴四边形中,最大角的度数为:125°.故选B.【点睛】此题考查等腰三角形的性质,多边形内角与外角,解题关键在于作辅助线6.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩【答案】B【解析】解:A. 某校要对七年级学生的身高进行调查,调查范围小,适合普查,故A错误;B. 卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C. 班主任了解每位学生的家庭情况,适合普查,故B错误;D. 了解九年级一班全体学生立定跳远的成绩,适合普查,故D错误;故选B.【点睛】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.面积为4的正方形的边长是()A.4开平方的结果B.4的平方根C.4的立方根D.4的算术平方根【答案】D【解析】因为正方形的面积等于边长乘以边长,即边长的平方,根据正方形面积是4,可得:正方形边长的平方等于4,4的算术平方根.【详解】设正方形的边长为x,根据题意可得:x2=4,所以即边长为4的算术平方根.故答案为:D【点睛】本题主要考查算术平方根的应用,解决本题主要熟练掌握算术平方根的定义.8.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()A .16B .13C .12D .23【答案】B【解析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是2163=, 故选B .【点睛】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答. 9.已知2410x x --=,则代数式(4)1x x -+的值为( )A .2B .1C .0D .-1 【答案】A【解析】利用单项式乘单项式法则对代数式进行化简,将已知方程变形后代入计算即可求出值.【详解】原式241x x =-+,∵2410x x --=∴241x x -=∴原式112=+=.故选A.【点睛】已知代数式求值.解决本题时,不需要解出x 的值,用整体法求出24x x -的值即可代入求值.10.下列选项中1∠与2∠不是同位角的是( ) A . B . C .D .【答案】B【解析】同位角是指当两条直线被第三条直线所截时,位于截线的同一侧,被截线的同一旁的两个角,以此概念与四个选项一一对比即可判定.【详解】根据同位角的定义,是同位角的两角必须是两条直线被第三条直线截出来的角,它们都在截线的同一侧,被截线的同一旁,所以利用排除法可得A、C、D是同位角,B不是同位角.故选:B【点睛】本题考查的是同位角的定义,明确这个定义的前提是“三线八角”,掌握这个定义的要点是解题的关键.二、填空题题11.用四舍五入法把0.74996精确到千分位是_________ ;【答案】0.750【解析】把万分位上的数字9四舍五入即可.【详解】0.74996≈0.750(精确到千分位).故答案是:0.750.【点睛】考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数起到这个数完为止,所有数字都叫这个数的有效数字.12.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在第_____象限.【答案】二【解析】分析:根据x轴上点的纵坐标为0求出n,然后确定出点B的坐标,再根据各象限内点的坐标特征解答.详解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B(n﹣1,n+1)为(﹣1,1),∴点B位于第二象限.故答案为二.点睛:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.已知方程3x-2y=1,用含x的式子表示y,则y=______.【答案】31 2 x-【解析】将x看做已知数,y看做未知数,求出y即可.【详解】3x-2y=1,解得:y=31 2x-.故答案为:312x -. 【点睛】 此题考查了解二元一次方程,解题的关键是将x 看做已知数,y 看做未知数.14.点()4,3M 向__________(填“上”、“下”、“左”、“右”)平移__________个单位后落在y 轴上.【答案】左 4【解析】根据点到坐标轴的距离和单位长度即可完成解答.【详解】解:由()4,3M 在第一象限,到y 轴的距离为4个单位长度;因此,点()4,3M 向左平移4个单位能落在y 轴上.故答案为:左,4.【点睛】本题考查了直角坐标系内点的平移规律,关键是确定平移方向和距离.15.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2=_____°.【答案】1.【解析】如图,由a ∥b ,根据两直线平行同位角相等可求得∠3的度数,再由对顶角相等即得∠2的度数.【详解】解:∵a ∥b ,∴∠3=∠1=1°,∵∠2与∠3是对顶角,∴∠2=1°.故答案为1.【点睛】本题考查了平行线的性质和对顶角相等的性质,属于基础题型.16.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为_____.【答案】200m【解析】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【详解】解:∵荷塘中小桥的总长为100米,∴荷塘周长为:2×100=200(m).故答案为:200m.【点睛】本题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题关键.17.命题“如果两个角是直角,那么它们相等”的逆命题是;逆命题是命题(填“真”或“假”).【答案】如果两个角相等,那么它们是直角;假.【解析】先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假.【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为:如果两个角相等,那么它们是直角;假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.三、解答题18.(1)解方程组4421 x yx y-=⎧⎨+=-⎩;(2)解不等式组1(4)222323xx x⎧+<⎪⎪⎨++⎪>⎪⎩.【答案】(1)76176x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)原不等式组无解. 【解析】(1)利用加减消元法解方程组即可,(2)分别解不等式组中的两个不等式,取解集的公共部分即可.【详解】解:(1)4421x y x y -=⎧⎨+=-⎩①② ①2⨯,得228x y -=,③,②+③,得67x =,76x =. 将76x =代入①,得176y =-. 所以原方程组的解为76176x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1(4)222323x x x ⎧+<⎪⎪⎨++⎪>⎪⎩①② 解不等式①,得0x <,解不等式②,得0x >.∴原不等式组无解.【点睛】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,掌握方程组与不等式组的解法是解题的关键.19.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).【答案】(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.20.为保护环境,增强居民环保意识,某校积极参加即将到来的6月5日的“世界环境日”宣传活动,七年级(1)班所有同学在同一天调查了各自家庭丢弃塑料袋的情况,统计结果的条形统计图如下:根据统计图,请回答下列问题:(1)这组数据共调查了居民有多少户?(2)这组数据的居民丢弃塑料袋个数的中位数是_______个,众数是 _______个.(3)该校所在的居民区约有3000户居民,估计该居民区每天丢弃的塑料袋总数大约是多少?【答案】 (1)50(2)中位数 4 众数 4(3)12600【解析】(1)计算居民总数(2)中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
二元一次方程组“看错”系数问题解法例析
1、“看错”系数问题解法例析2、含字母系数的方程组的解法3、二元一次方程组错解剖析4、二元一次方程组名题赏析5、列方程组解调配问题两例6、图象法解二元一次方程组7、解好方程组的图表信息题8、领悟方程组中数学思想1、“看错”系数问题解法例析在解二元一次方程组时,由于一时粗心大意出现看错系数、抄错符号的现象,这样求得的是错解,其实错解中也包含着一些合理成份,只要我们细心领会,就会发现正确信息,从而巧妙求出原方程组中字母系数的值. 例1.在解方程组222ax cy x by a +=⎧⎨+=⎩时,甲同学正确解得32x y =⎧⎨=-⎩,乙同学由于把b 抄写错了,解得22x y =-⎧⎨=⎩,请问b 的值应该是多少?乙同学错把b 错抄写成了几?分析:甲同学解对了,因此他的解满足原方程组;乙同学只写错了b 的值,但他所求得的错解适合看错的方程组,当然也就满足2ax cy +=.析解:把32x y =⎧⎨=-⎩代入2ax cy +=,得322a c -= …①把22x y =-⎧⎨=⎩也代入2ax cy +=,得222a c -+= …②解由①、②组成的方程组,得45a c =⎧⎨=⎩.把32x y =⎧⎨=-⎩和a =4代入方程22x by a +=,得628b -=,所以b =-1.再把22x y =-⎧⎨=⎩和a =4代入方程22x by a +=,得428b -+=,所以b =6.所以的值应该是-1,乙同学错写成了6.例2.在解方程组134ax by cx y -=⎧⎨-=⎩时,甲同学因看错了b 的符号,从而求得解为32x y =⎧⎨=⎩,乙同学因看错了c 的值,从而求得解为51x y =⎧⎨=⎩,试求a ,b ,c 的值.析解:因为甲同学仅看错了b 的符号,所以他的错解实际上满足看错了的方程组:134ax by cx y =⎧⎨-=+⎩,因此把32x y =⎧⎨=⎩代入13ax by +=,得3132a b +=; 把32x y =⎧⎨=⎩代入4cx y -=,得c =2.同理乙同学看错了c 的值,但没看错a ,b 的值.所以把51x y =⎧⎨=⎩代入方程13ax by -=,得513a b -=.于是得到关于a ,b 的方程组3213513a b a b +=⎧⎨-=⎩,解之得32a b =⎧⎨=⎩.所以a =3,b =2,c=2.2、含字母系数的方程组的解法一、给出方程组的解当含有字母系数的方程组的解已经给出时,可先把解直接代入原方程组,构造出关于字母系数的方程,进而求得其值.例1. 若方程组2331x ay bx y -=-⎧⎨+=⎩ 的解是11x y =-⎧⎨=⎩,求a 、b 的值.析解:由方程组解的意义,知11x y =-⎧⎨=⎩满足方程组2331x ay bx y -=-⎧⎨+=⎩,所以有2331a b --=-⎧⎨-+=⎩, 解这个关于a 、b 的方程组,得12a b =⎧⎨=⎩.∴a 、b 的值分别为1,2.二、方程组的解满足关系式当关于方程组的解满足一定的等式的字母求值问题,常常应把方程组中的字母当作已知数,用它的代数式表示方程组的解.再根据满足的等式,构造出关于字母的方程.例2.已知方程组3213325x y m x y m +=⎧⎨-=⎩…①…②的解适合x +y =10,求m 的值.析解:①+②,得x =18m ,所以x =3m .①-②,得4y =8m ,所以y =2m . 把x =3m ,y =2m 代入x +y =10,得 3m +2m =10,解之,得m =2.三、字母系数看错问题在解二元一次方程组时,由于一时粗心大意出现看错系数、抄错符号的现象,这样求得的是错解,其实错解中也包含着一些合理成份,只要我们细心领会,就会发现正确信息,从而巧妙求出原方程组中字母系数的值. 例3.在解方程组222ax cy x by a +=⎧⎨+=⎩时,甲同学正确解得32x y =⎧⎨=-⎩,乙同学由于把b 抄写错了,解得22x y =-⎧⎨=⎩,请问b 的值应该是多少?乙同学错把b 错抄写成了几? 分析:甲同学解对了,因此他的解满足原方程组;乙同学只写错了b 的值,但他所求得的错解适合看错的方程组,当然也就满足2ax cy +=.析解:把32x y =⎧⎨=-⎩代入2ax cy +=,得322a c -= …①把22x y =-⎧⎨=⎩也代入2ax cy +=,得222a c -+= …②解由①、②组成的方程组,得45a c =⎧⎨=⎩.把32x y =⎧⎨=-⎩和a =4代入方程22x by a +=,得628b -=,所以b =-1.再把22x y =-⎧⎨=⎩和a =4代入方程22x by a +=,得428b -+=,所以b =6.所以的值应该是-1,乙同学错写成了6.3、二元一次方程组错解剖析同学们在学习二元一次方程组时,由于对概念理解和解法掌握程度不够,常会出现一些错误.现举几例常见错误,望引起大家注意. 例1.已知方程(a +1)x ||a +(b +1)y12-b =7是关于x 、y 二元一次方程,求2a +3b 的值 .【错解】由题意得:⎩⎨⎧=-=1121||b a ∴ ⎩⎨⎧=±=11b a所以当a =1,b =1时,2a +3b =5; 当a =-1,b =1时,2a +3b =1.剖析:根据二元一次方程定义可知,方程应含有两个未知数且未知数系数不能为0. 正解:(接上)因为a +1≠0,所以 ∴a ≠-1,所以当a =1,b =1时,2a +3b =5; 故,填:5.例2.解方程组⎩⎨⎧-=-=-222y x y x ②①⋯⋯⋯⋯【错解】①-②得: y =4,把y =4 代入②得,x =2,原方程组的解是:⎩⎨⎧==42y x .剖析:错在①-②在上的符号方面,正解:①-②得:-y =4, 解得:y =-4,把y =-4 代入②得,x =-6,原方程组的解是:⎩⎨⎧-=-=46y x .例3.解方程组⎪⎩⎪⎨⎧=--+-=+--8)2(2)(3142y x y x yx y x ②①⋯⋯⋯⋯【错解】一:①×4得:2(x -y )-(x +y )=-1,剖析:去分母时漏乘 .(你来填一填!) 【错解】二;①×4得:2x -2y -x +y =-1, 剖析:忽略 .【错解】三:由②得:3x +y -4x -y =8 剖析:忘了括号前的 .正解:①×4得:2(x -y )-(x +y )=-4, 2x -2y -x -y =-4,x -3y =-4, ……③②变形得:3x +3y -4x +2y =8,-x +5y =8, ……④③+④,得:y =2把y =2带入③,得:x =2,这个方程组的解为:⎩⎨⎧==22y x你填对了吗?三个空分别是:不含分母的项;分数线的括号作用;负号和乘法分配律.4、二元一次方程组名题赏析一些数学问题初看似乎与二元一次方程组没有关联,但若运用二元一次方程组来解却简单.例1.如图1,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10°,求∠AOC 和∠BOC 的度数.【分析】本题有一隐含条件是:∠AOC 和∠BOC 组成平角180°,再依据已知中的x ,y 的另一个关系:∠AOC 的度数比∠BOC 的2倍多10°,又可得一方程. 解:设∠AOC 和∠BOC 的度数分别为x 、y ,依题意得 ⎩⎨⎧+==+102180y x y x , 解(略).还有些实际应用问题有时比较复杂,但也常利用方程和方程组来解决.例2.某通讯器材商店计划用6万元从厂家购进若干部新型手机,以满足市场需求.已知一厂家生产三种型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种..不同型号的手机共40部,并将6万元恰好用完.请你帮助商场算一下如何购买. 【分析】由于商场只同时购进三种手机中的两种..不同型号的手机40部,所以商店可以有购甲乙、乙丙、甲丙三种选择,因此本题应列三个二元一次方程组的应用问题叠加在一起,所以应分情况来解答.解:设甲、乙、丙三种型号的手机分别购买x 部、y 部、z 部,① 若选购甲乙两种型号,根据题意可列方程组⎩⎨⎧=+=+60000600180040y x y x ,解这个方程组,得⎩⎨⎧==1030y x ;图10C B A② 若选购乙丙两种型号,则有方程组⎩⎨⎧=+=+60000120060040z y z y ,解这个方程组,得⎩⎨⎧=-=6020z y ;③ 若选购甲丙两种型号,则有方程组⎩⎨⎧=+=+600001200180040z x z x ,解这个方程组,得⎩⎨⎧==2020z x ;第二种方案不行,舍去。
解二元一次方程组的计算错误原因分析
解二元一次方程组的计算错误原因分析方法,学生对这项知识的掌握逐渐成为数学教学中的一大挑战.因此,本文对学生在列二元一次方程组解应用题中的常见错误进行了整理,并深究其错误原因,了解分析了学生对这些错误知识的认知掌握,希望能够给二元一次方程组解应用题教学提供一些参考.【关键词】二元一次方程组;应用题;错误原因;学习习惯列二元一次方程组解应用题是七年级数学中的重点知识,也是教学难点.随着教育改革的全面推广,应用题型也发生了较大改变,在考试内容中出现了很多的新问题和新知识,学生们对应用题的解析能力逐渐降低,甚至出现恐惧心理.教师由于自身数学素质的制约,在面对这一情况下只能采取题海战术,学生苦不堪言,但是教学效果却不尽人意.列二元一次方程组解应用题是在一元一次方程解应用题的根底上进行的,对于学生的学习来说又是一个层面的改变.小学生在遇到“鸡兔同笼〞的典型数学问题时,利用普通的运算方法很难得出结果,还难住了大局部的学生和家长,通过二元一次方程就能良好解决,并且生活中很多的实际问题都能利用二元一次方程组解决.所以,本次研究希望能够帮助教师和学生科学掌握学习方法,提高数学的教学质量和学生的学习效果.一、二元一次方程组解应用题的错误类型我将从列二元一次方程组解应用题的经典题型入手,分析学生的常见解题错误,并对其进行相对的改进以下几种原因.〔一〕知识性错误这种错误解题方式主要是因为在解题过程中对数学知识掌握得不扎实和不准确造成的,是由于学生能力缺乏所导致的,主要包括定义定理的随意转变、概念理解不清、公式套用不合理、不灵活.〔二〕策略性错误通过对学生错误例题的整理分析,可以发现其中存在很多的策略性错误,这种错误主要表现为学生不能对生活实际问题进行数学方式的理解,不能良好地转化为数学问题;逆向思维转化能力较弱;对数学问题认知浅薄、角度偏激;模式识别错误.〔三〕疏忽性错误这种错误方式主要表现在学生的审题和计算中.学生在审题中不够仔细导致题设错误;题设没有带单位;数据抄写错误;因为粗心大意导致的计算错误;答案计算非题目所问;解答步骤丧失、不完整、缺少单位等等.二、学生解题错误情况分析〔一〕知识性错误错解如错题5所示.这是一道典型的行程问题,从“题设〞和“题答〞中可以看出学生的粗心马虎,不写单位导致了此题在考试中丢分,真实很可惜.通过对学生的解题过程分析,并结合对学生的交流,发现学生的知识性错误大多表现为数学概念的混乱;公式使用的错误;定理定义的随意转化等等.策略性错误多发生在学生的审题上,不能准确把握题目题意,使得在解题过程中错误的选择题设或是错误的组合了题中的数据;不能良好地借助其他方法来辅助自身进行解题,例如画图、列表等;较差的思维转换能力,不能将生活实际问题与数学解题进行有效結合.疏忽性错误属于广泛且无法铲除的类型,学生的疏忽大意、马虎不仔细司空见惯,教师也是没有彻底解决的方式.三、解二元一次方程组的提前干预〔一〕加强数学知识性理解的建议学生在列二元一次方程组解应用题时,必须清楚地知晓二元一次方程组的概念,在实际教学中,有的学生列出的方程组是〔y+12〕〔x-6〕=xy,〔y-4〕〔x+4〕=xy,这就不是二元一次方程组了.教师在教学过程中对概念型的知识不能单纯地讲解,应该结合合理的例题,直观形象地展示二元一次方程组,让学生能够通过自己的理解不断完善对二元一次方程组的掌握.公式和定理的准确适用,需要学生正确地记忆根本公式,然后在理解其含义和运用的根底上灵活地转化.例如,增长率公式和工程问题公式:初值×〔1+增长率〕n=终值,初值×〔1-降低率〕n=终值.工作时间×工作效率=工作总量.在增长率公式中,学生总是分不清“+〞“-〞符号,教师可以指导学生,一般题目中说到“上升〞“增多〞的就是“+〞.说到“下降〞“降低〞“减少〞的就是“-〞,然后仔细观察题目中是否存在成心误导的信息,之后才能合理的套用公式,工程问题也是要记忆根本公式,并且要能够灵活地对根本公式进行转变:工作总量工作时间=工作效率,工作总量工作效率=工作时间.〔二〕提高解题策略的建议教师应该加强对学生使用图像、表格等辅助方法的教学,提高学生全方位思考问题的能力.例如,在行程问题中,数学关系式有两种:相遇问题:路程甲+路程乙=两者原来的距离;速度=速度甲+速度乙.追击问题:快者的总路程-慢者的总路程=它们原来的距离;速度=快速度-慢速度.相遇问题和追击问题可以利用线段图形来想象表示:将抽象的数学题转化为形象的线段图,学生可以更加直观地理解题目信息之间的关系,从而更加效率准确地列出二元一次方程组.七年级学生在解析应用题时,很少会用到图文转化,将题目用线段、图形等辅助方法来表示,而面对文字较多、条件较多的复杂题型的解答就会变得相当困难,而且列二元一次方程组的准确率也会大大降低.因此,教师在教学过程中,应该重视对学生图文转化能力的培养和训练.〔三〕培养学生良好的数学学习习惯第一,教师除了课上时间的教学,还应该给学生提供给用题解答方面的图书和典型习题练习册,帮助学生进行知识的稳固和完善,让学生充分合理地利用课外时间,来对这些知识进行解题练习,从而形成学生自己的思考方式,逐渐锻炼和培养学生应用题方面的数学灵敏度;第二,教师还要时刻掌握学生的课堂状态,要鼓励学生积极地提出不理解的问题和知识要点,培养学生大胆发言、不懂就问的好习惯,通过师生之间的交流探讨,建立良好的和谐的数学学习气氛和课堂环境;第三,教师在学生的作业布置上一定要有层次感,根据学生的数学学习能力和知识掌握程度分配合理的作业,使根底较差的学生能够逐渐跟上整体的学习进度,养成认真完成作业的习惯,进而促进的共同进步;第四,在学生的应用题解答过程中,教师要重视培养学生的题目标记习惯,让学生在审题过程中,对重要的数学量进行标注,多读题,排除那些成心误导的混淆信息.对于题目较长、文字较多、量较多的题目,有效的数据变量很可能会被混淆,这就需要学生借助图文转换能力,将题目信息转换为适宜的图形或表格,进而分析题目;第五,要重视对学生检验结果的习惯进行培养,学生不仅要对计算结果是否正确进行检验,还要对计算出的结果是否符合具体状况进行检验,还有题设与答题过程中的单位使用是否正确,答题的结果是否是题目所问等.四、结束语本次对解二元一次方程组的计算错误原因分析研究,主要根据四美塘中学的七年级的〔1〕班和〔2〕班的学习状况进行的分析,因此会存在一定的局限性和片面性.在本次的研究中,笔者将学生们的典型错题进行系统分析,并提出了自己的一些干预措施,希望能够给广阔同仁带来一定的帮助,并且在实际的教学过程中,我也会履行这些干预措施,对学生的能力进行全方位的培养,真正实现解二元一次方程组的高质量教学.【参考文献】【1】欧昌铬,廖启宁.基于数学核心素养的合作学习有效策略——以人教版七年级“二元一次方程组〞教学为例[J].中学数学,2021〔16〕:8-10+13.【2】付依婷.基于历史发生原理的求解二元一次方程组教学设计[D].漳州:闽南师范大学,2021.【3】赵文娜.七年级学生列二元一次方程组解应用题错误的实证研究[D].石家庄:河北师范大学,2021.【4】高福芹.初中数学二元一次方程组纠错分析[J].新课程导学,2021〔14〕:52.方法培养数学思维——“消元——解二元一次方程组〞课堂教学实录与评析[J].中小学数学〔初中版〕,2021〔3〕:15-17.【6】王欣.基于学前诊断的认知分析及教学设计实践研究——以“二元一次方程组及其解法〞为例[J].中学数学,2021〔14〕:17-21.【7】肖学军.“二元一次方程组〞易错题辨析[J].初中生世界,2021〔21〕:23-25.[8]袁晓亮.2.1一元一次方程〔一元二次方程〕和二元一次方程组[J].中学生数理化〔初中版·中考版〕,2021〔1〕:11-13+44.。
第10讲---二元一次方程组的解法精选全文完整版
可编辑修改精选全文完整版第八讲 二元一次方程组的解法一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入法 2.加减法二、典例剖析专题一:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例3、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x⎪⎩⎪⎨⎧=+=+15251102y x y x ⎩⎨⎧=+=-1023724y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=专题二:有关二元一次方程组的解:例4、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.(2)二元一次方程3a +b =9在正整数范围内的解的个数是_________.(3)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________(4)若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值。
二元一次方程组 专项练习题2017剖析
a.甲、乙两地相距千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,小时分相遇相遇后,拖拉机继续前进,汽车在相遇处停留小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机这时,汽车、拖拉机各自行驶了多少千米?【变式】甲、乙两人相距千米,相向而行,如果甲比乙先走小时,那么他们在乙出发小时后相遇;如果乙比甲先走小时,那么他们在甲出发小时后相遇,甲、乙两人每小时各走多少千米?【变式】两地相距千米,一艘船在其间航行,顺流用小时,逆流用小时,求船在静水中的速度和水流速度。
类型二:列二元一次方程组解决一一工程问题a.一家商店要进行装修,若请甲、乙两个装修组同时施工,天可以完成,需付两组费用共元;若先请甲组单独做天,再请乙组单独做天可完成,需付两组费用共元,问:甲、乙两组工作一天,商店应各付多少元?已知甲组单独做需天完成,乙组单独做需天完成,单独请哪组,商店所付费用最少?【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作周完成需工钱万元;若甲公司单独做周后,剩下的由乙公司来做,还需周完成,需工钱万元若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.有甲、乙两件商品,甲商品的利润率为乙商品的利润率为类型三:列二元一次方程组解决——商品销售利润问题共可获利元。
价格调整后,甲商品的利润率为,乙商品的利润率为,共可获利兀,则两件商品的进价分别是多少兀?【变式】(湖南衡阳)李大叔去年承包了亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利元,乙种蔬菜每亩获利元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式】某商场用万元购进、两种商品,销售完后共获利万元,其进价和售价如下表:进价(元件)售价(元件)(注:获利售价一进价)求该商场购进、两种商品各多少件;类型四:列二元一次方程组解决一一生产中的配套问题a.某服装厂生产一批某种款式的秋装,已知每米的某种布料可做上衣的衣身个或衣袖只现计划用米这种布料生产这批秋装不考虑布料的损耗,应分别用多少布料才能使做的衣身和衣袖恰好配套?【变式】现有张铁皮做盒子,每张铁皮做个盒身或个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【变式】某工厂有工人人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓个或螺母个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。
(完整版)二元一次方程组的同解错解参数等问题
二元一次方程组的同解、错解、参数等问题一. 解下列方程组:二.含参数的二元一次方程组的解法二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。
1.、同解 两个二元一次方程组有相同的解,求参数值。
例:已知方程 与 有相同的解,则a 、b 的值为 。
2、错解 由方程组的错解问题,求参数的值。
例:解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==23y x 由于看错了系数c,从而得到解⎩⎨⎧=-=22y x 试求a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。
3、参数问题 根据方程组解的性质,求参数的值。
例:1、m 取什么整数时,方程组的解是正整数?(1) (2) ⎩⎨⎧=+=+4535y ax y x (3) (4) ⎩⎨⎧=+=-1552by x y x ①② ⎩⎨⎧=-=-0362y x my x方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。
4、根据所给的不定方程组,求比值。
2、求适合方程组⎩⎨⎧=++=-+05430432z y x z y x 的 z y x z y x +-++ 的值。
练习:2.已知关于x y 、的方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y 、都是整数,m 是正整数,求m 的值3、已知关于x y 、的方程组2647x ay x y -=⎧⎨+=⎩有整数解,即x y 、都是整数,a 是正整数, 求a 的值.4. 已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,求原方程组的解.5..关于x y 、的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值?6. 若()4360,2700,x y z x y z xyz --=+-=≠求代数式222222522310x y z x y z +---的值.7、先阅读,再做题:1.一元一次方程ax b =的解由a b 、的值决定:⑴若0a ≠,则方程ax b =有唯一解b x a=; ⑵若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解;a 515 42x y x by +=⎧⎨-=-⎩① ②⑶若0,0a b =≠,方程变为0x b ⋅=,则方程无解.2.关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行: ⑴若1122a ba b ≠,则方程组有唯一解;⑵若111222a b c a b c ==,则方程组有无数多个解;⑶若111222a b c a b c ≠=,则方程组无解.请解答:已知关于x y 、的方程组()312y kx by k x =+⎧⎪⎨=-+⎪⎩分别求出k,b 为何值时, 方程组的解为: ⑴有唯一解; ⑵有无数多个解; ⑶无解?① 例2. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 2751.有无数多解,2.无解,3.有唯一的解。
【中考数学】 二元一次方程组易错压轴解答题(附答案)
【中考数学】二元一次方程组易错压轴解答题(附答案)一、二元一次方程组易错压轴解答题1.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣ x(x,y为正整数).∴则有0<x<6,又∵y=4﹣ x为正整数,∴ x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣ x=2.∴2x+3y=12的正整数解为 .问题:(1)请你写出方程3x+y=7的一组正整数解:________.(2)若为自然数,则满足条件的x值有 .A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.2.已知关于、的方程组(1)若是方程组的解时,求的值;(2)当时,若方程组的解满足为非正数,为负数,化简:.3.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.4.在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“ 演化点”.例如,点的“ 演化点”为,即 .(1)已知点的“ 演化点”是,则的坐标为________;(2)已知点,且点的“ 演化点”是,则的面积为________;(3)己知,,,,且点的“ 演化点”为,当时, ________.5.青山化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地.已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运费124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表原料x吨产品y吨合计(元)铁路运费124800公路运费19500(2)这批产品的销售款比原料费与运输费的和多多少元?6.已知关于x,y的二元一次方程组(a为实数).(1)若方程组的解始终满足y=a+1,求a的值.(2)己知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠-6)的解.①探究实数a,b满足的关系式.②若a,b都是整数,求b的最大值和最小值.7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.8.如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b).(1)顶点B的坐标为________,顶点D的坐标为________(用a或b表示);(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,这次平移可以看成是先将长方形ABCD向右平移________个单位长度,再向下平移________个单位长度的两次平移;(4)若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解.9.已知为三个非负数,且满足(1)用含的代数式分别表示得(2)若求S的最小值和最大值.10.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为.例如:,对调个位数字与十位数字得到新两位数,新两位数与原两位数的和为,和与的商为,所以.根据以上定义,回答下列问题:(1)填空:①下列两位数:,,中,“迥异数”为________.②计算: ________, ________.(2)如果一个“迥异数” 的十位数字是,个位数字是,且;另一个“迥异数” 的十位数字是,个位数字是,且,请求出“迥异数” 和.(3)如果一个“迥异数” 的十位数字是,个位数字是,另一个“迥异数” 的十位数字是,个位数字是,且满足,请直接写出满足条件的所有的值________.11.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元. 老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每售出一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元. 设老徐将购进的60箱水果分配给甲店草莓箱,苹果箱,其余均分配给乙店.由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?________②若老徐希望获得总利润为1000元,则 =________.(直接写出答案)12.一个长方形的长和宽分别为x厘米和y厘米(x,y为正整数),如果将长方形的长和宽各增加5厘米得到新的长方形,面积记为,将长方形的长和宽各减少2厘米得到新的长方形,面积记为.(1)请说明:与的差一定是7的倍数.(2)如果比大196 ,求原长方形的周长.(3)如果一个面积为的长方形和原长方形能够没有缝隙没有重叠的拼成一个新的长方形,请找出x与y的关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、二元一次方程组易错压轴解答题1.(1){x=1y=4(2)B(3)解:设购买甲种体育用品x件,购买乙种体育用品y件,依题意得:20x+30y=180,2x+3y=18,y=6﹣ 23 x,∵x,y是正整数,当x=解析:(1)(2)B(3)解:设购买甲种体育用品x件,购买乙种体育用品y件,依题意得:20x+30y=180,2x+3y=18,y=6﹣ x,∵x,y是正整数,当x=3时,y=4.当x=6时,y=2.故有两种购买方案:①购买甲种体育用品3件,购买乙种体育用品4件;②购买甲种体育用品6件,购买乙种体育用品2件.【解析】【解答】解:(1)由3x+y=7,得y=7﹣3x(x、y为正整数).则当x=1时,y=4;当x=2时,y=1.故方程的正整数解是或(只要写出其中的一组即可).( 2 )同样,若为自然数,则有:0<x﹣2≤9,即2<x≤11.当x=3时,=9;当x=5时,=3;当x=11时,=1.即满足条件x的值有3个,故答案为:B.【分析】(1)求方程3x+y=7的正整数解,可给定x一个正整数值,计算y的值,如果y 的值也是正整数,那么就是原方程的一组正整数解;(2)参照例题的解题思路进行解答;(3)设购买甲种体育用品x件,购买乙种体育用品y件,根据“甲种体育用品每件20元,乙种体育用品每件30元,共用去180元”列出方程,并解答.2.(1)把 {x=2y=1 代入方程组,得 {-7-n=3n+3m=1解得 {n=-103m=11∴3m+n=11-10=1(2)当n=-2时,解方程组得解得;解析:(1)把代入方程组,得解得∴3m+n=11-10=1(2)当n=-2时,解方程组得解得;【解析】【分析】(1)将x=2,y=1代入方程组,即可得到m和n的值,计算得到3m+n 的值即可;(2)将n=-2代入方程组,用含m的代数式表示x和y,根据x为非正数,y为负数表示出其范围,即可得到m的取值范围,继而化简得到答案即可。
七年级数学下册 第7章 一次方程 培优专题 二元一次方程组的同解、错解、参数问题课件
第7章 一次方程(yī cì fānɡ chénɡ)
培优专题
二元一次方程组的同解、错解、参数(cānshù)问题
第一页,共十七页。
第7章 一次方程组
培优专题(zhuāntí) 二元一次方程组的同解、通错、参数问题
方法管理 归类探究
第二页,共十七页。
代入①,得 y=-5.把y=-5代入bx-ay=-6,得5a+b=-6,解得 a=b =-1.则原式=[4×(-1)-3×(-1)]2 018=1.
第四页,共十七页。
【变式跟进】
mx+2ny=4, x-y=3,
1.[2017·杭州一模]若关于 x、y 的方程组x+y=1
与nx+(m-1)y=3
有相同的解.
x=-3, 程①中的 a,得到方程组的解为y=-10;乙看错了方程②中的 b,得到方程组 的解为xy==54,. 试计算 a2 020+(-b)2 019 的值.
第七页,共十七页。
x=-3, 解:将y=-10 代入方程组中的 4x-by=-2, 得-12+10b=-2,解得 b=1.
x=5, 将y=4 代入 ax+5y=15,得 5a+20=15, 解得 a=-1.则 a2 020+(-b)2 019=1-1=0.
第十五页,共十七页。
解:(答案不唯一) 我最欣赏乙同学的解题思路,解答如下: 32xx+ +23yy= =76k.②-2,①,①+②,得 5x+5y=7k+4,∴x+y=7k5+4. ∵x+y=2,∴7k+ 5 4=2,解得 k=67. 评价:乙同学观察到了方程组中未知数 x、y 的系数,以及与 x+y=2 中的 系数的特殊关系,利用整体代入简化计算,而且不用求出 x、y 的值就能解决问 题,思路比较灵活,计算量小.
《二元一次方程组》问题错解例析
《二元一次方程组》问题错解例析错解例析:二元一次方程组是由两个二元一次方程组成的方程系统。
解方程组的方法有图解法、代入法、消元法等。
下面以一个具体的例子进行错解例析。
问题:已知方程组3x + 2y = 72x - y = 0求方程组的解。
错解:方法一:图解法将两个方程分别转化为直线的形式,然后通过观察直线的交点来求解方程组。
首先,将第一个方程3x + 2y = 7转化为直线的形式。
令x = 0,得到2y = 7,y = 7/2。
令y = 0,得到3x = 7,x = 7/3。
因此,可以确定一条直线。
然后,将第二个方程2x - y = 0转化为直线的形式。
令x = 0,得到-y = 0,y = 0。
令y = 0,得到2x = 0,x = 0。
因此,可以确定另一条直线。
通过观察两条直线的交点,发现它们并不相交。
因此,方程组无解。
问题分析:这个错解的错误在于直接观察两条直线的交点来判断方程组的解。
然而,直线相交并不一定代表方程组有解,直线不相交也不一定代表方程组无解。
因此,不能直接通过图解法来判断方程组的解。
方法二:代入法将第二个方程2x - y = 0中的y用第一个方程3x + 2y = 7中的x表示,得到2x - (3x + 2y) = 0,化简得到-3x - 2y = 0。
将得到的方程-3x - 2y = 0代入第一个方程3x + 2y = 7中,得到3x + 2(-3x - 2y) = 7,化简得到-4x - 4y = 7。
进一步化简得到-2x - 2y = 3.5。
然后,将得到的方程-2x - 2y = 3.5代入第一个方程3x + 2y = 7中,得到3x + 2(-2x - 2y) = 7,化简得到-x - 6y = 7。
通过观察得到的方程-x - 6y = 7,可以发现方程中的系数与常数项之间存在矛盾。
因此,方程组无解。
问题分析:这个错解的错误在于代入法的运算错误。
在进行代入时,需要将方程进行一次性代入,而不能将方程中的变量进行多次代入。
人教版七年级下册第八章含参二元一次方程组解法、同解、错解问题专题
含参二元一次方程组解法、同解、错解问题含参问题类型类型题1:含参问题构建二元一次方程组解方程例题1.若0)532(54=-++-+n m n m ,求()2n m -的值。
2.已知方程3)5()2()24(12=+----b a y b x a 是关于x、y的二元一次方程,求a与b的值。
3.已知与互为相反数,则=______,=________.4.已知2a y+5b 3x 与b 2-4y a 2x 是同类项,那么x,y的值是().学生/课程年级学科授课教师日期时段核心内容含参二元一次方程组解法、同解、错解问题教学目标1.掌握含参的二元一次方程组的同解、错解的解题方法2.掌握复杂的二元一次方程组的解法2.了解二元一次方程组的解有无数组解、唯一解与无解,会进行简单的求解二元一次方程组的灵活应用针对练习1.若|x-2|+(3y+2x)2=0,则的值是.2.若x a+1y-2b与-x2-b y2的和是单项式,则a、b的值分别的()A.a=2,b=-1B.a=2,b=1C.a=-2,b=1D.a=-2,b=-13.若单项式与是同类项,则,的值分别是多少4..若|x-y-1|+(2x-3y+4)2=0,则x=,y=.5.若是关于,的二元一次方程,则()A.,B.,C.,D.,类型题2:恒成立问题构建二元一次方程组解方程例题1.在方程(x+2y-8)+m(4x+3y-7)=0中,找出一对x,y值,使得m无论取何值,方程恒成立.2.在方程(a+6)x-6+(2a-3)y=0中,找出一对x,y值,使得a无论取何值,方程恒成立.类型题3:(新题型)含有三个未知数的方程组求比例例题1.已知满足方程组,求【学有所获】1)口述:2个未知数需要几个方程,3个未知数需要几个方程,n个未知数需要几个方程2)整体思想一般运用在哪些方面,试着自己归类总结。
针对练习1.已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0.(1)请用含z的代数式表示x、y,并求出x:y:z的值(2)你能求出的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组错解剖析
【题1】已知方程组
化+ y
二10
4x - 3y = 5
(4> K- 2y = 7
5x- 5y = 12
正确的说法是()
A •只有(1)、(3)是二元一次方程组
B •只有(1)、(4)是二元一次方程组
C •只有(2)、(3)是二元一次方程组
D •只有(2)不是二元一次方程组
[误解][A].
[正解][D].
[剖析]二元一次方程组是由两个以上一次方程组成并且只含有两个未知数的方程组,所以其中方程可以是一元一次方程,并且方程组中方程的个数可以超过两个•本题中的(1)、(3)、(4)都是二元一次方程组,只有(2)不是.
【题2】
[误解一 ][A ].
[误解二][D ].
[正解][C].
[剖析]二元一次方程组的解是使方程组中的每一个方程的
左、右两边的值都相尊的两个未知数的直而或:)都只是方程组 収=1 了 (y =2 + y — 25 .._二农中一个方程的解,并不能让另一方程左、右两边相等, 7- 所以它们都不是这 个方程组的解,只有(C )是正确的.
验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方 程的左、右两边都相等的未知数的值才是方程组的解.
【题3】
用代入拦解方程组 [误解]由式②得x=8-3y ③
把式③代入式②得 8-3y+3y=8, 0y=0
••• y 可以为任何值
•••原方程组有无数组解.
方程组 z + y = 25
2x - y = 2 的解是
(
J^ = 10
V = 15
j^ = ll
|y - 14
2z +5y =
一
21
[正解]由式②得x=8-3y ③
把式③代入式①得2(8-3y)+5y=-21
解得y=37
把y=37代入式③得x=8-3 >37
解得x=-103
.p = - 1C3
[剖析]代入法是求二元一次方程组的解的一种基本方法•它的一般步骤是:(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,用含另一个未知数的代数式表示出来,如本题中方程②中的x,用含y的代数式表示为x=8-3y ;(2)将这个变形所得的代数式代入另一个方程中,消去一个未知数,得到一个一元一次方程;这里要求代入另一个”方程,[误解]把它代入到变形前的同一个方程中,得到了一个关于y的恒等式,出现了错误. ⑶解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入前面变形所得的式子中,求出另一个未知数,从而得到方程组的解.
【题4】
------- -3
3 6
解方程
组」
[误解]由式①得y=2x-19③
把式③代入式②得
把x=6代入式③中得 y=2«-19,二y=-7
[正解一]化简原方程组得
① "+ $y = 0
A ② 由式②得 L
5 ③ .
IM 八 _TT
杜=罟代入到式①中得2xHl-y = i9, .-y=-J|
[正解二]化简原方程组得
f2x-y = 19
① |^5x + 6y = 0
②
式①0+式②得17x=114
■ ' S_ 17 把"罟代入式③得厂黑.*_菩
11 o 1 / 1 /
[剖析][误解]在把变形后的式③代入式②时,符号书写出现了错误•当解比较复杂 的方程组时,应先化简,在求出一个未知数后,可以将它代入化简后的方程组里的任 意一个方程中,求出第二个未知数,这样使得运算方便,避免出现错误.
解二元一次方程组可以用代入法,也可以用加减法•一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.。