《§3 解三角形的实际应用举例》教学案1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《§3 解三角形的实际应用举例》教学案1
教学目标
1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。

2、能够运用正弦定理、余弦定理进行三角形边与角的互化。

3、培养和提高分析、解决问题的能力。

教学重点难点
1、正弦定理与余弦定理及其综合应用。

2、利用正弦定理、余弦定理进行三角形边与角的互化。

教学过程 一、复习引入
1、正弦定理:2sin sin sin a b c
R A B C === 2、余弦定理: ,cos 2222A bc c b a -+=⇔
bc
a c
b A 2cos 222-+=
,cos 2222B ca a c b -+=⇔
ca b a c B 2cos 222-+=
C ab b a c cos 2222-+=,⇔ab
c b a C 2cos 222-+=
二、例题讲解
引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。

解:060=A 075=B ∴045=C
由正弦定理知00
45sin 1060sin =BC
6
545sin 60sin 1000
==⇒BC 海里
750
600
C
B
A
例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为/02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字).
分析:这个问题就是在ABC ∆中,已知AB=1.95m ,AC=1.4m ,
求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。

解:由余弦定理,得
答:顶杠BC 长约为1.89m.
解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。

2、要明确题目中一些名词、术语的意义。

如视角,仰角,俯角,方位角等等。

3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。

练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东020, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东065方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB
由正弦定理知
020sin 45sin BS AB =
'
2066'20660︒=︒+︒=∠BAC A AC AB AC AB BC cos 2222⋅-+=)(89.1571.3'2066cos 40.195.1240.195.122m BC ≈∴=
︒⨯⨯⨯-+=D C
B
A
1.40m
1.95m
6020/
600
?S
B A
1150
450650200
7
.745sin 20sin 100
≈=BS 海里 答:灯塔S 和B 处的距离约为7.7海里
例2.测量高度问题
如图,要测底部不能到达的烟囱的高AB ,从与烟囱底部在同一水平直线上的C ,D 两处,测得烟囱的仰角分别是045=α和060=β, C、D间的距离是12m.已知测角仪器高1.5m.求烟囱的高。

图中给出了怎样的一个几何图形?已知什么,求什么? 分析:因为B A AA AB 11+=,又m AA 5.11
=
所以只要求出B A 1
即可
解:在1
1D BC ∆中,
0001112060180=-=∠C BD ,00011154560=-=∠BD C
由正弦定理得:
1
11
1111sin sin C BD BC BD C D C ∠=
∠ m BD C C BD D C BC )66218(15sin 120sin 12sin sin 0
1111111+==∠∠= 从而:
m
BC B A 392.2836182
211≈+== 因此:m AA B A AB 89.29892.295.1392.2811≈=+≈+=
答:烟囱的高约为m 89.29
练习:在山顶铁塔上B 处测得地面上一点A 的俯角060=α,在塔底C 处测得点A 的俯角045=β,已知铁塔BC 部分高32米,求山高CD 。

解:在△ABC 中,∠ABC=30°, ∠ACB =135°,
∴∠CAB =180°-(∠ACB+∠ABC) =180°-(135°+30°)=15° 又BC=32,
A 1α
βD 1C 1D
C
B
A
?
32
β=450
α=600
D
C
B
A
由正弦定理
ABC
AC
BAC BC ∠=
∠sin sin 得:
m
BAC ABC BC AC )26(164
2
61615
sin 30
sin 32sin sin 0
+=-==∠∠=
课堂小结
1、本节课通过举例说明了解斜三角形在实际中的一些应用。

掌握利用正弦定理及余弦定理解任意三角形的方法。

2、在分析问题解决问题的过程中关键要分析题意,分清已知与所求,根据题意画出示意图,并正确运用正弦定理和余弦定理解题。

3、在解实际问题的过程中,贯穿了数学建模的思想,其流程 图可表示为:
画图形
数模型
解三角形
检验(答)
数模型的解
实际问题的解
实际问题。

相关文档
最新文档