数据挖掘概念与技术_课后题答案汇总
数据挖掘_概念与技术部分习题答案
数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用E R数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高 GPA 的学生的一般特性可被用来与具有低 GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高 GPA 的学生的 75%是四年级计算机科学专业的学生,而具有低GPA 的学生的 65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为: major(X, “ computing science ”) ? owns(X, “ personal computer ” )[support=12%, confidence=98%] 其中, X 是一个表示学生的变量。
这个规则指出正在学习的学生, 12% (支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是 98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
数据挖掘-概念与技术(第三版)部分习题答案
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
数据挖掘概念与技术原书第3版课后练习题含答案
数据挖掘概念与技术原书第3版课后练习题含答案前言《数据挖掘概念与技术》(Data Mining: Concepts and Techniques)是一本经典的数据挖掘教材,已经推出了第3版。
本文将为大家整理并提供第3版课后习题的答案,希望对大家学习数据挖掘有所帮助。
答案第1章绪论习题1.1数据挖掘的基本步骤包括:1.数据预处理2.数据挖掘3.模型评价4.应用结果习题1.2数据挖掘的主要任务包括:1.描述性任务2.预测性任务3.关联性任务4.分类和聚类任务第2章数据预处理习题2.3数据清理包括以下几个步骤:1.缺失值处理2.异常值检测处理3.数据清洗习题2.4处理缺失值的方法包括:1.删除缺失值2.插补法3.不处理缺失值第3章数据挖掘习题3.1数据挖掘的主要算法包括:1.决策树2.神经网络3.支持向量机4.关联规则5.聚类分析习题3.6K-Means算法的主要步骤包括:1.首先随机选择k个点作为质心2.将所有点分配到最近的质心中3.重新计算每个簇的质心4.重复2-3步,直到达到停止条件第4章模型评价与改进习题4.1模型评价的方法包括:1.混淆矩阵2.精确率、召回率3.F1值4.ROC曲线习题4.4过拟合是指模型过于复杂,学习到了训练集的噪声和随机变化,导致泛化能力不足。
对于过拟合的处理方法包括:1.增加样本数2.缩小模型规模3.正则化4.交叉验证结语以上是《数据挖掘概念与技术》第3版课后习题的答案,希望能够给大家的学习带来帮助。
如果大家还有其他问题,可以在评论区留言,或者在相关论坛等平台提出。
数据挖掘概念与技术习题答案-第1章
数据挖掘概念与技术(原书第3版)第一章课后习题及解答1.9习题1.1什么是数据挖掘?在你的回答中,强调以下问题:(a)它是又一种广告宣传吗?(b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。
你认为数据挖掘也是机器学习研究进化的结果吗?你能基于该学科的发展历史提出这一观点吗?针对统计学和模式识别领域,做相同的事。
(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。
答:狭义的数据挖掘是知识发现过程中的一个步骤,广义的数据挖掘通常用来表示整个知识发现过程,我们一般采用广义的观点:数据挖掘是从大量数据中挖掘有趣模式和知识的过程。
数据源包括数据库、数据仓库、WEB、其他信息存储库或动态地流入系统的数据。
a.它不是一种广告宣传,它基于实际的需求,提供从数据中发现知识的工具。
b。
数据挖掘不是从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它可以看做是信息技术的自然进化,是一些相关学科和应用领域的交汇点.c。
数据挖掘是数据库技术进化的结果,也是机器学习、统计学和模式识别领域技术进化的结果。
机器学习是一个快速成长的学科,这一领域中的监督学习、无监督学习、半监督学习和主动学习问题,与数据挖掘高度相关,数据挖掘和机器学习有许多相似之处,对于分类和聚类任务,机器学习研究通常关注模型的准确率。
除准确率之外,数据挖掘研究非常强调挖掘方法在大型数据集上的有效性和可伸缩性,以及处理复杂数据类型的方法,开发新的非传统的方法.统计学研究数据的收集、分析、解释和表示。
数据挖掘和统计学具有天然联系。
(1)统计模型是一组数学函数,它们利用随机变量及其概率分布刻画目标类对象的行为,可以是数据挖掘的结果,也可以是数据挖掘任务的基础。
(2)统计学研究开发一些使用数据和统计模型进行预测和预报的工具,描述统计可以帮助理解数据;推理统计学用某种方式对数据建模,可以解释观测中的随机性和确定性,并用来提取关于所考察的过程中或总体的结论.(3)统计假设检验使用实验数据进行统计判决,可以用来验证数据挖掘结果。
数据挖掘_概念与技术(第三版)部分习题答案讲解
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ? owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
数据挖掘概念与技术第三版部分习题答案汇总
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(:)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高的学生的一般特性可被用来与具有低的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高的学生的75%是四年级计算机科学专业的学生,而具有低的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:(X, “”) ⇒(X, “”)[12%, 98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
它们的相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。
聚类分析的数据对象不考虑已知的类标号。
对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。
(完整word版)数据挖掘_概念与技术(第三版)部分习题答案(word文档良心出品)
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒ owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
数据挖掘概念与技术_课后题答案汇总汇总
数据挖掘——概念概念与技术Data MiningConcepts and T echniques习题答案第1章引言1.1 什么是数据挖掘?在你的回答中,针对以下问题:1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
解答:�特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade pointaversge)的信息,还有所修的课程的最大数量。
�区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高 GPA 的学生的一般特性可被用来与具有低 GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高 GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
�关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing s cience”) ⇒ owns(X, “personalcomputer”) [support=12%, confid ence=98%]其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
�分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
它们的相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。
�聚类分析的数据对象不考虑已知的类标号。
数据挖掘_概念与技术(第三版)部分习题答案
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型.相似:它们都为数据挖掘提供了源数据,都是数据的组合.1。
3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子.答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件.例如,一个数据挖掘系统可能发现的关联规则为:major(X,“computing science")⇒ owns(X, “personal computer”)[support=12%, confidence=98%]其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
(完整版)数据挖掘_概念与技术(第三版)部分习题答案
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒ owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
数据挖掘_概念与技术(第三版)部分习题答案
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型.相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1。
3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子.答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较.最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是.关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X,“computing science")⇒ owns(X,“personal computer”)[support=12%, confidence=98%]其中,X 是一个表示学生的变量.这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机.这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值.它们的相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。
数据挖掘概念与技术(第三版)课后答案——第一章
数据挖掘概念与技术(第三版)课后答案——第⼀章1.1 什么是数据挖掘?在你的回答中,强调以下问题:(a)它是⼜⼀种⼴告宣传吗?(b)它是⼀种从数据库、统计学、机器学习和模式识别发展⽽来的技术的简单转换或应⽤吗?(c)我们提出了⼀种观点,说数据挖掘是数据库技术进化的结果。
你认为数据挖掘也是机器学习研究进化的结果吗?你能基于该学科的发展历史提出这⼀观点吗?针对统计学和模式识别领域,做相同的事。
(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。
答:数据挖掘不是⼀种⼴告宣传,它是⼀个应⽤驱动的领域,数据挖掘吸纳了诸如统计学习、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、算法、⾼性能计算和许多应⽤领域的⼤量技术。
它是从⼤量数据中挖掘有趣模式和知识的过程。
数据源:包括数据库、数据仓库、Web、其他信息存储库或动态的流⼊系统的数据等。
当其被看作知识发现过程时,其基本步骤主要有:1. 数据清理:清楚噪声和删除不⼀致数据;2. 数据集成:多种数据源可以组合在⼀起;3. 数据选择:从数据库中提取与分析任务相关的数据;4. 数据变换:通过汇总或者聚集操作,把数据变换和统⼀成适合挖掘的形式;5. 数据挖掘:使⽤智能⽅法或者数据挖掘算法提取数据模式;6. 模式评估:根据某种兴趣度量,识别代表知识的真正有趣的模式。
7. 知识表⽰:使⽤可视化和知识表⽰技术,向⽤户提供挖掘的知识。
1.2 数据仓库与数据库有什么不同?它们有哪些相似之处?答:不同:数据仓库是多个异构数据源在单个站点以统⼀的模式组织的存储,以⽀持管理决策。
数据仓库技术包括数据清理、数据集成和联机分析处理(OLAP)。
数据库系统也称数据库管理系统,由⼀组内部相关的数据(称作数据库)和⼀组管理和存取数据的软件程序组成,是⾯向操作型的数据库,是组成数据仓库的源数据。
它⽤表组织数据,采⽤ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
数据挖掘概念与技术课后答案第二版
数据挖掘概念与技术课后答案第二版第一章:数据挖掘概论1.什么是数据挖掘?数据挖掘是一种通过从大量数据中发现隐藏模式、关系和知识的方法。
它将统计学、机器学习和数据库技术结合起来,用于分析海量的数据,并从中提取出有用的信息。
2.数据挖掘的主要任务有哪些?数据挖掘的主要任务包括分类、回归、聚类、关联规则挖掘和异常检测等。
3.数据挖掘的流程有哪些步骤?数据挖掘的典型流程包括问题定义、数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
4.数据挖掘的应用领域有哪些?数据挖掘的应用领域非常广泛,包括市场营销、金融分析、生物医学、社交网络分析等。
5.数据挖掘的风险和挑战有哪些?数据挖掘的风险和挑战包括隐私保护、数据质量、误差纠正、过拟合和模型解释等。
第二章:数据预处理1.数据预处理的主要任务有哪些?数据预处理的主要任务包括数据清洗、数据集成、数据转换和数据规约等。
2.数据清洗的方法有哪些?数据清洗的方法包括缺失值填补、噪声数据过滤、异常值检测和重复数据处理等。
3.数据集成的方法有哪些?数据集成的方法包括实体识别、属性冲突解决和数据转换等。
4.数据转换的方法有哪些?数据转换的方法包括属性构造、属性选择、规范化和离散化等。
5.数据规约的方法有哪些?数据规约的方法包括维度规约和数值规约等。
第三章:特征选择与数据降维1.什么是特征选择?特征选择是从原始特征集中选择出最具有代表性和区分性的特征子集的过程。
2.特征选择的方法有哪些?特征选择的方法包括过滤式特征选择、包裹式特征选择和嵌入式特征选择等。
3.什么是数据降维?数据降维是将高维数据映射到低维空间的过程,同时保留原始数据的主要信息。
4.数据降维的方法有哪些?数据降维的方法包括主成分分析、线性判别分析和非负矩阵分解等。
5.特征选择和数据降维的目的是什么?特征选择和数据降维的目的是减少数据维度、提高模型训练效果、降低计算复杂度和防止过拟合等。
第四章:分类与预测1.什么是分类?分类是通过训练数据集建立一个分类模型,并将未知数据对象分配到其中的某个类别的过程。
数据挖掘概念与技术原书第3版第一章课后习题
习题什么是数据挖掘在你的回答中,强调以下问题:(a)它是又一种广告宣传吗(b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗(c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。
你认为数据挖掘也是机器学习研究进化的结果吗你能基于该学科的发展历史提出这一观点吗针对统计学和模式识别领域,做相同的事。
(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。
答:简单地说,数据挖掘其实就是从大量的数据中发现有用的信息,它是从大量数据中挖掘有趣模式和知识的过程。
数据挖掘不是一种广告宣传,而是身处在信息时代数据如此庞大的今天,我们对由海量的数据转化为有用信息的迫切需要,所以它是信息技术自然进化的结果,而不是一种广告宣传。
数据挖掘也不是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它涉及到了很多领域的技术,比如统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、神经网络、高性能计算、算法以及许多应用领域的大量技术。
数据挖掘起始于20世纪下半叶,是在当时多个学科发展的基础上发展起来的。
随着数据库技术的发展应用,数据的积累不断膨胀,导致简单的查询和统计已经无法满足企业的商业需求,所以急需一种新型的技术去获取有用的信息,当时计算机领域的人工智能也取得了巨大进展,进入了机器学习的阶段,人们就将两者结合起来,用数据库管理系统存储数据,用计算机分析数据,这两者的结合就促就以这一门新兴的学科,所以数据挖掘不是机器学习研究进化的结果,而是结合了机器学。
数据挖掘的步骤包括:(1)数据收集;(2)数据清洗、脱敏;(3)数据存储;(4)数据分析;(5)数据可视化。
数据仓库与数据库有何不同他们有哪相似之处答:数据库是按照数据结构来组织、存储和管理数据的仓库,它是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
数据挖掘概念与技术(第三版)部分习题答案.doc
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒ owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
数据挖掘概念与技术第三版答案
数据挖掘概念与技术第三版答案《数据挖掘概念与技术第三版课后习题答案全解析》。
如果你正在学习数据挖掘,手里拿着《数据挖掘概念与技术第三版》这本书,那肯定会遇到不少课后习题让你头疼吧?别担心,咱这儿就来给你把这些习题答案好好梳理梳理,还会讲讲为啥是这样的答案哦。
第一章:引言。
习题1:简述数据挖掘的定义和主要任务。
- 答案:数据挖掘呢,简单来说就是从大量的数据中找那些隐藏的、有价值的信息。
就好比你有一大箱苹果,数据挖掘就是要从这箱苹果里找出最大的、最甜的那些。
它的主要任务包括分类或预测,比如说预测明天会不会下雨,根据以往的天气数据来判断;聚类,就像把不同品种的苹果分成一堆一堆的;关联规则挖掘,例如发现买面包的人往往也会买牛奶这样的规律。
- 原因:数据挖掘的目的就是要从海量数据里挖出有用的东西,这些任务能帮助我们更好地理解数据,做出决策。
比如超市根据关联规则挖掘的结果来摆放商品,把面包和牛奶放得近一些,这样就能方便顾客购买,也能提高销量。
习题2:举例说明数据挖掘在实际生活中的应用。
- 答案:数据挖掘在生活中的应用可多啦。
比如说电商平台会根据你以前的购买记录给你推荐商品。
假如你经常买运动装备,它就会给你推荐新的运动鞋子、运动服之类的。
还有医疗领域,医生可以根据大量病人的数据,挖掘出某些疾病的发病规律和治疗方案。
比如说通过分析很多糖尿病患者的数据,找到哪些因素容易引发糖尿病,然后针对性地给病人建议。
- 原因:在电商平台,通过数据挖掘能提高用户的购买率,让用户更方便地找到自己喜欢的商品。
在医疗领域,能帮助医生更准确地诊断和治疗疾病,提高医疗水平。
第二章:数据预处理。
习题1:为什么要进行数据预处理?- 答案:数据预处理就像是做菜前的准备工作,很重要的哦。
因为原始数据可能会有很多问题,比如有错误的数据,就像你记录身高的时候不小心多写了个0;还有可能数据不完整,有的人只填了姓名,年龄却没填。
而且数据的格式也可能不一样,有的日期写成了2023-01-01,有的写成了01/01/2023 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘——概念概念与技术Data MiningConcepts and T echniques习题答案第1章引言1.1 什么是数据挖掘?在你的回答中,针对以下问题:1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
解答:☒特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
☒区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
☒关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “c omputing science”) owns(X, “personalcomputer”) [support=12%, c onfid e nce=98%]其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
☒分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
它们的相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。
☒聚类分析的数据对象不考虑已知的类标号。
对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。
形成的每一簇可以被看作一个对象类。
聚类也便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
☒数据延边分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数据的特征化、区分、关联和相关分析、分类、或预测,这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和基于相似性的数据分析1.3 1.9 列举并描述说明数据挖掘任务的五种原语。
解答:用于指定数据挖掘任务的五种原语是:☒任务相关数据:这种原语指明给定挖掘所处理的数据。
它包括指明数据库、数据库表、或数据仓库,其中包括包含关系数据、选择关系数据的条件、用于探索的关系数据的属性或维、关于修复的数据排序和分组。
☒挖掘的数据类型:这种原语指明了所要执行的特定数据挖掘功能,如特征化、区分、关联、分类、聚类、或演化分析。
同样,用户的要求可能更特殊,并可能提供所发现的模式必须匹配的模版。
这些模版或超模式(也被称为超规则)能被用来指导发现过程。
☒背景知识:这种原语允许用户指定已有的关于挖掘领域的知识。
这样的知识能被用来指导知识发现过程,并且评估发现的模式。
关于数据中关系的概念分层和用户信念是背景知识的形式。
☒模式兴趣度度量:这种原语允许用户指定功能,用于从知识中分割不感兴趣的模式,并且被用来指导挖掘过程,也可评估发现的模式。
这样就允许用户限制在挖掘过程返回的不感兴趣的模式的数量,因为一种数据挖掘系统可能产生大量的模式。
兴趣度测量能被指定为简易性、确定性、适用性、和新颖性的特征。
☒发现模式的可视化:这种原语述及发现的模式应该被显示出来。
为了使数据挖掘能有效地将知识传给用户,数据挖掘系统应该能将发现的各种形式的模式展示出来,正如规则、表格、饼或条形图、决策树、立方体或其它视觉的表示。
1.4 1.13 描述以下数据挖掘系统与数据库或数据仓库集成方法的差别:不耦合、松散耦合、半紧耦合和紧密耦合。
你认为哪种方法最流行,为什么?解答:数据挖掘系统和数据库或数据仓库系统的集成的层次的差别如下。
☒不耦合:数据挖掘系统用像平面文件这样的原始资料获得被挖掘的原始数据集,因为没有数据库系统或数据仓库系统的任何功能被作为处理过程的一部分执行。
因此,这种构架是一种糟糕的设计。
☒松散耦合:数据挖掘系统不与数据库或数据仓库集成,除了使用被挖掘的初始数据集的源数据和存储挖掘结果。
这样,这种构架能得到数据库和数据仓库提供的灵活、高效、和特征的优点。
但是,在大量的数据集中,由松散耦合得到高可测性和良好的性能是非常困难的,因为许多这种系统是基于内存的。
☒半紧密耦合:一些数据挖掘原语,如聚合、分类、或统计功能的预计算,可在数据库或数据仓库系统有效的执行,以便数据挖掘系统在挖掘-查询过程的应用。
另外,一些经常用到的中间挖掘结果能被预计算并存储到数据库或数据仓库系统中,从而增强了数据挖掘系统的性能。
☒紧密耦合:数据库或数据仓库系统被完全整合成数据挖掘系统的一部份,并且因此提供了优化的数据查询处理。
这样的话,数据挖掘子系统被视为一个信息系统的功能组件。
这是一中高度期望的结构,因为它有利于数据挖掘功能、高系统性能和集成信息处理环境的有效实现。
) N 从以上提供的体系结构的描述看,紧密耦合是最优的,没有值得顾虑的技术 和执行问题。
但紧密耦合系统所需的大量技术基础结构仍然在发展变化,其实现 并非易事。
因此,目前最流行的体系结构仍是半紧密耦合,因为它是松散耦合和 紧密耦合的折中。
1.5 1.14 描述关于数据挖掘方法和用户交互问题的三个数据挖掘挑战。
第 2 章 数据预处理2.1 2.2 假设给定的数据集的值已经分组为区间。
区间和对应的频率如下。
年龄频率1~5 200 5~15 450 15~20 300 20~50 1500 50~80 700 80~11044计算数据的近似中位数值。
解答: 先判定中位数区间:N=200+450+300+1500+700+44=3194;N/2=1597∵ 200+450+300=950<1597<2450=950+1500; ∴ 20~50 对应中位数区间。
我们有:L 1=20,N =3197,(∑freq ) l =950,freq med ian =1500,width =30,使用公 式(2.3): N / 2 (freq l3197 / 2 950 median = L 1+width = 20 + ⋅ 30 = 32.97freq median1500∴ median =32.97 岁。
2.2 2.4 假定用于分析的数据包含属性 age 。
数据元组的 age 值(以递增序)是:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30, 33,33,35,35,35,35,36,40,45,46,52,70。
(a) 该数据的均值是什么?中位数是什么?(b) 该数据的众数是什么?讨论数据的峰(即双峰、三峰等)。
(c) 数据的中列数是什么?(d) 你能(粗略地)找出数据的第一个四分位数(Q 1)和第三个四分位数(Q 3)吗?(e) 给出数据的五数概括。
(f) 画出数据的盒图。
(g) 分位数—分位数图与分位数图的不同之处是什么? 解答:(a) 该数据的均值是什么?中位数是什么?1 N 均值是: x = x ii =1个,即 x 14=25=Q 2。
= 809 / 27 = 29.96 E 30 (公式 2.1 )。
中位数应是第 14 (b) 该数据的众数是什么?讨论数据的峰(即双峰、三峰等)。
这个数集的众数有两个:25 和 35,发生在同样最高的频率处,因此是双峰众数。
(c) 数据的中列数是什么?数据的中列数是最大术和最小是的均值。
即:midrange=(70+13)/2=41.5。
(d) 你能(粗略地)找出数据的第一个四分位数(Q1)和第三个四分位数(Q3)吗?数据集的第一个四分位数应发生在25%处,即在(N+1)/4=7 处。
所以:Q1=20。
而第三个四分位数应发生在75%处,即在3×(N+1)/4=21 处。
所以:Q3=35(e) 给出数据的五数概括。
一个数据集的分布的5 数概括由最小值、第一个四分位数、中位数、第三个四分位数、和最大值构成。
它给出了分布形状良好的汇总,并且这些数据是:13、20、25、35、70。
(f) 画出数据的盒略。
(g) 分位数—分位数图与分位数图的不同之处是什么?分位数图是一种用来展示数据值低于或等于在一个单变量分布中独立的变量的粗略百分比。
这样,他可以展示所有数的分位数信息,而为独立变量测得的值(纵轴)相对于它们的分位数(横轴)被描绘出来。
但分位数—分位数图用纵轴表示一种单变量分布的分位数,用横轴表示另一单变量分布的分位数。
两个坐标轴显示它们的测量值相应分布的值域,且点按照两种分布分位数值展示。
一条线(y=x)可画到图中,以增加图像的信息。
落在该线以上的点表示在y 轴上显示的值的分布比x 轴的相应的等同分位数对应的值的分布高。
反之,对落在该线以下的点则低。
2.3 2.7 使用习题2.4 给出的age 数据回答下列问题:(a) 使用分箱均值光滑对以上数据进行光滑,箱的深度为3。
解释你的步骤。
评述对于给定的数据,该技术的效果。
(b) 如何确定数据中的离群点?(c) 对于数据光滑,还有哪些其他方法?解答:(a) 使用分箱均值光滑对以上数据进行光滑,箱的深度为3。
解释你的步骤。
评述对于给定的数据,该技术的效果。
用箱深度为3 的分箱均值光滑对以上数据进行光滑需要以下步骤:☒ 步骤1:对数据排序。
(因为数据已被排序,所以此时不需要该步骤。
)☒ 步骤2:将数据划分到大小为3 的等频箱中。
箱1:13,15,16 箱2:16,19,20 箱3:20,21,22箱4:22,25,25 箱5:25,25,30 箱6:33,33,35箱7:35,35,35 箱8:36,40,45 箱9:46,52,70☒ 步骤3:计算每个等频箱的算数均值。
☒ 步骤4:用各箱计算出的算数均值替换每箱中的每个值。
箱1:44/3,44/3 ,44/3 箱2:55/3 ,55/3,55/3 箱3:21,21,21箱4:24,24,24 箱5:80/3,80/3,80/3 箱6:101/3,101/3 ,101/3箱7:35,35,35 箱8:121/3,121/3 ,121/3 箱9:56,56,56 (b) 如何确定数据中的离群点?聚类的方法可用来将相似的点分成组或“簇”,并检测离群点。
落到簇的集外的值可以被视为离群点。
作为选择,一种人机结合的检测可被采用,而计算机用一种事先决定的数据分布来区分可能的离群点。